Search results for: multi-user scheduling algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3896

Search results for: multi-user scheduling algorithm

26 An Elasto-Viscoplastic Constitutive Model for Unsaturated Soils: Numerical Implementation and Validation

Authors: Maria Lazari, Lorenzo Sanavia

Abstract:

Mechanics of unsaturated soils has been an active field of research in the last decades. Efficient constitutive models that take into account the partial saturation of soil are necessary to solve a number of engineering problems e.g. instability of slopes and cuts due to heavy rainfalls. A large number of constitutive models can now be found in the literature that considers fundamental issues associated with the unsaturated soil behaviour, like the volume change and shear strength behaviour with suction or saturation changes. Partially saturated soils may either expand or collapse upon wetting depending on the stress level, and it is also possible that a soil might experience a reversal in the volumetric behaviour during wetting. Shear strength of soils also changes dramatically with changes in the degree of saturation, and a related engineering problem is slope failures caused by rainfall. There are several states of the art reviews over the last years for studying the topic, usually providing a thorough discussion of the stress state, the advantages, and disadvantages of specific constitutive models as well as the latest developments in the area of unsaturated soil modelling. However, only a few studies focused on the coupling between partial saturation states and time effects on the behaviour of geomaterials. Rate dependency is experimentally observed in the mechanical response of granular materials, and a viscoplastic constitutive model is capable of reproducing creep and relaxation processes. Therefore, in this work an elasto-viscoplastic constitutive model for unsaturated soils is proposed and validated on the basis of experimental data. The model constitutes an extension of an existing elastoplastic strain-hardening constitutive model capable of capturing the behaviour of variably saturated soils, based on energy conjugated stress variables in the framework of superposed continua. The purpose was to develop a model able to deal with possible mechanical instabilities within a consistent energy framework. The model shares the same conceptual structure of the elastoplastic laws proposed to deal with bonded geomaterials subject to weathering or diagenesis and is capable of modelling several kinds of instabilities induced by the loss of hydraulic bonding contributions. The novelty of the proposed formulation is enhanced with the incorporation of density dependent stiffness and hardening coefficients in order to allow the modeling of the pycnotropy behaviour of granular materials with a single set of material constants. The model has been implemented in the commercial FE platform PLAXIS, widely used in Europe for advanced geotechnical design. The algorithmic strategies adopted for the stress-point algorithm had to be revised to take into account the different approach adopted by PLAXIS developers in the solution of the discrete non-linear equilibrium equations. An extensive comparison between models with a series of experimental data reported by different authors is presented to validate the model and illustrate the capability of the newly developed model. After the validation, the effectiveness of the viscoplastic model is displayed by numerical simulations of a partially saturated slope failure of the laboratory scale and the effect of viscosity and degree of saturation on slope’s stability is discussed.

Keywords: PLAXIS software, slope, unsaturated soils, Viscoplasticity

Procedia PDF Downloads 226
25 Influence of the Local External Pressure on Measured Parameters of Cutaneous Microcirculation

Authors: Irina Mizeva, Elena Potapova, Viktor Dremin, Mikhail Mezentsev, Valeri Shupletsov

Abstract:

The local tissue perfusion is regulated by the microvascular tone which is under the control of a number of physiological mechanisms. Laser Doppler flowmetry (LDF) together with wavelet analyses is the most commonly used technique to study the regulatory mechanisms of cutaneous microcirculation. External factors such as temperature, local pressure of the probe on the skin, etc. influence on the blood flow characteristics and are used as physiological tests to evaluate microvascular regulatory mechanisms. Local probe pressure influences on the microcirculation parameters measured by optical methods: diffuse reflectance spectroscopy, fluorescence spectroscopy, and LDF. Therefore, further study of probe pressure effects can be useful to improve the reliability of optical measurement. During pressure tests variation of the mean perfusion measured by means of LDF usually is estimated. An additional information concerning the physiological mechanisms of the vascular tone regulation system in response to local pressure can be obtained using spectral analyses of LDF samples. The aim of the present work was to develop protocol and algorithm of data processing appropriate for study physiological response to the local pressure test. Involving 6 subjects (20±2 years) and providing 5 measurements for every subject we estimated intersubject and-inter group variability of response of both averaged and oscillating parts of the LDF sample on external surface pressure. The final purpose of the work was to find special features which further can be used in wider clinic studies. The cutaneous perfusion measurements were carried out by LAKK-02 (SPE LAZMA Ltd., Russia), the skin loading was provided by the originally designed device which allows one to distribute the pressure around the LDF probe. The probe was installed on the dorsal part of the distal finger of the index figure. We collected measurements continuously for one hour and varied loading from 0 to 180mmHg stepwise with a step duration of 10 minutes. Further, we post-processed the samples using the wavelet transform and traced the energy of oscillations in five frequency bands over time. Weak loading leads to pressure-induced vasodilation, so one should take into account that the perfusion measured under pressure conditions will be overestimated. On the other hand, we revealed a decrease in endothelial associated fluctuations. Further loading (88 mmHg) induces amplification of pulsations in all frequency bands. We assume that such loading leads to a higher number of closed capillaries, higher input of arterioles in the LDF signal and as a consequence more vivid oscillations which mainly are formed in arterioles. External pressure higher than 144 mmHg leads to the decrease of oscillating components, after removing the loading very rapid restore of the tissue perfusion takes place. In this work, we have demonstrated that local skin loading influence on the microcirculation parameters measured by optic technique; this should be taken into account while developing portable electronic devices. The proposed protocol of local loading allows one to evaluate PIV as far as to trace dynamic of blood flow oscillations. This study was supported by the Russian Science Foundation under project N 18-15-00201.

