Search results for: data quality filtering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31967

Search results for: data quality filtering

28067 Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring

Authors: Abdur Rosyid, Mohamed El-Madany, Mohanad Alata

Abstract:

Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the numbers and the locations of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.

Keywords: rotordynamic, finite element model, timoshenko beam, 3D solid elements, Guyan reduction method

Procedia PDF Downloads 275
28066 Audit Committee Characteristics and Earnings Quality of Listed Food and Beverages Firms in Nigeria

Authors: Hussaini Bala

Abstract:

There are different opinions in the literature on the relationship between Audit Committee characteristics and earnings management. The mix of opinions makes the direction of their relationship ambiguous. This study investigated the relationship between Audit Committee characteristics and earnings management of listed food and beverages Firms in Nigeria. The study covered the period of six years from 2007 to 2012. Data for the study were extracted from the Firms’ annual reports and accounts. After running the OLS regression, a robustness test was conducted for the validity of statistical inferences. The dependent variable was generated using two steps regression in order to determine the discretionary accrual of the sample Firms. Multiple regression was employed to run the data of the study using Random Model. The results from the analysis revealed a significant association between audit committee characteristics and earnings management of the Firms. While audit committee size and committees’ financial expertise showed an inverse relationship with earnings management, committee’s independence, and frequency of meetings are positively and significantly related to earnings management. In line with the findings, the study recommended among others that listed food and beverages Firms in Nigeria should strictly comply with the provision of Companies and Allied Matters Act (CAMA) and SEC Code of Corporate Governance on the issues regarding Audit Committees. Regulators such as SEC should increase the minimum number of Audit Committee members with financial expertise and also have a statutory position on the maximum number of Audit Committees meetings, which should not be greater than four meetings in a year as SEC code of corporate governance is silent on this.

Keywords: audit committee, earnings management, listed Food and beverages size, leverage, Nigeria

Procedia PDF Downloads 275
28065 Project-Based Learning Application: Applying Systems Thinking Concepts to Assure Continuous Improvement

Authors: Kimberley Kennedy

Abstract:

The major findings of this study discuss the importance of understanding and applying Systems thinking concepts to ensure an effective Project-Based Learning environment. A pilot project study of a major pedagogical change was conducted over a five year period with the goal to give students real world, hands-on learning experiences and the opportunity to apply what they had learned over the past two years of their business program. The first two weeks of the fifteen week semester utilized teaching methods of lectures, guest speakers and design thinking workshops to prepare students for the project work. For the remaining thirteen weeks of the semester, the students worked with actual business owners and clients on projects and challenges. The first three years of the five year study focused on student feedback to ensure a quality learning experience and continuous improvement process was developed. The final two years of the study, examined the conceptual understanding and perception of learning and teaching by faculty using Project-Based Learning pedagogy as compared to lectures and more traditional teaching methods was performed. Relevant literature was reviewed and data collected from program faculty participants who completed pre-and post-semester interviews and surveys over a two year period. Systems thinking concepts were applied to better understand the challenges for faculty using Project-Based Learning pedagogy as compared to more traditional teaching methods. Factors such as instructor and student fatigue, motivation, quality of work and enthusiasm were explored to better understand how to provide faculty with effective support and resources when using Project-Based Learning pedagogy as the main teaching method. This study provides value by presenting generalizable, foundational knowledge by offering suggestions for practical solutions to assure student and teacher engagement in Project-Based Learning courses.

Keywords: continuous improvement, project-based learning, systems thinking, teacher engagement

Procedia PDF Downloads 126
28064 Geographical Data Visualization Using Video Games Technologies

Authors: Nizar Karim Uribe-Orihuela, Fernando Brambila-Paz, Ivette Caldelas, Rodrigo Montufar-Chaveznava

Abstract:

In this paper, we present the advances corresponding to the implementation of a strategy to visualize geographical data using a Software Development Kit (SDK) for video games. We use multispectral images from Landsat 7 platform and Laser Imaging Detection and Ranging (LIDAR) data from The National Institute of Geography and Statistics of Mexican (INEGI). We select a place of interest to visualize from Landsat platform and make some processing to the image (rotations, atmospheric correction and enhancement). The resulting image will be our gray scale color-map to fusion with the LIDAR data, which was selected using the same coordinates than in Landsat. The LIDAR data is translated to 8-bit raw data. Both images are fused in a software developed using Unity (an SDK employed for video games). The resulting image is then displayed and can be explored moving around. The idea is the software could be used for students of geology and geophysics at the Engineering School of the National University of Mexico. They will download the software and images corresponding to a geological place of interest to a smartphone and could virtually visit and explore the site with a virtual reality visor such as Google cardboard.

