Search results for: platform video monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5818

Search results for: platform video monitoring

1918 Fabrication and Characterization of Al2O3 Based Electrical Insulation Coatings Around SiC Fibers

Authors: S. Palaniyappan, P. K. Chennam, M. Trautmann, H. Ahmad, T. Mehner, T. Lampke, G. Wagner

Abstract:

In structural-health monitoring of fiber reinforced plastics (FRPs), every single inorganic fiber sensor that are integrated into the bulk material requires an electrical insulation around itself, when the surrounding reinforcing fibers are electrically conductive. This results in a more accurate data acquisition only from the sensor fiber without any electrical interventions. For this purpose, thin nano-films of aluminium oxide (Al2O3)-based electrical-insulation coatings have been fabricated around the Silicon Carbide (SiC) single fiber sensors through reactive DC magnetron sputtering technique. The sputtered coatings were amorphous in nature and the thickness of the coatings increased with an increase in the sputter time. Microstructural characterization of the coated fibers performed using scanning electron microscopy (SEM) confirmed a homogeneous circumferential coating with no detectable defects or cracks on the surface. X-ray diffraction (XRD) analyses of the as-sputtered and 2 hours annealed coatings (825 & 1125 ˚C) revealed the amorphous and crystalline phases of Al2O3 respectively. Raman spectroscopic analyses produced no characteristic bands of Al2O3, as the thickness of the films was in the nanometer (nm) range, which is too small to overcome the actual penetration depth of the laser used. In addition, the influence of the insulation coatings on the mechanical properties of the SiC sensor fibers has been analyzed.

Keywords: Al₂O₃ thin film, electrical insulation coating, PVD process, SiC fibre, single fibre tensile test

Procedia PDF Downloads 123
1917 A Study on Design for Parallel Test Based on Embedded System

Authors: Zheng Sun, Weiwei Cui, Xiaodong Ma, Hongxin Jin, Dongpao Hong, Jinsong Yang, Jingyi Sun

Abstract:

With the improvement of the performance and complexity of modern equipment, automatic test system (ATS) becomes widely used for condition monitoring and fault diagnosis. However, the conventional ATS mainly works in a serial mode, and lacks the ability of testing several equipments at the same time. That leads to low test efficiency and ATS redundancy. Especially for a large majority of equipment under test, the conventional ATS cannot meet the requirement of efficient testing. To reduce the support resource and increase test efficiency, we propose a method of design for the parallel test based on the embedded system in this paper. Firstly, we put forward the general framework of the parallel test system, and the system contains a central management system (CMS) and several distributed test subsystems (DTS). Then we give a detailed design of the system. For the hardware of the system, we use embedded architecture to design DTS. For the software of the system, we use test program set to improve the test adaption. By deploying the parallel test system, the time to test five devices is now equal to the time to test one device in the past. Compared with the conventional test system, the proposed test system reduces the size and improves testing efficiency. This is of great significance for equipment to be put into operation swiftly. Finally, we take an industrial control system as an example to verify the effectiveness of the proposed method. The result shows that the method is reasonable, and the efficiency is improved up to 500%.

Keywords: parallel test, embedded system, automatic test system, automatic test system (ATS), central management system, central management system (CMS), distributed test subsystems, distributed test subsystems (DTS)

Procedia PDF Downloads 305
1916 Intelligent Chemistry Approach to Improvement of Oxygenates Analytical Method in Light Hydrocarbon by Multidimensional Gas Chromatography - FID and MS

Authors: Ahmed Aboforn

Abstract:

Butene-1 product is consider effectively raw material in Polyethylene production, however Oxygenates impurities existing will be effected ethylene/butene-1 copolymers synthesized through titanium-magnesium-supported Ziegler-Natta catalysts. Laterally, Petrochemical industries are challenge against poor quality of Butene-1 and other C4 mix – feedstock that reflected on business impact and production losing. In addition, propylene product suffering from contamination by oxygenates components and causing for lose production and plant upset of Polypropylene process plants. However, Multidimensional gas chromatography (MDGC) innovative analytical methodology is a chromatography technique used to separate complex samples, as mixing different functional group as Hydrocarbon and oxygenates compounds and have similar retention factors, by running the eluent through two or more columns instead of the customary single column. This analytical study striving to enhance the quality of Oxygenates analytical method, as monitoring the concentration of oxygenates with accurate and precise analytical method by utilizing multidimensional GC supported by Backflush technique and Flame Ionization Detector, which have high performance separation of hydrocarbon and Oxygenates; also improving the minimum detection limits (MDL) to detect the concentration <1.0 ppm. However different types of oxygenates as (Alcohols, Aldehyde, Ketones, Ester and Ether) may be determined in other Hydrocarbon streams asC3, C4-mix, until C12 mixture, supported by liquid injection auto-sampler.

Keywords: analytical chemistry, gas chromatography, petrochemicals, oxygenates

Procedia PDF Downloads 83
1915 Damage to Strawberries Caused by Simulated Transport

Authors: G. La Scalia, M. Enea, R. Micale, O. Corona, L. Settanni

Abstract:

The quality and condition of perishable products delivered to the market and their subsequent selling prices are directly affected by the care taken during harvesting and handling. Mechanical injury, in fact, occurs at all stages, from pre-harvest operations through post-harvest handling, packing and transport to the market. The main implications of this damage are the reduction of the product’s quality and economical losses related to the shelf life diminution. For most perishable products, the shelf life is relatively short and it is typically dictated by microbial growth related to the application of dynamic and static loads during transportation. This paper presents the correlation between vibration levels and microbiological growth on strawberries and woodland strawberries and detects the presence of volatile organic compounds (VOC) in order to develop an intelligent logistic unit capable of monitoring VOCs using a specific sensor system. Fresh fruits were exposed to vibrations by means of a vibrating table in a temperature-controlled environment. Microbiological analyses were conducted on samples, taken at different positions along the column of the crates. The values obtained were compared with control samples not exposed to vibrations and the results show that different positions along the column influence the development of bacteria, yeasts and filamentous fungi.