Keywords: blood microcirculation, laser Doppler flowmetry, pressure-induced vasodilation, wavelet analyses blood

Procedia PDF Downloads 153
24 Mapping of Urban Micro-Climate in Lyon (France) by Integrating Complementary Predictors at Different Scales into Multiple Linear Regression Models

Authors: Lucille Alonso, Florent Renard

Abstract:

The characterizations of urban heat island (UHI) and their interactions with climate change and urban climates are the main research and public health issue, due to the increasing urbanization of the population. These solutions require a better knowledge of the UHI and micro-climate in urban areas, by combining measurements and modelling. This study is part of this topic by evaluating microclimatic conditions in dense urban areas in the Lyon Metropolitan Area (France) using a combination of data traditionally used such as topography, but also from LiDAR (Light Detection And Ranging) data, Landsat 8 satellite observation and Sentinel and ground measurements by bike. These bicycle-dependent weather data collections are used to build the database of the variable to be modelled, the air temperature, over Lyon’s hyper-center. This study aims to model the air temperature, measured during 6 mobile campaigns in Lyon in clear weather, using multiple linear regressions based on 33 explanatory variables. They are of various categories such as meteorological parameters from remote sensing, topographic variables, vegetation indices, the presence of water, humidity, bare soil, buildings, radiation, urban morphology or proximity and density to various land uses (water surfaces, vegetation, bare soil, etc.). The acquisition sources are multiple and come from the Landsat 8 and Sentinel satellites, LiDAR points, and cartographic products downloaded from an open data platform in Greater Lyon. Regarding the presence of low, medium, and high vegetation, the presence of buildings and ground, several buffers close to these factors were tested (5, 10, 20, 25, 50, 100, 200 and 500m). The buffers with the best linear correlations with air temperature for ground are 5m around the measurement points, for low and medium vegetation, and for building 50m and for high vegetation is 100m. The explanatory model of the dependent variable is obtained by multiple linear regression of the remaining explanatory variables (Pearson correlation matrix with a |r| < 0.7 and VIF with < 5) by integrating a stepwise sorting algorithm. Moreover, holdout cross-validation is performed, due to its ability to detect over-fitting of multiple regression, although multiple regression provides internal validation and randomization (80% training, 20% testing). Multiple linear regression explained, on average, 72% of the variance for the study days, with an average RMSE of only 0.20°C. The impact on the model of surface temperature in the estimation of air temperature is the most important variable. Other variables are recurrent such as distance to subway stations, distance to water areas, NDVI, digital elevation model, sky view factor, average vegetation density, or building density. Changing urban morphology influences the city's thermal patterns. The thermal atmosphere in dense urban areas can only be analysed on a microscale to be able to consider the local impact of trees, streets, and buildings. There is currently no network of fixed weather stations sufficiently deployed in central Lyon and most major urban areas. Therefore, it is necessary to use mobile measurements, followed by modelling to characterize the city's multiple thermal environments.