Keywords: virtual reality, interactive technologies, geographical data visualization, video games technologies, educational material

Procedia PDF Downloads 250
28063 Effect of Psychosocial, Behavioural and Disease Characteristics on Health-Related Quality of Life after Breast Cancer Surgery: A Cross-Sectional Study of a Regional Australian Population

Authors: Lakmali Anthony, Madeline Gillies

Abstract:

Background Breast cancer (BC) is usually managed with surgical resection. Many outcomes traditionally used to define successful operative management, such as resection margin, do not adequately reflect patients’ experience. Patient-reported outcomes (PRO) such as Health-Related Quality of life (HRQoL) provide a means by which the impact of surgery for cancer can be reported in a patient-centered way. This exploratory cross-sectional study aims to; (1) describe postoperative HRQoL in patients who underwent primary resection in a regional Australian hospital; (2) describe the prevalence of anxiety, depression and clinically significant fear of cancer recurrence (FCR) in this population; and (3) identify demographic, psychosocial, disease and treatment factors associated with poorer self-reported HRQoL. Methods Patients who had resection of BC in a regional Australian hospital between 2015 and 2022 were eligible. Participants were asked to complete a survey designed to assess HRQoL, as well as validated instruments that assess several other psychosocial PROs hypothesized to be associated with HRQoL; emotional distress, fear of cancer recurrence, social support, dispositional optimism, body image and spirituality. Results Forty-six patients completed the survey. Clinically significant levels of FCR and emotional distress were present in this group. Many domains of HRQoL were significantly worse than an Australian reference population for BC. Demographic and disease factors associated with poor HRQoL included smoking and ongoing adjuvant systemic therapy. The primary operation was not associated with HRQoL for breast cancer. All psychosocial factors measured were associated with HRQoL. Conclusion HRQoL is an important outcome in surgery for both research and clinical practice. This study provides an overview of the quality of life in a regional Australian population of postoperative breast cancer patients and the factors that affect it. Understanding HRQoL and awareness of patients particularly vulnerable to poor outcomes should be used to aid the informed consent and shared decision-making process between surgeon and patient.

Keywords: breast cancer, surgery, quality of life, regional population

Procedia PDF Downloads 70
28062 Nonparametric Sieve Estimation with Dependent Data: Application to Deep Neural Networks

Authors: Chad Brown

Abstract:

This paper establishes general conditions for the convergence rates of nonparametric sieve estimators with dependent data. We present two key results: one for nonstationary data and another for stationary mixing data. Previous theoretical results often lack practical applicability to deep neural networks (DNNs). Using these conditions, we derive convergence rates for DNN sieve estimators in nonparametric regression settings with both nonstationary and stationary mixing data. The DNN architectures considered adhere to current industry standards, featuring fully connected feedforward networks with rectified linear unit activation functions, unbounded weights, and a width and depth that grows with sample size.

Keywords: sieve extremum estimates, nonparametric estimation, deep learning, neural networks, rectified linear unit, nonstationary processes

Procedia PDF Downloads 50
28061 Application of Combined Cluster and Discriminant Analysis to Make the Operation of Monitoring Networks More Economical

Authors: Norbert Magyar, Jozsef Kovacs, Peter Tanos, Balazs Trasy, Tamas Garamhegyi, Istvan Gabor Hatvani

Abstract:

Water is one of the most important common resources, and as a result of urbanization, agriculture, and industry it is becoming more and more exposed to potential pollutants. The prevention of the deterioration of water quality is a crucial role for environmental scientist. To achieve this aim, the operation of monitoring networks is necessary. In general, these networks have to meet many important requirements, such as representativeness and cost efficiency. However, existing monitoring networks often include sampling sites which are unnecessary. With the elimination of these sites the monitoring network can be optimized, and it can operate more economically. The aim of this study is to illustrate the applicability of the CCDA (Combined Cluster and Discriminant Analysis) to the field of water quality monitoring and optimize the monitoring networks of a river (the Danube), a wetland-lake system (Kis-Balaton & Lake Balaton), and two surface-subsurface water systems on the watershed of Lake Neusiedl/Lake Fertő and on the Szigetköz area over a period of approximately two decades. CCDA combines two multivariate data analysis methods: hierarchical cluster analysis and linear discriminant analysis. Its goal is to determine homogeneous groups of observations, in our case sampling sites, by comparing the goodness of preconceived classifications obtained from hierarchical cluster analysis with random classifications. The main idea behind CCDA is that if the ratio of correctly classified cases for a grouping is higher than at least 95% of the ratios for the random classifications, then at the level of significance (α=0.05) the given sampling sites don’t form a homogeneous group. Due to the fact that the sampling on the Lake Neusiedl/Lake Fertő was conducted at the same time at all sampling sites, it was possible to visualize the differences between the sampling sites belonging to the same or different groups on scatterplots. Based on the results, the monitoring network of the Danube yields redundant information over certain sections, so that of 12 sampling sites, 3 could be eliminated without loss of information. In the case of the wetland (Kis-Balaton) one pair of sampling sites out of 12, and in the case of Lake Balaton, 5 out of 10 could be discarded. For the groundwater system of the catchment area of Lake Neusiedl/Lake Fertő all 50 monitoring wells are necessary, there is no redundant information in the system. The number of the sampling sites on the Lake Neusiedl/Lake Fertő can decrease to approximately the half of the original number of the sites. Furthermore, neighbouring sampling sites were compared pairwise using CCDA and the results were plotted on diagrams or isoline maps showing the location of the greatest differences. These results can help researchers decide where to place new sampling sites. The application of CCDA proved to be a useful tool in the optimization of the monitoring networks regarding different types of water bodies. Based on the results obtained, the monitoring networks can be operated more economically.