Keywords: microbiological analysis, shelf life, transport damage, volatile organic compounds

Procedia PDF Downloads 425
1914 Transdisciplinary Pedagogy: An Arts-Integrated Approach to Promote Authentic Science, Technology, Engineering, Arts, and Mathematics Education in Initial Teacher Education

Authors: Anne Marie Morrin

Abstract:

This paper will focus on the design, delivery and assessment of a transdisciplinary STEAM (Science, Technology, Engineering, Arts, and Mathematics) education initiative in a college of education in Ireland. The project explores a transdisciplinary approach to supporting STEAM education where the concepts, methodologies and assessments employed derive from visual art sessions within initial teacher education. The research will demonstrate that the STEAM Education approach is effective when visual art concepts and methods are placed at the core of the teaching and learning experience. Within this study, emphasis is placed on authentic collaboration and transdisciplinary pedagogical approaches with the STEAM subjects. The partners included a combination of teaching expertise in STEM and Visual Arts education, artists, in-service and pre-service teachers and children. The inclusion of all stakeholders mentioned moves towards a more authentic approach where transdisciplinary practice is at the core of the teaching and learning. Qualitative data was collected using a combination of questionnaires (focused and open-ended questions) and focus groups. In addition, the data was collected through video diaries where students reflected on their visual journals and transdisciplinary practice, which gave rich insight into participants' experiences and opinions on their learning. It was found that an effective program of STEAM education integration was informed by co-teaching (continuous professional development), which involved a commitment to adaptable and flexible approaches to teaching, learning, and assessment, as well as the importance of continuous reflection-in-action by all participants. The delivery of a transdisciplinary model of STEAM education was devised to reconceptualizatise how individual subject areas can develop essential skills and tackle critical issues (such as self-care and climate change) through data visualisation and technology. The success of the project can be attributed to the collaboration, which was inclusive, flexible and a willingness between various stakeholders to be involved in the design and implementation of the project from conception to completion. The case study approach taken is particularistic (focusing on the STEAM-ED project), descriptive (providing in-depth descriptions from varied and multiple perspectives), and heuristic (interpreting the participants’ experiences and what meaning they attributed to their experiences).

Keywords: collaboration, transdisciplinary, STEAM, visual arts education

Procedia PDF Downloads 49
1913 Water Quality Determination of River Systems in Antalya Basin by Biomonitoring

Authors: Hasan Kalyoncu, Füsun Kılçık, Hatice Gülboy Akyıldırım, Aynur Özen, Mehmet Acar, Nur Yoluk

Abstract:

For evaluation of water quality of the river systems in Antalya Basin, macrozoobenthos samples were taken from 22 determined stations by a hand net and identified at family level. Water quality of Antalya Basin was determined according to Biological Monitoring Working Party (BMWP) system, by using macrozoobenthic invertebrates and physicochemical parameters. As a result of the evaluation, while Aksu Stream was determined as the most polluted stream in Antalya Basin, Isparta Stream was determined as the most polluted tributary of Aksu Stream. Pollution level of the Isparta Stream was determined as quality class V and it is the extremely polluted part of stream. Pollution loads at the sources of the streams were determined in low levels in general. Due to some parts of the streams have passed through deep canyons and take their sources from nonresidential and non-arable regions, majority of the streams that take place in Antalya Basin are at high quality level. Waste water, which comes from agricultural and residential regions, affects the lower basins of the streams. Because of the waste water, lower parts of the stream basins exposed to the pollution under anthropogenic effects. However, in Aksu Stream, which differs by being exposed to domestic and industrial wastes of Isparta City, extreme pollution was determined, particularly in the Isparta Stream part.

Keywords: Antalya basin, biomonitoring, BMWP, water quality

Procedia PDF Downloads 323
1912 Viability of Rice Husk Ash Concrete Brick/Block from Green Electricity in Bangladesh

Authors: Mohammad A. N. M. Shafiqul Karim

Abstract:

As a developing country, Bangladesh has to face numerous challenges. Self Independence in electricity, contributing to climate change by reducing carbon emission and bringing the backward population of society to the mainstream is more challenging for them. Therefore, it is essential to ensure recycled use of local products to the maximum level in every sector. Some private organizations have already worked alongside government to bring the backward population to the mainstream by developing their financial capacities. As rice husk is the largest single category of the total energy supply in Bangladesh. As part of this strategy, rice husk can play a great as a promising renewable energy source, which is readily available, has considerable environmental benefits and can produce electricity and ensure multiple uses of byproducts in construction technology. For the first time in Bangladesh, an experimental multidimensional project depending on Rice Husk Electricity and Rice Husk Ash (RHA) concrete brick/block under Green Eco-Tech Limited has already been started. Project analysis, opportunity, sustainability, the high monitoring component, limitations and finally evaluated data reflecting the viability of establishing more projects using rice husk are discussed in this paper. The by-product of rice husk from the production of green electricity, RHA, can be used for making, in particular, RHA concrete brick/block in Bangladeshi aspects is also discussed here.

Keywords: project analysis, rice husk, rice husk ash concrete brick/block, compressive strength of rice husk ash concrete brick/block

Procedia PDF Downloads 297
1911 Optimizing AI Voice for Adolescent Health Education: Preferences and Trustworthiness Across Teens and Parent

Authors: Yu-Lin Chen, Kimberly Koester, Marissa Raymond-Flesh, Anika Thapar, Jay Thapar

Abstract:

Purpose: Effectively communicating adolescent health topics to teens and their parents is crucial. This study emphasizes critically evaluating the optimal use of artificial intelligence tools (AI), which are increasingly prevalent in disseminating health information. By fostering a deeper understanding of AI voice preference in the context of health, the research aspires to have a ripple effect, enhancing the collective health literacy and decision-making capabilities of both teenagers and their parents. This study explores AI voices' potential within health learning modules for annual well-child visits. We aim to identify preferred voice characteristics and understand factors influencing perceived trustworthiness, ultimately aiming to improve health literacy and decision-making in both demographics. Methods: A cross-sectional study assessed preferences and trust perceptions of AI voices in learning modules among teens (11-18) and their parents/guardians in Northern California. The study involved the development of four distinct learning modules covering various adolescent health-related topics, including general communication, sexual and reproductive health communication, parental monitoring, and well-child check-ups. Participants were asked to evaluate eight AI voices across the modules, considering a set of six factors such as intelligibility, naturalness, prosody, social impression, trustworthiness, and overall appeal, using Likert scales ranging from 1 to 10 (the higher, the better). They were also asked to select their preferred choice of voice for each module. Descriptive statistics summarized participant demographics. Chi-square/t-tests explored differences in voice preferences between groups. Regression models identified factors impacting the perceived trustworthiness of the top-selected voice per module. Results: Data from 104 participants (teen=63; adult guardian = 41) were included in the analysis. The mean age is 14.9 for teens (54% male) and 41.9 for the parent/guardian (12% male). At the same time, similar voice quality ratings were observed across groups, and preferences varied by topic. For instance, in general communication, teens leaned towards young female voices, while parents preferred mature female tones. Interestingly, this trend reversed for parental monitoring, with teens favoring mature male voices and parents opting for mature female ones. Both groups, however, converged on mature female voices for sexual and reproductive health topics. Beyond preferences, the study delved into factors influencing perceived trustworthiness. Interestingly, social impression and sound appeal emerged as the most significant contributors across all modules, jointly explaining 71-75% of the variance in trustworthiness ratings. Conclusion: The study emphasizes the importance of catering AI voices to specific audiences and topics. Social impression and sound appeal emerged as critical factors influencing perceived trustworthiness across all modules. These findings highlight the need to tailor AI voices by age and the specific health information being delivered. Ensuring AI voices resonate with both teens and their parents can foster their engagement and trust, ultimately leading to improved health literacy and decision-making for both groups. Limitations and future research: This study lays the groundwork for understanding AI voice preferences for teenagers and their parents in healthcare settings. However, limitations exist. The sample represents a specific geographic location, and cultural variations might influence preferences. Additionally, the modules focused on topics related to well-child visits, and preferences might differ for more sensitive health topics. Future research should explore these limitations and investigate the long-term impact of AI voice on user engagement, health outcomes, and health behaviors.

Keywords: artificial intelligence, trustworthiness, voice, adolescent

Procedia PDF Downloads 55
1910 Glycan Analyzer: Software to Annotate Glycan Structures from Exoglycosidase Experiments

Authors: Ian Walsh, Terry Nguyen-Khuong, Christopher H. Taron, Pauline M. Rudd

Abstract:

Glycoproteins and their covalently bonded glycans play critical roles in the immune system, cell communication, disease and disease prognosis. Ultra performance liquid chromatography (UPLC) coupled with mass spectrometry is conventionally used to qualitatively and quantitatively characterise glycan structures in a given sample. Exoglycosidases are enzymes that catalyze sequential removal of monosaccharides from the non-reducing end of glycans. They naturally have specificity for a particular type of sugar, its stereochemistry (α or β anomer) and its position of attachment to an adjacent sugar on the glycan. Thus, monitoring the peak movements (both in the UPLC and MS1) after application of exoglycosidases provides a unique and effective way to annotate sugars with high detail - i.e. differentiating positional and linkage isomers. Manual annotation of an exoglycosidase experiment is difficult and time consuming. As such, with increasing sample complexity and the number of exoglycosidases, the analysis could result in manually interpreting hundreds of peak movements. Recently, we have implemented pattern recognition software for automated interpretation of UPLC-MS1 exoglycosidase digestions. In this work, we explain the software, indicate how much time it will save and provide example usage showing the annotation of positional and linkage isomers in Immunoglobulin G, apolipoprotein J, and simple glycan standards.

Keywords: bioinformatics, automated glycan assignment, liquid chromatography, mass spectrometry

Procedia PDF Downloads 200
1909 Off-Policy Q-learning Technique for Intrusion Response in Network Security

Authors: Zheni S. Stefanova, Kandethody M. Ramachandran

Abstract:

With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.

Keywords: cyber security, intrusion prevention, optimal policy, Q-learning

Procedia PDF Downloads 236
1908 Comparison of Quality Indices for Sediment Assessment in Ireland

Authors: Tayyaba Bibi, Jenny Ronan, Robert Hernan, Kathleen O’Rourke, Brendan McHugh, Evin McGovern, Michelle Giltrap, Gordon Chambers, James Wilson

Abstract:

Sediment contamination is a major source of ecosystem stress and has received significant attention from the scientific community. Both the Water Framework Directive (WFD) and Marine Strategy Framework Directive (MSFD) require a robust set of tools for biological and chemical monitoring. For the MSFD in particular, causal links between contaminant and effects need to be assessed. Appropriate assessment tools are required in order to make an accurate evaluation. In this study, a range of recommended sediment bioassays and chemical measurements are assessed in a number of potentially impacted and lowly impacted locations around Ireland. Previously, assessment indices have been developed on individual compartments, i.e. contaminant levels or biomarker/bioassay responses. A number of assessment indices are applied to chemical and ecotoxicological data from the Seachange project (Project code) and compared including the metal pollution index (MPI), pollution load index (PLI) and Chapman index for chemistry as well as integrated biomarker response (IBR). The benefits and drawbacks of the use of indices and aggregation techniques are discussed. In addition to this, modelling of raw data is investigated to analyse links between contaminant and effects.