Keywords: air temperature, LIDAR, multiple linear regression, surface temperature, urban heat island

Procedia PDF Downloads 142
23 A Computer-Aided System for Tooth Shade Matching

Authors: Zuhal Kurt, Meral Kurt, Bilge T. Bal, Kemal Ozkan

Abstract:

Shade matching and reproduction is the most important element of success in prosthetic dentistry. Until recently, shade matching procedure was implemented by dentists visual perception with the help of shade guides. Since many factors influence visual perception; tooth shade matching using visual devices (shade guides) is highly subjective and inconsistent. Subjective nature of this process has lead to the development of instrumental devices. Nowadays, colorimeters, spectrophotometers, spectroradiometers and digital image analysing systems are used for instrumental shade selection. Instrumental devices have advantages that readings are quantifiable, can obtain more rapidly and simply, objectively and precisely. However, these devices have noticeable drawbacks. For example, translucent structure and irregular surfaces of teeth lead to defects on measurement with these devices. Also between the results acquired by devices with different measurement principles may make inconsistencies. So, its obligatory to search for new methods for dental shade matching process. A computer-aided system device; digital camera has developed rapidly upon today. Currently, advances in image processing and computing have resulted in the extensive use of digital cameras for color imaging. This procedure has a much cheaper process than the use of traditional contact-type color measurement devices. Digital cameras can be taken by the place of contact-type instruments for shade selection and overcome their disadvantages. Images taken from teeth show morphology and color texture of teeth. In last decades, a new method was recommended to compare the color of shade tabs taken by a digital camera using color features. This method showed that visual and computer-aided shade matching systems should be used as concatenated. Recently using methods of feature extraction techniques are based on shape description and not used color information. However, color is mostly experienced as an essential property in depicting and extracting features from objects in the world around us. When local feature descriptors with color information are extended by concatenating color descriptor with the shape descriptor, that descriptor will be effective on visual object recognition and classification task. Therefore, the color descriptor is to be used in combination with a shape descriptor it does not need to contain any spatial information, which leads us to use local histograms. This local color histogram method is remain reliable under variation of photometric changes, geometrical changes and variation of image quality. So, coloring local feature extraction methods are used to extract features, and also the Scale Invariant Feature Transform (SIFT) descriptor used to for shape description in the proposed method. After the combination of these descriptors, the state-of-art descriptor named by Color-SIFT will be used in this study. Finally, the image feature vectors obtained from quantization algorithm are fed to classifiers such as Nearest Neighbor (KNN), Naive Bayes or Support Vector Machines (SVM) to determine label(s) of the visual object category or matching. In this study, SVM are used as classifiers for color determination and shade matching. Finally, experimental results of this method will be compared with other recent studies. It is concluded from the study that the proposed method is remarkable development on computer aided tooth shade determination system.

Keywords: classifiers, color determination, computer-aided system, tooth shade matching, feature extraction

Procedia PDF Downloads 448
22 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 64
21 Calpoly Autonomous Transportation Experience: Software for Driverless Vehicle Operating on Campus

Authors: F. Tang, S. Boskovich, A. Raheja, Z. Aliyazicioglu, S. Bhandari, N. Tsuchiya

Abstract:

Calpoly Autonomous Transportation Experience (CATE) is a driverless vehicle that we are developing to provide safe, accessible, and efficient transportation of passengers throughout the Cal Poly Pomona campus for events such as orientation tours. Unlike the other self-driving vehicles that are usually developed to operate with other vehicles and reside only on the road networks, CATE will operate exclusively on walk-paths of the campus (potentially narrow passages) with pedestrians traveling from multiple locations. Safety becomes paramount as CATE operates within the same environment as pedestrians. As driverless vehicles assume greater roles in today’s transportation, this project will contribute to autonomous driving with pedestrian traffic in a highly dynamic environment. The CATE project requires significant interdisciplinary work. Researchers from mechanical engineering, electrical engineering and computer science are working together to attack the problem from different perspectives (hardware, software and system). In this abstract, we describe the software aspects of the project, with a focus on the requirements and the major components. CATE shall provide a GUI interface for the average user to interact with the car and access its available functionalities, such as selecting a destination from any origin on campus. We have developed an interface that provides an aerial view of the campus map, the current car location, routes, and the goal location. Users can interact with CATE through audio or manual inputs. CATE shall plan routes from the origin to the selected destination for the vehicle to travel. We will use an existing aerial map for the campus and convert it to a spatial graph configuration where the vertices represent the landmarks and edges represent paths that the car should follow with some designated behaviors (such as stay on the right side of the lane or follow an edge). Graph search algorithms such as A* will be implemented as the default path planning algorithm. D* Lite will be explored to efficiently recompute the path when there are any changes to the map. CATE shall avoid any static obstacles and walking pedestrians within some safe distance. Unlike traveling along traditional roadways, CATE’s route directly coexists with pedestrians. To ensure the safety of the pedestrians, we will use sensor fusion techniques that combine data from both lidar and stereo vision for obstacle avoidance while also allowing CATE to operate along its intended route. We will also build prediction models for pedestrian traffic patterns. CATE shall improve its location and work under a GPS-denied situation. CATE relies on its GPS to give its current location, which has a precision of a few meters. We have implemented an Unscented Kalman Filter (UKF) that allows the fusion of data from multiple sensors (such as GPS, IMU, odometry) in order to increase the confidence of localization. We also noticed that GPS signals can easily get degraded or blocked on campus due to high-rise buildings or trees. UKF can also help here to generate a better state estimate. In summary, CATE will provide on-campus transportation experience that coexists with dynamic pedestrian traffic. In future work, we will extend it to multi-vehicle scenarios.