Keywords: combined cluster and discriminant analysis, cost efficiency, monitoring network optimization, water quality

Procedia PDF Downloads 353
28060 Active Power Filters and their Smart Grid Integration - Applications for Smart Cities

Authors: Pedro Esteban

Abstract:

Most installations nowadays are exposed to many power quality problems, and they also face numerous challenges to comply with grid code and energy efficiency requirements. The reason behind this is that they are not designed to support nonlinear, non-balanced, and variable loads and generators that make up a large percentage of modern electric power systems. These problems and challenges become especially critical when designing green buildings and smart cities. These problems and challenges are caused by equipment that can be typically found in these installations like variable speed drives (VSD), transformers, lighting, battery chargers, double-conversion UPS (uninterruptible power supply) systems, highly dynamic loads, single-phase loads, fossil fuel generators and renewable generation sources, to name a few. Moreover, events like capacitor switching (from existing capacitor banks or passive harmonic filters), auto-reclose operations of transmission and distribution lines, or the starting of large motors also contribute to these problems and challenges. Active power filters (APF) are one of the fastest-growing power electronics technologies for solving power quality problems and meeting grid code and energy efficiency requirements for a wide range of segments and applications. They are a high performance, flexible, compact, modular, and cost-effective type of power electronics solutions that provide an instantaneous and effective response in low or high voltage electric power systems. They enable longer equipment lifetime, higher process reliability, improved power system capacity and stability, and reduced energy losses, complying with most demanding power quality and energy efficiency standards and grid codes. There can be found several types of active power filters, including active harmonic filters (AHF), static var generators (SVG), active load balancers (ALB), hybrid var compensators (HVC), and low harmonic drives (LHD) nowadays. All these devices can be used in applications in Smart Cities bringing several technical and economic benefits.

Keywords: power quality improvement, energy efficiency, grid code compliance, green buildings, smart cities

Procedia PDF Downloads 116
28059 Fast Aerodynamic Evaluation of Transport Aircraft in Early Phases

Authors: Xavier Bertrand, Alexandre Cayrel

Abstract:

The early phase of an aircraft development is instrumental as it really drives the potential of a new concept. Any weakness in the high-level design (wing planform, moveable surfaces layout etc.) will be extremely difficult and expensive to recover later in the aircraft development process. Aerodynamic evaluation in this very early development phase is driven by two main criteria: a short lead-time to allow quick iterations of the geometrical design, and a high quality of the calculations to get an accurate & reliable assessment of the current status. These two criteria are usually quite contradictory. Actually, short lead time of a couple of hours from end-to-end can be obtained with very simple tools (semi-empirical methods for instance) although their accuracy is limited, whereas higher quality calculations require heavier/more complex tools, which obviously need more complex inputs as well, and a significantly longer lead time. At this point, the choice has to be done between accuracy and lead-time. A brand new approach has been developed within Airbus, aiming at obtaining quickly high quality evaluations of the aerodynamic of an aircraft. This methodology is based on a joint use of Surrogate Modelling and a lifting line code. The Surrogate Modelling is used to get the wing sections characteristics (e.g. lift coefficient vs. angle of attack), whatever the airfoil geometry, the status of the moveable surfaces (aileron/spoilers) or the high-lift devices deployment. From these characteristics, the lifting line code is used to get the 3D effects on the wing whatever the flow conditions (low/high Mach numbers etc.). This methodology has been applied successfully to a concept of medium range aircraft.

Keywords: aerodynamics, lifting line, surrogate model, CFD

Procedia PDF Downloads 364
28058 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 264
28057 A Structured Mechanism for Identifying Political Influencers on Social Media Platforms Top 10 Saudi Political Twitter Users

Authors: Ahmad Alsolami, Darren Mundy, Manuel Hernandez-Perez

Abstract:

Social media networks, such as Twitter, offer the perfect opportunity to either positively or negatively affect political attitudes on large audiences. A most important factor contributing to this effect is the existence of influential users, who have developed a reputation for their awareness and experience on specific subjects. Therefore, knowledge of the mechanisms to identify influential users on social media is vital for understanding their effect on their audience. The concept of the influential user is based on the pioneering work of Katz and Lazarsfeld (1959), who created the concept of opinion leaders' to indicate that ideas first flow from mass media to opinion leaders and then to the rest of the population. Hence, the objective of this research was to provide reliable and accurate structural mechanisms to identify influential users, which could be applied to different platforms, places, and subjects. Twitter was selected as the platform of interest, and Saudi Arabia as the context for the investigation. These were selected because Saudi Arabia has a large number of Twitter users, some of whom are considerably active in setting agendas and disseminating ideas. The study considered the scientific methods that have been used to identify public opinion leaders before, utilizing metrics software on Twitter. The key findings propose multiple novel metrics to compare Twitter influencers, including the number of followers, social authority and the use of political hashtags, and four secondary filtering measures. Thus, using ratio and percentage calculations to classify the most influential users, Twitter accounts were filtered, analyzed and included. The structured approach is used as a mechanism to explore the top ten influencers on Twitter from the political domain in Saudi Arabia.

Keywords: twitter, influencers, structured mechanism, Saudi Arabia

Procedia PDF Downloads 142
28056 Integrated Model for Enhancing Data Security Performance in Cloud Computing

Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali

Abstract:

Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.