Keywords: bioassays, contamination indices, ecotoxicity, marine environment, sediments

Procedia PDF Downloads 228
1907 Determination of Marbofloxacin in Pig Plasma Using LC-MS/MS and Its Application to the Pharmacokinetic Studies

Authors: Jeong Woo Kang, MiYoung Baek, Ki-Suk Kim, Kwang-Jick Lee, ByungJae So

Abstract:

Introduction: A fast, easy and sensitive detection method was developed and validated by liquid chromatography tandem mass spectrometry for the determination of marbofloxacin in pig plasma which was further applied to study the pharmacokinetics of marbofloxacin. Materials and Methods: The plasma sample (500 μL) was mixed with 1.5 ml of 0.1% formic acid in MeCN to precipitate plasma proteins. After shaking for 20 min, The mixture was centrifuged at 5,000 × g for 30 min. It was dried under a nitrogen flow at 50℃. 500 μL aliquot of the sample was injected into the LC-MS/MS system. Chromatographic analysis was carried out mobile phase gradient consisting 0.1% formic acid in D.W. (A) and 0.1% formic acid in MeCN (B) with C18 reverse phase column. Mass spectrometry was performed using the positive ion mode and the selected ion monitoring (MRM). Results and Conclusions: The method validation was performed in the sample matrix. Good linearities (R2>0.999) were observed and the quantified average recoveries of marbofloxacin were 87 - 92% at level of 10 ng g-1 -100 ng g-1. The percent of coefficient of variation (CV) for the described method was less than 10 % over the range of concentrations studied. The limits of detection (LOD) and quantification (LOQ) were 2 and 5 ng g-1, respectively. This method has also been applied successfully to pharmacokinetic analysis of marbofloxacin after intravenous (IV), intramuscular (IM) and oral administration (PO). The mean peak plasma concentration (Cmax) was 2,597 ng g-1at 0.25 h, 2,587 ng g-1at 0.44 h and 2,355 ng g-1at 1.58 h for IV, IM and PO, respectively. The area under the plasma concentration-time curve (AUC0–t) was 24.8, 29.0 and 25.2 h μg/mL for IV, IM and PO, respectively. The elimination half-life (T1/2) was 8.6, 13.1 and 9.5 for IV, IM and PO, respectively. Bioavailability (F) of the marbofloxacin in pig was 117 and 101 % for IM and PO, respectively. Based on these result, marbofloxacin does not have any obstacles as therapeutics to develop the oral formulations such as tablets and capsules.

Keywords: marbofloxacin, LC-MS/MS, pharmacokinetics, chromatographic

Procedia PDF Downloads 548
1906 Surface and Drinking Water Quality Monitoring of Thomas Reservoir, Kano State, Nigeria

Authors: G. A. Adamu, M. S. Sallau, S. O. Idris, E. B. Agbaji

Abstract:

Drinking water is supplied to Danbatta, Makoda and some parts of Minjibir local government areas of Kano State from the surface water of Thomas Reservoir. The present land use in the catchment area of the reservoir indicates high agricultural activities, fishing, as well as domestic and small scale industrial activities. To study and monitor the quality of surface and drinking water of the area, water samples were collected from the reservoir, treated water at the treatment plant and potable water at the consumer end in three seasons November - February (cold season), March - June (dry season) and July - September (rainy season). The samples were analyzed for physical and chemical parameters, pH, temperature, total dissolved solids (TDS), conductivity, turbidity, total hardness, suspended solids, total solids, colour, dissolved oxygen (DO), biological oxygen demand (BOD), chloride ion (Cl-) nitrite (NO2-), nitrate (NO3-), chemical oxygen demand (COD) and phosphate (PO43-). The higher values obtained in some parameters with respect to the acceptable standard set by World Health Organization (WHO) and Nigerian Industrial Standards (NIS) indicate the pollution of both the surface and drinking water. These pollutants were observed to have a negative impact on water quality in terms of eutrophication, largely due to anthropogenic activities in the watershed.

Keywords: surface water, drinking water, water quality, pollution, Thomas reservoir, Kano

Procedia PDF Downloads 295
1905 Advanced Textiles for Soldier Clothes Based on Coordination Polymers

Authors: Hossam E. Emam

Abstract:

The functional textiles development history in the military field could be ascribed as a uniquely interesting research topic. Soldiers are like a high-performance athletes, where monitoring their physical and physiological capabilities is a vital requirement. Functional clothes represent a “second skin” that has a close, “intimate” relationship with the human body. For the application of textiles in military purposes, which is normally required in difficult weather and environmental conditions, several functions are required. The requirements for designing functional military textiles for soldier's protection can be categorized into three categories; i) battle field (protection from chemical warfare agents, flames, and thermal radiation), ii) environmental (water proof, air permeable, UV-protection, antibacterial), iii) physiological (minimize heat stress, low weight, insulative, durability). All of these requirements are important, but the means to fulfill these requirements are not simple and straight forward. Additionally, the combination of more than one function is reported to be very expensive and requires many complicated steps, and the final product is found to be low durability. Not only do all of these requirements are overlapping, but they are also contradicting each other at various levels. Thus, we plan to produce multi-functional textiles (e.g., anti-microbial, UV-protection, fire retardant, photoluminescent) to be applied in military clothes. The current project aims to use quite a simple and applicable technique through the modification of textiles with different coordination polymers and functionalized coordination polymers.

Keywords: functional textiles, military clothes, coordination polymers, antimicrobial, fire retardant, photolumenscent

Procedia PDF Downloads 180
1904 Project Production Control (PPC) Implementation for an Offshore Facilities Construction Project

Authors: Muhammad Hakim Bin Mat Tasir, Erwan Shahfizad Hasidan, Hamidah Makmor Bakry, M. Hafiz B. Izhar

Abstract:

Every key performance indicator used to monitor a project’s construction progress emphasizes trade productivity or specific commodity run-down curves. Examples include the productivity of welding by the number of joints completed per day, quantity of NDT (Non-Destructive Tests) inspection per day, etc. This perspective is based on progress and productivity; however, it does not enable a system perspective of how we produce. This paper uses a project production system perspective by which projects are a collection of production systems comprising the interconnected network of processes and operations that represent all the work activities to execute a project from start to finish. Furthermore, it also uses the 5 Levels of production system optimization as a frame. The goal of the paper is to describe the application of Project Production Control (PPC) to control and improve the performance of several production processes associated with the fabrication and assembly of a Central Processing Platform (CPP) Jacket, part of an offshore mega project. More specifically, the fabrication and assembly of buoyancy tanks as they were identified as part of the critical path and required the highest demand for capacity. In total, seven buoyancy tanks were built, with a total estimated weight of 2,200 metric tons. These huge buoyancy tanks were designed to be reversed launching and self-upending of the jacket, easily retractable, and reusable for the next project, ensuring sustainability. Results showed that an effective application of PPC not only positively impacted construction progress and productivity but also exposed sources of detrimental variability as the focus of continuous improvement practices. This approach augmented conventional project management practices, and the results had a high impact on construction scheduling, planning, and control.