Keywords: cloud Ccomputing, data security, SAAS, PAAS, IAAS, Blowfish

Procedia PDF Downloads 482
28055 IT-Based Global Healthcare Delivery System: An Alternative Global Healthcare Delivery System

Authors: Arvind Aggarwal

Abstract:

We have developed a comprehensive global healthcare delivery System based on information technology. It has medical consultation system where a virtual consultant can give medical consultation to the patients and Doctors at the digital medical centre after reviewing the patient’s EMR file consisting of patient’s history, investigations in the voice, images and data format. The system has the surgical operation system too, where a remote robotic consultant can conduct surgery at the robotic surgical centre. The instant speech and text translation is incorporated in the software where the patient’s speech and text (language) can be translated into the consultant’s language and vice versa. A consultant of any specialty (surgeon or Physician) based in any country can provide instant health care consultation, to any patient in any country without loss of time. Robotic surgeons based in any country in a tertiary care hospital can perform remote robotic surgery, through patient friendly telemedicine and tele-surgical centres. The patient EMR, financial data and data of all the consultants and robotic surgeons shall be stored in cloud. It is a complete comprehensive business model with healthcare medical and surgical delivery system. The whole system is self-financing and can be implemented in any country. The entire system uses paperless, filmless techniques. This eliminates the use of all consumables thereby reduces substantial cost which is incurred by consumables. The consultants receive virtual patients, in the form of EMR, thus the consultant saves time and expense to travel to the hospital to see the patients. The consultant gets electronic file ready for reporting & diagnosis. Hence time spent on the physical examination of the patient is saved, the consultant can, therefore, spend quality time in studying the EMR/virtual patient and give his instant advice. The time consumed per patient is reduced and therefore can see more number of patients, the cost of the consultation per patients is therefore reduced. The additional productivity of the consultants can be channelized to serve rural patients devoid of doctors.

Keywords: e-health, telemedicine, telecare, IT-based healthcare

Procedia PDF Downloads 182
28054 The Effect of Nano-Silver Packaging on Quality Maintenance of Fresh Strawberry

Authors: Naser Valipour Motlagh, Majid Aliabadi, Elnaz Rahmani, Samira Ghorbanpour

Abstract:

Strawberry is one of the most favored fruits all along the world. But due to its vulnerability to microbial contamination and short life storage, there are lots of problems in industrial production and transportation of this fruit. Therefore, lots of ideas have tried to increase the storage life of strawberries especially through proper packaging. This paper works on efficient packaging as well. The primary material used is produced through simple mixing of low-density polyethylene (LDPE) and silver nanoparticles in different weight fractions of 0.5 and 1% in presence of dicumyl peroxide as a cross-linking agent. Final packages were made in a twin-screw extruder. Then, their effect on the quality maintenance of strawberry is evaluated. The SEM images of nano-silver packages show the distribution of silver nanoparticles in the packages. Total bacteria count, mold, yeast and E. coli are measured for microbial evaluation of all samples. Texture, color, appearance, odor, taste and total acceptance of various samples are evaluated by trained panelists and based on 9-point hedonic scale method. The results show a decrease in total bacteria count and mold in nano-silver packages compared to the samples packed in polyethylene packages for the same storage time. The optimum concentration of silver nanoparticles for the lowest bacteria count and mold is predicted to be around 0.5% which has attained the most acceptance from the panelist as well. Moreover, organoleptic properties of strawberry are preserved for a longer period in nano-silver packages. It can be concluded that using nano-silver particles in strawberry packages has improved the storage life and quality maintenance of the fruit.

Keywords: antimicrobial properties, polyethylene, silver nanoparticles, strawberry

Procedia PDF Downloads 161
28053 Online Teacher Professional Development: An Extension of the Unified Theory of Acceptance and Use of Technology Model

Authors: Lovemore Motsi

Abstract:

The rapid pace of technological innovation, along with a global fascination with the internet, continues to result in a dominating call to integrate internet technologies in institutions of learning. However, the pressing question remains – how can online in-service training for teachers, support quality and success in professional development programmers. The aim of this study was to examine an integrated model that extended the Unified Theory of Acceptance and Use of Technology (UTAUT) with additional constructs – including attitude and behaviour intention – adopted from the Theory of Planned Behaviour (TPB) to answer the question. Data was collected from secondary school teachers at 10 selected schools in the Tshwane South district by means of the Statistical Package for Social Scientists (SPSS v 23.0), and the collected data was analysed quantitatively. The findings are congruent with model testing under conditions of volitional usage behaviour. In this regard, the role of facilitating condition variables is insignificant as a determinant of usage behaviour. Social norm variables also proved to be a weak determinant of behavioural intentions. Findings demonstrate that effort expectancy is the key determinant of online INSET usage. Based on these findings, the variable social influence and facilitating conditions are important factors in ensuring the acceptance of online INSET among teachers in selected secondary schools in the Tshwane South district.

Keywords: unified theory of acceptance and use of technology (UTAUT), teacher professional development, secondary schools, online INSET

Procedia PDF Downloads 221
28052 Model of Monitoring and Evaluation of Student’s Learning Achievement: Application of Value-Added Assessment

Authors: Jatuphum Ketchatturat

Abstract:

Value-added assessment has been used for developing the model of monitoring and evaluation of student's learning achievement. The steps of model development consist of 1) study and analyisis of the school and the district report system of student achievement and progress, 2) collecting the data of student achievement to develop the value added indicator, 3) developing the system of value-added assessment by participatory action research approach, 4) putting the system of value-added assessment into the educational district of secondary school, 5) determining the quality of the developed system of value-added assessment. The components of the developed model consist of 1) the database of value-added assessment of student's learning achievement, 2) the process of monitoring and evaluation the student's learning achievement, and 3) the reporting system of value-added assessment of student's learning achievement.

Keywords: learning achievement, monitoring and evaluation, value-added assessment

Procedia PDF Downloads 432
28051 The Lived Experience of Risk and Protective Contexts of Blind Successful University Students in Sidist Kilo Campus

Authors: Zelalem Markos Borko

Abstract:

The quality of life of people with blindness is significantly influenced by the level of resilience they possess. A qualitative approach of the descriptive phenomenological design was employed to address basic study objectives. The researcher purposely selected three blind graduate students from Sidist Kilo Campus and conducted a semi-structured interview to gather data. Data were analyzed by using thematic coding techniques. The present study found that personal characteristics such as commitment, living hope, motivation, positive self-esteem, self-confidence, and communication have shaped resiliency for successful university students with visual disabilities. The finding showed that the school environment is the place in which blind students had developed/experienced social, psychological, and economical competency and hope for their academic and entire life success. Furthermore, the finding showed that blind students had experienced individual, family, school, and community-related risks in the success track. Therefore, governmental and non-governmental organizations should provide training for students with visual impairments that focus on the individual traits that shape resilience for academic success, such as commitment, living hope, motivation, positive self-esteem, self-confidence, and communication and also community-oriented training should be to break the social stigma and discriminations for the individuals with the visual impairment.

Keywords: blind students, risk and protective factors, lived experience, success

Procedia PDF Downloads 90
28050 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: recurrent neural network, players lineup, basketball data, decision making model

Procedia PDF Downloads 136
28049 The Impact of Economic Status on Health Status in the Context of Bangladesh

Authors: Md. S. Sabuz

Abstract:

Bangladesh, a South Asian developing country, has achieved a remarkable breakthrough in health indicators during the last four decades despite immense income inequality. This phenomenon results in the mystical exclusion of marginalized people from obtaining health care facilities. However, the persistence of exclusion of the disadvantaged remains troubling. Exclusion occurs from occupational inferiority, pay and wage differences, educational backwardness, gender disparity to urban-rural complexity and eliminate the unprivileged from seeking and availing the health services. Evidence from Bangladesh shows that many sick people prefer to die at home without securing medical services because in previous times they were not treated well, not because the medical facilities were inadequate or antediluvian but the socio-economic class allows them to receive obdurate treatment. Furthermore, government and policymakers have given enormous emphasis on infrastructural development and achieving health indicators instead of ensuring quality services and inclusiveness of people from all spheres. Therefore, it is high time to address the issues concerning this and highlight the impact of economic status on health status in a sociological perspective. The objective of this study is to consider ways of assessing and exploring the impact of economic status for instance: occupational status, pay and wage variable, on health status in the context of Bangladesh. The hypotheses are that there are a significant number of factors affecting economic status which are impactful for health status eventually, but acute income inequality is a prominent factor. Illiteracy, gender disparity, remoteness, incredibility on services, superior costs, superstition etc. are the dominant indicators behind the economic factors influencing the health status. The chosen methodologies are a qualitative and quantitative approaches to accomplish the research objectives. Secondary sources of data will be used to conduct the study. Surveys will be conducted on the people who have ever been through the health care facilities and people from the different socio-economic and cultural backgrounds. Focus group discussions will be conducted to acquire the data from different cultural and regional citizens. The findings show that 48% of people who are from disadvantaged communities have been deprived of proper health care facilities. The general reasons behind this are the higher cost of medicines and other equipment. A significant number of people are unaware of the appropriate facilities. It was found that the socio-economic variables are the main influential factors that work as the driving force for both economic dimension and health status. Above all regional variables and gender, dimensions have an enormous effect on determining the health status of an individual or community. Amidst many positive achievements for example decrease in the child mortality rate, an increase in the immunization programs of the child etc., the inclusiveness of all classes of people in health care facilities has been overshadowed in Bangladesh. However, this phenomenon along with the socio-economic and cultural phenomena significantly demolishes the quality and inclusiveness of the health status of people.