Keywords: offshore, construction, project management, sustainability

Procedia PDF Downloads 59
1903 Evaluation of Medication Errors in Outpatient Pharmacies: Electronic Prescription System vs. Paper System

Authors: Mera Ababneh, Sayer Al-Azzam, Karem Alzoubi, Abeer Rababa'h

Abstract:

Background: Medication errors are among the most common medical errors. Their occurrences result in patient’s mortality, morbidity, and additional healthcare costs. Continuous monitoring and detection is required. Objectives: The aim of this study was to compare medication errors in outpatient’s prescriptions in two different hospitals (paper system vs. electronic system). Methods: This was a cross sectional observational study conducted in two major hospitals; King Abdullah University Hospital (KAUH) and Princess Bassma Teaching Hospital (PBTH) over three months period. Data collection was conducted by two trained pharmacists at each site. During the study period, medication prescriptions and dispensing procedures were screened for medication errors in both participating centers by two trained pharmacist. Results: In the electronic prescription hospital, 2500 prescriptions were screened in which 631 medication errors were detected. Prescription errors were 231 (36.6%), and dispensing errors were 400 (63.4%) of all errors. On the other side, analysis of 2500 prescriptions in paper-based hospital revealed 3714 medication errors, of which 288 (7.8%) were prescription errors, and 3426 (92.2%) were dispensing errors. A significant number of 2496 (67.2%) were inadequately and/or inappropriately labeled. Conclusion: This study provides insight for healthcare policy makers, professionals, and administrators to invest in advanced technology systems, education, and epidemiological surveillance programs to minimize medication errors.

Keywords: medication errors, prescription errors, dispensing errors, electronic prescription, handwritten prescription

Procedia PDF Downloads 282
1902 Proposal of Non-Destructive Inspection Function Based on Internet of Things Technology Using Drone

Authors: Byoungjoon Yu, Jihwan Park, Sujung Sin, Junghyun Im, Minsoo Park, Sehwan Park, Seunghee Park

Abstract:

In this paper, we propose a technology to monitor the soundness of an Internet-based bridge using a non-conductive inspection function. There has been a collapse accident due to the aging of the bridge structure, and it is necessary to prepare for the deterioration of the bridge. The NDT/SHM system for maintenance of existing bridge structures requires a large number of inspection personnel and expensive inspection costs, and access of expensive and large equipment to measurement points is required. Because current drone inspection equipment can only be inspected through camera, it is difficult to inspect inside damage accurately, and the results of an internal damage evaluation are subjective, and it is difficult for non-specialists to recognize the evaluation results. Therefore, it is necessary to develop NDT/SHM techniques for maintenance of new-concept bridge structures that allow for free movement and real-time evaluation of measurement results. This work is financially supported by Korea Ministry of Land, Infrastructure, and Transport (MOLIT) as 'Smart City Master and Doctor Course Grant Program' and a grant (14SCIP-B088624-01) from Construction Technology Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: Structural Health Monitoring, SHM, non-contact sensing, nondestructive testing, NDT, Internet of Things, autonomous self-driving drone

Procedia PDF Downloads 268
1901 Water Re-Use Optimization in a Sugar Platform Biorefinery Using Municipal Solid Waste

Authors: Leo Paul Vaurs, Sonia Heaven, Charles Banks

Abstract:

Municipal solid waste (MSW) is a virtually unlimited source of lignocellulosic material in the form of a waste paper/cardboard mixture which can be converted into fermentable sugars via cellulolytic enzyme hydrolysis in a biorefinery. The extraction of the lignocellulosic fraction and its preparation, however, are energy and water demanding processes. The waste water generated is a rich organic liquor with a high Chemical Oxygen Demand that can be partially cleaned while generating biogas in an Upflow Anaerobic Sludge Blanket bioreactor and be further re-used in the process. In this work, an experiment was designed to determine the critical contaminant concentrations in water affecting either anaerobic digestion or enzymatic hydrolysis by simulating multiple water re-circulations. It was found that re-using more than 16.5 times the same water could decrease the hydrolysis yield by up to 65 % and led to a complete granules desegregation. Due to the complexity of the water stream, the contaminant(s) responsible for the performance decrease could not be identified but it was suspected to be caused by sodium, potassium, lipid accumulation for the anaerobic digestion (AD) process and heavy metal build-up for enzymatic hydrolysis. The experimental data were incorporated into a Water Pinch technology based model that was used to optimize the water re-utilization in the modelled system to reduce fresh water requirement and wastewater generation while ensuring all processes performed at optimal level. Multiple scenarios were modelled in which sub-process requirements were evaluated in term of importance, operational costs and impact on the CAPEX. The best compromise between water usage, AD and enzymatic hydrolysis yield was determined for each assumed contaminant degradations by anaerobic granules. Results from the model will be used to build the first MSW based biorefinery in the USA.