Keywords: cultural context of health, economic status, gender and health, rural health care

Procedia PDF Downloads 215
28048 Measuring Quality of Participation Processes: A Literature Review and Case Study to Determine Criteria for the Influence of Digital Tools

Authors: Michaela Kaineder, Beate Bartlmae, Stefan Gaebler, Miriam Gutleder, Marlene Wuerfl

Abstract:

Digital tools and e-participation processes have seen a steady increase in popularity in recent years. While online trends come with the premise of new opportunities and easier participatory possibilities, there are still manifold challenges that smart city initiators and developers need to face. In this paper, innovative quality criteria of citizen participation processes was suggested by defining meaningful and measurable evaluation categories. Considering various developments, including the global megatrend of connectivity, a need for a fundamental examination of the basic structure of citizen participation processes was identified. To this end, the application of methods and tools through different points in the policy cycle is required. In order to provide an overview of the current challenges and problems in the field of participation, this paper analyzes those issues by carrying out a literature review that also focuses on disparities in the civic sector that might hinder residents in their desire for engagement. Additionally, a case study was chosen to demonstrate the potential that e-participation tools offer to planning experts and public authorities when integrating citizen’s creativity and experience at a large scale. This online co-creation process finally leads to offline events – such as local co-design workshops - with professional planners. The findings of this paper subsequently suggest a combination of e-participation and analogue forms to merge the benefits of both worlds, resulting in a broader audience and higher quality for participation processes.

Keywords: citizen participation, disparities, e-participation, integrated urban development, sustainable development goals, sustainable urban development

Procedia PDF Downloads 151
28047 Challenges in Multi-Cloud Storage Systems for Mobile Devices

Authors: Rajeev Kumar Bedi, Jaswinder Singh, Sunil Kumar Gupta

Abstract:

The demand for cloud storage is increasing because users want continuous access their data. Cloud Storage revolutionized the way how users access their data. A lot of cloud storage service providers are available as DropBox, G Drive, and providing limited free storage and for extra storage; users have to pay money, which will act as a burden on users. To avoid the issue of limited free storage, the concept of Multi Cloud Storage introduced. In this paper, we will discuss the limitations of existing Multi Cloud Storage systems for mobile devices.

Keywords: cloud storage, data privacy, data security, multi cloud storage, mobile devices

Procedia PDF Downloads 704
28046 Breeding Performance and Egg Quality of Red Jungle Fowl (Gallus Gallus L.) Mated with Native Hens (Gallus galus domesticus) in Selected Areas of Leyte under Confinement System

Authors: Francisco F. Buctot Jr.

Abstract:

This study was conducted to assess the breeding performance and egg quality traits of Red Jungle Fowls in selected areas of Leyte mated to Native hens under confinement system. A total of six Red Jungle Fowl roosters, two native roosters and 16 native hens were randomly assigned to four treatments with eight replications; each composed of one rooster and two hens randomly laid out in a Randomized Complete Block Design set up. Result on egg weight showed highly significant difference at p<0.01 and revealed heaviest weight (39.0 g) and lightest weight (35.75 g) on Native x Native and Baybay RJF x Native, respectively. While comparable number of eggs per clutch, fertility and hatchability rates, yolk and albumen weights, shell weight, egg length and width, egg shape index and yolk color score were obtained.

Keywords: egg clutch, egg shape index, native chicken, hatchability rate

Procedia PDF Downloads 369
28045 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches

Authors: Wuttigrai Ngamsirijit

Abstract:

Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.    

Keywords: decision making, human capital analytics, talent management, talent value chain

Procedia PDF Downloads 191
28044 Effect of Dietary Fortification with Hibiscus Sabdariffa Calyces Meal on Egg Production and Egg Qualiy of Japanese Quail

Authors: Nomagugu Ndlovu, Kennedy H. Erlwanger, Eliton Chivandi

Abstract:

In order to enhance egg production and egg quality from layer poultry, producers use synthetic feed additives that enhance nutrient digestion and absorption in the gut. Synthetic feed additives have negative effects on consumer health hence the need to replace them with natural alternatives which are deemed safer for consumer health. Hibiscus sabdariffa calyces meal has hypolipidemic, probiotic and antioxidant activities; hence we investigated the effect of fortifying Japanese quail pullet diets with its calyces meal on egg production and egg quality. A standard Japanese quail layer diet was supplemented with H. sabdariffa calyces meal at 0%, 5% and 10% in diets 1, 2 and 3, respectively. Ninety, 5-week old Japanese quail hens were randomly allocated to and fed the layer diets for 56 days. Body mass, feed intake and egg mass, width, length, shell mass and thickness, yolk mass, height and diameter, albumen mass, length, width and height, and the proximate content and fatty acid profile of the egg albumen and yolk were determined. Supplemental fortification of the Japanese quail layer diet with H. sabdariffa calyces meal had no effect on growth performance and feed intake and conversion rate of the quail (P>0.05). The meal delayed the onset of laying and reduced (P < 0.0001) the number of eggs laid. It did not affect the external and internal egg quality parameters of Japanese quail (P > 0.05). Dietary fortification with H. sabdariffa calyces meal at 10% significantly increased the dry matter and reduced the fat content of the yolk and albumin of Japanese quail eggs (P < 0.05). Dietary H. sabdariffa calyces meal reduced the total omega 3 fatty acids in the yolk and significantly increased arachidonic acid (P = 0.0019), an omega 6 fatty acid. Inclusion of Hibiscus sabdariffa meal depressed egg production, suppressed omega 3 fatty acids and increased arachidonic acid thus, using it as a dietary supplement may result in losses to producers of Japanese quail eggs and may result in eggs whose fatty acid profile can compromise consumer health.

Keywords: quail, eggs, hibiscus sabdariffa, quality

Procedia PDF Downloads 69
28043 New Insights into Ethylene and Auxin Interplay during Tomato Ripening

Authors: Bruna Lima Gomes, Vanessa Caroline De Barros Bonato, Luciano Freschi, Eduardo Purgatto

Abstract:

Plant hormones are long known to be tightly associated with fruit development and are involved in controlling various aspects of fruit ripening. For fleshy fruits, ripening is characterized for changes in texture, color, aroma and other parameters that markedly contribute to its quality. Ethylene is one of the major players regulating the ripening-related processes, but emerging evidences suggest that auxin is also part of this dynamic control. Thus, the aim of this study was providing new insights into the auxin role during ripening and the hormonal interplay between auxin and ethylene. For that, tomato fruits (Micro-Tom) were collected at mature green stage and separated in four groups: one for indole-3-acetic acid (IAA) treatment, one for ethylene, one for a combination of IAA and ethylene, and one for control. Hormone solution was injected through the stylar apex, while mock samples were injected with buffer only. For ethylene treatments, fruits were exposed to gaseous hormone. Then, fruits were left to ripen under standard conditions and to assess ripening development, hue angle was reported as color indicator and ethylene production was measured by gas chromatography. The transcript levels of three ripening-related ethylene receptors (LeETR3, LeETR4 and LeETR6) were evaluated by RT-qPCR. Results showed that ethylene treatment induced ripening, stimulated ethylene production, accelerated color changes and induced receptor expression, as expected. Nonetheless, auxin treatment showed the opposite effect once fruits remained green for longer time than control group and ethylene perception has changed, taking account the reduced levels of receptor transcripts. Further, treatment with both hormones revealed that auxin effect in delaying ripening was predominant, even with higher levels of ethylene. Altogether, the data suggest that auxin modulates several aspects of the tomato fruit ripening modifying the ethylene perception. The knowledge about hormonal control of fruit development will help design new strategies for effective manipulation of ripening regarding fruit quality and brings a new level of complexity on fruit ripening regulation.

Keywords: ethylene, auxin, fruit ripening, hormonal crosstalk

Procedia PDF Downloads 468
28042 Non-Adherence to Antidepressant Treatment and Its Predictors among Outpatients with Depressive Disorders

Authors: Selam Mulugeta, Barkot Milkias, Mesfin Araya, Abel Worku, Eyasu Mulugeta

Abstract:

In Ethiopia, there is inadequate information on non-adherence to antidepressant treatment in patients with depressive disorders. Having awareness of the pattern of adherence is important in future prognosis, quality of life, and functionality in these patients. This hospital-based cross-sectional quantitative study was done on a sample of 216 consecutive outpatients with depressive disorders. Data were collected using questionnaires through in-person and phone call interviews. The 8-item Morisky scale was used to assess the pattern of medication adherence. Other specially developed tools were used to obtain sociodemographic and clinical information from electronic medical records and patient interviews. Data were analyzed using the Statistical Package for the Social Sciences Version - 25. Univariate and multivariable analyses were carried out to assess factors associated with non-adherence. 90% of the participants had a primary diagnosis of major depressive disorder. Based on the 8-item Morisky Medication Adherence Scale, the prevalence of non-adherence was found to be 84.7%. Living distance between 11 to 50 km from the hospital (AOR= 11, 95% CI (29,46.6)), post-secondary level of education (AOR= 8.3, 95% CI (1, 64.4)) and taking multiple medications (AOR= 6.1, 95% CI (1, 34.9)) were found to have significantly increased odds of non-adherence. Non-adherence was significantly associated with factors such as increased living distance from the hospital, relatively higher educational level, and polypharmacy. Proper and patient-centered psychoeducation, addressing the communication gap between patients and doctors, adherence to prescribing guidelines, avoiding polypharmacy unless indicated & working on accessibility of treatment is essential to decrease non-adherence.

Keywords: depressive disorders, Ethiopia, medication adherence, Addis Ababa

Procedia PDF Downloads 153
28041 Performance the SOFA and APACHEII Scoring System to Predicate the Mortality of the ICU Cases

Authors: Yu-Chuan Huang

Abstract:

Introduction: There is a higher mortality rate for unplanned transfer to intensive care units. It also needs a longer length of stay and makes the intensive care unit beds cannot be effectively used. It affects the immediate medical treatment of critically ill patients, resulting in a drop in the quality of medical care. Purpose: The purpose of this study was using SOFA and APACHEII score to analyze the mortality rate of the cases transferred from ED to ICU. According to the score that should be provide an appropriate care as early as possible. Methods: This study was a descriptive experimental design. The sample size was estimated at 220 to reach a power of 0.8 for detecting a medium effect size of 0.30, with a 0.05 significance level, using G-power. Considering an estimated follow-up loss, the required sample size was estimated as 242 participants. Data were calculated by medical system of SOFA and APACHEII score that cases transferred from ED to ICU in 2016. Results: There were 233 participants meet the study. The medical records showed 33 participants’ mortality. Age and sex with QSOFA , SOFA and sex with APACHEII showed p>0.05. Age with APCHHII in ED and ICU showed r=0.150, 0,268 (p < 0.001**). The score with mortality risk showed: ED QSOFA is r=0.235 (p < 0.001**), exp(B)=1.685(p = 0.007); ICU SOFA 0.78 (p < 0.001**), exp(B)=1.205(p < 0.001). APACHII in ED and ICU showed r= 0.253, 0.286 (p < 0.001**), exp(B) = 1.041,1.073(p = 0.017,0.001). For SOFA, a cutoff score of above 15 points was identified as a predictor of the 95% mortality risk. Conclusions: The SOFA and APACHE II were calculated based on initial laboratory data in the Emergency Department, and during the first 24 hours of ICU admission. In conclusion, the SOFA and APACHII score is significantly associated with mortality and strongly predicting mortality. Early predictors of morbidity and mortality, which we can according the predicting score, and provide patients with a detail assessment and proper care, thereby reducing mortality and length of stay.