Keywords: anaerobic digestion, enzymatic hydrolysis, municipal solid waste, water optimization

Procedia PDF Downloads 320
1900 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing

Procedia PDF Downloads 188
1899 Aesthetics of Colours, Symbols, and Spectacles in the 2021 National Festival of Arts and Culture, Ekiti State, Nigeria

Authors: Bade-Afuye Toyin Beatrice

Abstract:

Nigeria, as a multi-cultural nation, boasts of many festivals, many of which are found in the six geo-political zones of the country. One of the major festivals that bring together the Nigerian citizens as one entity is the National Festival of Arts and Culture (NAFEST), organized by the National Council for Arts and Culture (NCAC). The festival is celebrated yearly in ways that are unique to Nigerians and culture enthusiasts locally and abroad. The festival has equally boosted the Nigerian economy through tourism promotion and culture preservation. This study shall adopt the cultural identity theory. The theory will be used to examine the festival as a platform that showcases culture, which represents the totality of the ways and lives of the Nigerian people. To achieve this, the researcher shall gather data as a participant-observer during the festival, which featured elements such as costume, make-up, dance, drama, children's theatre, fashion parade, local cuisines, local games, music, props, acrobatic displays, trade fair among others. These elements are the cultural aesthetics of the festival, thereby creating spectacles and colours in unique styles by each of the 36 states of the federation and the FCT Abuja. The study particularly examines the 2021 edition of NAFEST hosted by the Ekiti State Government. The study reveals that the festival is a unique multi-ethnic event that brings together Nigerians and their kinsmen in the diaspora. NAFEST has equally provided a good opportunity to showcase the rich cultural heritage of the Ekiti people and the economic values of their products and materials. The paper, therefore, concludes that the National Festival of Arts and Culture has over the years promoted national unity and social integration among Nigerians.

Keywords: colours, culture, spectacle, NAFEST

Procedia PDF Downloads 106
1898 Destination Port Detection For Vessels: An Analytic Tool For Optimizing Port Authorities Resources

Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin

Abstract:

Port authorities have many challenges in congested ports to allocate their resources to provide a safe and secure loading/ unloading procedure for cargo vessels. Selecting a destination port is the decision of a vessel master based on many factors such as weather, wavelength and changes of priorities. Having access to a tool which leverages AIS messages to monitor vessel’s movements and accurately predict their next destination port promotes an effective resource allocation process for port authorities. In this research, we propose a method, namely, Reference Route of Trajectory (RRoT) to assist port authorities in predicting inflow and outflow traffic in their local environment by monitoring Automatic Identification System (AIS) messages. Our RRoT method creates a reference route based on historical AIS messages. It utilizes some of the best trajectory similarity measure to identify the destination of a vessel using their recent movement. We evaluated five different similarity measures such as Discrete Fr´echet Distance (DFD), Dynamic Time Warping (DTW), Partial Curve Mapping (PCM), Area between two curves (Area) and Curve length (CL). Our experiments show that our method identifies the destination port with an accuracy of 98.97% and an fmeasure of 99.08% using Dynamic Time Warping (DTW) similarity measure.

Keywords: spatial temporal data mining, trajectory mining, trajectory similarity, resource optimization

Procedia PDF Downloads 121
1897 Urban Regeneration of Unplanned Settlements in Al-Ruwais

Authors: Rama Ajineh

Abstract:

Neighborhoods are defined as local zones within settlements and cities recognized by individuals who live there, with their identities and given boundaries. Neighborhoods mainly structure individual’s lives, the small box which various social groups interact with each other, develop and become one strong entity. Also, it is a platform for more activities, providing many of the social services to enhance the connections between the people, giving a sense of community. However, some of these neighborhoods were unplanned and caused many social, economical and architectural problems to its residents in the first place, and to the city. A great example of such case is in Saudi Arabia, Jeddah, Al-Ruwais neighborhood, where the authority is planning to regenerate the area and make it a landmark for the city. Urban Regeneration of Unplanned Settlements is a process to make people live and work, now and in the future, and meet the various needs of the current and coming inhabitants, with a high-quality life for all. Through research, it was discovered that Urban regeneration plans on Al-Ruwais were planned regardless to the collective agreement of the inhabitants, giving themselves the absolute right to demolish and reconstruct the desired locations with a low compensation. Consequently, a deep research will be done on integrating the residents with the process, by showcasing examples of successful Urban Regenerations of Unplanned settlements in different cities. The research aims to understand the sustainable, and well-planned regeneration strategies used to enhance people’s living without harming them, and give sustainable urban solutions. Moreover, the research explores the definition of Sustainable Communities. The used methods in this paper are secondary research on site analysis and the relationship between the human and the neighborhood. The conclusion reveals the most successful fashion of Urban regeneration of Unplanned settlements and applies it to Al-Ruwais neighborhood considering the human factor as a primary element.

Keywords: architecture, human integration, original residents, site analysis, sustainable communities, urban sustainable solutions, urban regeneration

Procedia PDF Downloads 182
1896 Investigating the Factors Leading to Utilization of Facebook and Twitter/X Sites by Youths at Elections Evening in Nigeria: A Case Study of 2023 General Elections

Authors: Abdullahi Garba Abu, Muhammad Bello Sada, Aminu Abubakar

Abstract:

Facebook and Twitter/X platforms are preferred and largely patronized by Youths in Nigeria. The simplicity and popularity of Facebook and Twitter/X have made them preferred social networking sites for Youths to handle or execute different political activities in favor of their chosen candidates or political parties. This is largely related to their interest in using the platform for the purposes of participation in 2023 political activities and general elections. The two Social Networking Sites were used to vigorously pursue party activities on the eve of the 2023 general elections. Youths engaged the two platforms in campaigning for their candidates and political parties and succeeded in reaching a wide audience, shared the policies and manifestos of their parties, engaged with supporters and even posted advertising campaigns for specific demographics. However, the utilization of Facebook and Twitter /X platforms during the 2023 elections was largely seen in two lights: positive and negative lights/intentions. Therefore, this research investigates the motivating factors for which largely Nigerian Youths engage Facebook and Twitter platforms in political activities, with reference to the 2023 general elections. The research uses a survey method through which it reaches out to respondents from all six geo-politial zones. The research found that Nigerian Youths utilize the two social media sites to campaign for politicians voluntarily based on their belief in the capabilities of the candidates. It also found out that Youths were lured into using Facebook and Twitter/X sites to campaign through tribal, religious, and ethnic factors. More so, the research found out that eagerness to share political materials in support of candidates made Youths in Nigeria share unverifiable content on Facebook and Twitter sites.