Keywords: SOFA, APACHEII, mortality, ICU

Procedia PDF Downloads 149
28040 A Relative Entropy Regularization Approach for Fuzzy C-Means Clustering Problem

Authors: Ouafa Amira, Jiangshe Zhang

Abstract:

Clustering is an unsupervised machine learning technique; its aim is to extract the data structures, in which similar data objects are grouped in the same cluster, whereas dissimilar objects are grouped in different clusters. Clustering methods are widely utilized in different fields, such as: image processing, computer vision , and pattern recognition, etc. Fuzzy c-means clustering (fcm) is one of the most well known fuzzy clustering methods. It is based on solving an optimization problem, in which a minimization of a given cost function has been studied. This minimization aims to decrease the dissimilarity inside clusters, where the dissimilarity here is measured by the distances between data objects and cluster centers. The degree of belonging of a data point in a cluster is measured by a membership function which is included in the interval [0, 1]. In fcm clustering, the membership degree is constrained with the condition that the sum of a data object’s memberships in all clusters must be equal to one. This constraint can cause several problems, specially when our data objects are included in a noisy space. Regularization approach took a part in fuzzy c-means clustering technique. This process introduces an additional information in order to solve an ill-posed optimization problem. In this study, we focus on regularization by relative entropy approach, where in our optimization problem we aim to minimize the dissimilarity inside clusters. Finding an appropriate membership degree to each data object is our objective, because an appropriate membership degree leads to an accurate clustering result. Our clustering results in synthetic data sets, gaussian based data sets, and real world data sets show that our proposed model achieves a good accuracy.

Keywords: clustering, fuzzy c-means, regularization, relative entropy

Procedia PDF Downloads 264
28039 Contribution of Different Farming Systems to Soil and Ecological Health in Trans Nzoia County, Kenya

Authors: Janeth Chepkemoi, Richard Onwonga, Noel Templer, Elkana Kipkoech, Angela Gitau

Abstract:

Conventional agriculture is one of the leading causes of land degradation, threatening the sustainability of food production. Organic farming promotes practices that have the potential of feeding the world while also promoting ecological health. A study was therefore carried out with the aim of conceptualizing how such farming systems are contributing to ecological health in Trans Nzoia County. 71 farmers were interviewed and data was collected on parameters such as land preparation, agroforestry, soil fertility management, soil and water conservation, and pests and diseases. A soil sample was also collected from each farm for laboratory analysis. Data collected were analyzed using Microsoft Excel and SPSS version 21. Results showed that 66% of the respondents practiced organic farming whereas 34% practiced conventional farming. Intercropping and crop rotations were the most common cropping systems and the most preferred land preparation tools among both organic and conventional farmers were tractors and hand hoes. Organic farms fared better in agroforestry, organic soil amendments, land and water conservation, and soil chemical properties. Pests and disease, however, affected organic farms more than conventional. The average nitrogen (%), K (Cmol/ kg and P (ppm) of organic soils were 0.26, 0.7 and 26.18 respectively, conventional soils were 0.21, 0.66 and 22.85. Soil organic carbon content of organic farms averaged a higher percentage of 2.07% as compared to 1.91 for the conventional. In conclusion, most farmers in Trans Nzoia County had transitioned into ecologically friendly farming practices that improved the quality and health of the soil and therefore promoted its sustainability.

Keywords: organic farming, conventional farming, ecological health, soil health

Procedia PDF Downloads 132
28038 Micro-Study of Dissimilar Welded Materials

Authors: Ezzeddin Anawa, Abdol-Ghane Olabi

Abstract:

The dissimilar joint between aluminum /titanium alloys (Al 6082 and Ti G2) alloys were successfully achieved by CO2 laser welding with a single pass and without filler material using the overlap joint design. Laser welding parameters ranges combinations were experimentally determined using Taguchi approach with the objective of producing welded joint with acceptable welding profile and high quality of mechanical properties. In this study a joining of dissimilar Al 6082 / Ti G2 was result in three distinct regions fusion area (FA), heat-affected zone (HAZ), and the unaffected base metal (BM) in the weldment. These regions are studied in terms of its microstructural characteristics and microhardness which are directly affecting the welding quality. The weld metal was mainly composed of martensite alpha prime. In two different metals in the two different sides of joint HAZ, grain growth was detected. The microhardness of the joint distribution also has shown microhardness increasing in the HAZ of two base metals and a varying microhardness in fusion zone.

Keywords: microharness , microstructure, laser welding and dissimilar jointed materials.

Procedia PDF Downloads 379