Keywords: Facebook, Twitter/X, Nigerian youths, 2023 elections

Procedia PDF Downloads 59
1895 Algorithm for Quantification of Pulmonary Fibrosis in Chest X-Ray Exams

Authors: Marcela de Oliveira, Guilherme Giacomini, Allan Felipe Fattori Alves, Ana Luiza Menegatti Pavan, Maria Eugenia Dela Rosa, Fernando Antonio Bacchim Neto, Diana Rodrigues de Pina

Abstract:

It is estimated that each year one death every 10 seconds (about 2 million deaths) in the world is attributed to tuberculosis (TB). Even after effective treatment, TB leaves sequelae such as, for example, pulmonary fibrosis, compromising the quality of life of patients. Evaluations of the aforementioned sequel are usually performed subjectively by radiology specialists. Subjective evaluation may indicate variations inter and intra observers. The examination of x-rays is the diagnostic imaging method most accomplished in the monitoring of patients diagnosed with TB and of least cost to the institution. The application of computational algorithms is of utmost importance to make a more objective quantification of pulmonary impairment in individuals with tuberculosis. The purpose of this research is the use of computer algorithms to quantify the pulmonary impairment pre and post-treatment of patients with pulmonary TB. The x-ray images of 10 patients with TB diagnosis confirmed by examination of sputum smears were studied. Initially the segmentation of the total lung area was performed (posteroanterior and lateral views) then targeted to the compromised region by pulmonary sequel. Through morphological operators and the application of signal noise tool, it was possible to determine the compromised lung volume. The largest difference found pre- and post-treatment was 85.85% and the smallest was 54.08%.

Keywords: algorithm, radiology, tuberculosis, x-rays exam

Procedia PDF Downloads 419
1894 Optimization of Sodium Lauryl Surfactant Concentration for Nanoparticle Production

Authors: Oluwatoyin Joseph Gbadeyan, Sarp Adali, Bright Glen, Bruce Sithole

Abstract:

Sodium lauryl surfactant concentration optimization, for nanoparticle production, provided the platform for advanced research studies. Different concentrations (0.05 %, 0.1 %, and 0.2 %) of sodium lauryl surfactant was added to snail shells powder during milling processes for producing CaCO3 at smaller particle size. Epoxy nanocomposites prepared at filler content 2 wt.% synthesized with different volumes of sodium lauryl surfactant were fabricated using a conventional resin casting method. Mechanical properties such as tensile strength, stiffness, and hardness of prepared nanocomposites was investigated to determine the effect of sodium lauryl surfactant concentration on nanocomposite properties. It was observed that the loading of the synthesized nano-calcium carbonate improved the mechanical properties of neat epoxy at lower concentrations of sodium lauryl surfactant 0.05 %. Meaningfully, loading of achatina fulica snail shell nanoparticles manufactures, with small concentrations of sodium lauryl surfactant 0.05 %, increased the neat epoxy tensile strength by 26%, stiffness by 55%, and hardness by 38%. Homogeneous dispersion facilitated, by the addition of sodium lauryl surfactant during milling processes, improved mechanical properties. Research evidence suggests that nano-CaCO3, synthesized from achatina fulica snail shell, possesses suitable reinforcement properties that can be used for nanocomposite fabrication. The evidence showed that adding small concentrations of sodium lauryl surfactant 0.05 %, improved dispersion of nanoparticles in polymetrix material that provided mechanical properties improvement.

Keywords: sodium lauryl surfactant, mechanical properties , achatina fulica snail shel, calcium carbonate nanopowder

Procedia PDF Downloads 146
1893 Compliance to Compassion: How COVID-19 Changed the Way Educators Used Social Media to Collaborate with Families

Authors: Eloise Thomson

Abstract:

The COVID-19 global pandemic challenged our normative conceptualization of teaching across all age levels, requiring the transition to remote instruction, in some instances, literally overnight. Included in the rapidly changing education environment was the delivery of early childhood education. In Victoria, Australia, the capital city, Melbourne, became known as the most locked down city in the world. This presentation examines the ways educators used social media to collaborate with families before the COVID-19 pandemic and during the lockdown phase through the use of a Third Space conceptual framework and case study methodology. As a first step, the paper examines how social media may offer new opportunities for collaborative practice between educators and families. Second, the data is outlined and discussed with respect to collaborative practice and quality. Finally, a postscript then allows for insight into how educators’ practice of using social media to collaborate with families has been impacted by the COVID-19 global pandemic. Finally, the implications of the ways in which educators are using social media to collaborate with families are discussed. The use of social media in early-childhood education has the potential to provide a valuable platform for educators to connect with families and students. However, the use of social media by educators uncovered a dialogue of ‘quality’ and appeared to be dominated by evidence around compliance and attaining quality in a very specific, and perhaps narrow, way. The findings suggest a culture of compliance that is dominated by outcomes, standards and assessments and that this has changed the dynamics by which educators engage with families. Furthermore, findings highlighted the disparity between educators' and families' understanding of the intent of the collaborations themselves. This research was significant as it exposed the ways in which educators are engaging with social media, resulting in a discussion on the intent of collaborations, the questioning of imposed quality, and the notion that quality is measurable and exists in only one form.

Keywords: collaboration, compliance, early childhood, third space, pedagogy of caring, social media

Procedia PDF Downloads 65
1892 Biosensor Design through Molecular Dynamics Simulation

Authors: Wenjun Zhang, Yunqing Du, Steven W. Cranford, Ming L. Wang

Abstract:

The beginning of 21st century has witnessed new advancements in the design and use of new materials for biosensing applications, from nano to macro, protein to tissue. Traditional analytical methods lack a complete toolset to describe the complexities introduced by living systems, pathological relations, discrete hierarchical materials, cross-phase interactions, and structure-property dependencies. Materiomics – via systematic molecular dynamics (MD) simulation – can provide structure-process-property relations by using a materials science approach linking mechanisms across scales and enables oriented biosensor design. With this approach, DNA biosensors can be utilized to detect disease biomarkers present in individuals’ breath such as acetone for diabetes. Our wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) has successfully detected trace amount of various chemicals in vapor differentiated by pattern recognition. Here, we present how MD simulation can revolutionize the way of design and screening of DNA aptamers for targeting biomarkers related to oral diseases and oral health monitoring. It demonstrates great potential to be utilized to build a library of DNDA sequences for reliable detection of several biomarkers of one specific disease, and as well provides a new methodology of creating, designing, and applying of biosensors.

Keywords: biosensor, DNA, biomarker, molecular dynamics simulation

Procedia PDF Downloads 463
1891 IOT Based Automated Production and Control System for Clean Water Filtration Through Solar Energy Operated by Submersible Water Pump

Authors: Musse Mohamud Ahmed, Tina Linda Achilles, Mohammad Kamrul Hasan

Abstract:

Deterioration of the mother nature is evident these day with clear danger of human catastrophe emanating from greenhouses (GHG) with increasing CO2 emissions to the environment. PV technology can help to reduce the dependency on fossil fuel, decreasing air pollution and slowing down the rate of global warming. The objective of this paper is to propose, develop and design the production of clean water supply to rural communities using an appropriate technology such as Internet of Things (IOT) that does not create any CO2 emissions. Additionally, maximization of solar energy power output and reciprocally minimizing the natural characteristics of solar sources intermittences during less presence of the sun itself is another goal to achieve in this work. The paper presents the development of critical automated control system for solar energy power output optimization using several new techniques. water pumping system is developed to supply clean water with the application of IOT-renewable energy. This system is effective to provide clean water supply to remote and off-grid areas using Photovoltaics (PV) technology that collects energy generated from the sunlight. The focus of this work is to design and develop a submersible solar water pumping system that applies an IOT implementation. Thus, this system has been executed and programmed using Arduino Software (IDE), proteus, Maltab and C++ programming language. The mechanism of this system is that it pumps water from water reservoir that is powered up by solar energy and clean water production was also incorporated using filtration system through the submersible solar water pumping system. The filtering system is an additional application platform which is intended to provide a clean water supply to any households in Sarawak State, Malaysia.

Keywords: IOT, automated production and control system, water filtration, automated submersible water pump, solar energy

Procedia PDF Downloads 89
1890 The Dynamics of Microorganisms in Dried Yogurt Storages at Different Temperatures

Authors: Jaruwan Chutrtong

Abstract:

Yoghurt is a fermented milk product. The process of making yogurt involves fermenting milk with live and active bacterial cultures by adding bacteria directly to the dairy product. It is usually made with a culture of Lactobacillus sp. (L. acidophilus or L. bulgaricus) and Streptococcus thermophilus. Many people like to eat it plain or flavored and it's also use as ingredient in many dishes. Yogurt is rich in nutrients including the microorganism which have important role in balancing the digestion and absorption of the boy.Consumers will benefit from lactic acid bacteria more or less depending on the amount of bacteria that lives in yogurt while eating. When purchasing yogurt, consumers should always check the label for live cultures. Yoghurt must keep in refrigerator at 4°C for up to ten days. After this amount of time, the cultures often become weak. This research studied freezing dry yogurt storage by monitoring on the survival of microorganisms when stored at different temperatures. At 300°C, representative room temperature of country in equator zone, number of lactic acid bacteria reduced 4 log cycles in 10 week. At 400°C, representative temperature in summer of country in equator zone, number of lactic acid bacteria also dropped 4 log cycle in 10 week, similar as storage at 300°C. But drying yogurt storage at 400°C couldn’t reformed to be good character yogurt as good as storage at 400°C only 4 week storage too. After 1 month, it couldn’t bring back the yogurt form. So if it is inevitable to keep yogurt powder at a temperature of 40°C, yoghurt is maintained only up to 4 weeks.

Keywords: dynamic, dry yoghurt, storage, temperature

Procedia PDF Downloads 325
1889 Prognostic Value of C-Reactive Protein (CRP) in SARS-CoV-2 Infection: A Simplified Biomarker of COVID-19 Severity in Sub-Saharan Africa

Authors: Teklay Gebrecherkos, Mahmud Abdulkader, Tobias Rinke De Wit, Britta C. Urban, Feyissa Chala, Yazezew Kebede, Dawit Welday

Abstract:

Background: C-reactive protein (CRP) levels are a reliable surrogate for interleukin-6 bioactivity that plays a pivotal role in the pathogenesis of cytokine storm associated with severe COVID-19. There is a lack of data on the role of CRP as a determinant of COVID-19 severity status in the African context. Methods: We determined the longitudinal kinetics of CRP levels on 78 RT-PCR-confirmed COVID-19 patients (49 non-severe and 29 severe cases) and 50 PCR-negative controls. Results: COVID-19 patients had overall significantly elevated CRP at baseline when compared to PCR-negative controls [median 11.1 (IQR: 2.0-127.8) mg/L vs. 0.9 (IQR: 0.5-1.9) mg/L; p=0.0004)]. Moreover, severe COVID-19 patients had significantly higher median CRP levels than non-severe cases [166.1 (IQR: 48.6-332.5) mg/L vs. 2.4 (IQR: 1.2-7.6) mg/L; p<0.00001)]. In addition, persistently elevated levels of CRP were exhibited among those with comorbidities and higher age groups. Area under receiver operating characteristic curve (AUC) analysis of CRP levels distinguished PCR-confirmed COVID-19 patients from the ones with PCR-negative non-COVID-19 individuals, with an AUC value of 0.77 (95% CI: 0.68-0.84; p=0.001). Moreover, it clearly distinguished severe from non-severe COVID-19 patients, with an AUC value of 0.83 (95% CI: 0.73-0.91). After adjusting for age and the presence of comorbidities, CRP levels above 30 mg/L were significantly associated with an increased risk of developing severe COVID-19 (adjusted relative risk 3.99 (95%CI: 1.35-11.82; p=0.013). Conclusions: Determining CRP levels in COVID-19 patients in African settings may provide a simple, prompt, and inexpensive assessment of the severity status at baseline and monitoring of treatment outcomes.

Keywords: CRP, COVID-19, SARS-CoV-2, biomarker

Procedia PDF Downloads 82