Keywords: driverless vehicle, path planning, sensor fusion, state estimate

Procedia PDF Downloads 148
20 Assessing Flexural Damage Mechanisms Induced by Mesoscopic Buckle Defects in Textile-Reinforced Polymer Matrix Composites Using Acoustic Emission Analysis

Authors: Christopher Okechukwu Ndukwe

Abstract:

This paper investigates and categorizes the flexural damage mechanisms in composite materials caused by mesoscopic out-of-plane buckle defects that occur during the initial stage of the resin transfer molding (RTM) process. The findings of this study have significant practical implications for the manufacturing and use of composite materials, as they provide a deeper understanding of these damage mechanisms and their analysis. During the initial stage of shaping a preform, alterations, and distortions in the reinforcement sample can significantly lead to defects, such as buckling, especially when forming double-curvature geometries. These recurring mesoscopic defects have been investigated using a specialized laboratory bench designed to reproduce buckle defects like those found in complex geometric shapes, such as tetrahedrons. The study examined two sample configurations with buckle defects in the longitudinal and transverse directions alongside a reference sample for comparison. An acoustic emission (AE) system, a well-regarded non-contact method for monitoring structural health, was used to analyze the mechanical behavior of material samples in detail. An unsupervised K-means algorithm was employed to classify the damage mechanisms—such as matrix cracking, interface damage, and fiber breakage linked to the samples' failure. A standard was established based on three AE parameters: absolute energy, amplitude, and the number of AE events. This standard helped identify the origin and sequence of damage propagation. Initially, the results of the AE parameters were superimposed with the flexural loading curves to pinpoint the loading phases during which damage began and the specific points at which the samples ultimately failed. The normalized density of AE events related to different damage mechanisms was evaluated by analyzing the number of AE events within the amplitude domain of the AE signals. The ranges of the identified damage mechanisms in the amplitude plane illustrate the progression and order of load transfer among the elements of the composite material. In the reference sample, the AE event signals corresponding to the three classes of damage mechanisms partially overlap with adjacent signals. In contrast, the two defective sample configurations showed that the overlapping AE event signals for the respective damage mechanisms converged within the intermediate damage mode area at specific points, depending on the sample configuration. The convergence points in the samples with transverse defects were identified relatively earlier than in the other samples. Low and high amplitude ranges characterize the matrix cracking and fiber breakage damage mechanisms. The low amplitude damage occurred over a more extended length, while the high amplitude damage began much earlier. This results in the signals from both damage mechanisms converging at the center of the interface damage zone. This convergence suggests that all individual composite components fail concurrently at specific points in the defective samples, resulting in rapid fragmentation and ultimately contributing to failure. Overall, the results show that mesoscopic out-of-plane buckling in all directions affects the composite's flexural response, with more severe effects observed when the load is applied transversely.

Keywords: acoustic emission, composite reinforcement, damage mechanisms, mesoscopic buckle defects

Procedia PDF Downloads 14
19 Automated Facial Symmetry Assessment for Orthognathic Surgery: Utilizing 3D Contour Mapping and Hyperdimensional Computing-Based Machine Learning

Authors: Wen-Chung Chiang, Lun-Jou Lo, Hsiu-Hsia Lin

Abstract:

This study aimed to improve the evaluation of facial symmetry, which is crucial for planning and assessing outcomes in orthognathic surgery (OGS). Facial symmetry plays a key role in both aesthetic and functional aspects of OGS, making its accurate evaluation essential for optimal surgical results. To address the limitations of traditional methods, a different approach was developed, combining three-dimensional (3D) facial contour mapping with hyperdimensional (HD) computing to enhance precision and efficiency in symmetry assessments. The study was conducted at Chang Gung Memorial Hospital, where data were collected from 2018 to 2023 using 3D cone beam computed tomography (CBCT), a highly detailed imaging technique. A large and comprehensive dataset was compiled, consisting of 150 normal individuals and 2,800 patients, totaling 5,750 preoperative and postoperative facial images. These data were critical for training a machine learning model designed to analyze and quantify facial symmetry. The machine learning model was trained to process 3D contour data from the CBCT images, with HD computing employed to power the facial symmetry quantification system. This combination of technologies allowed for an objective and detailed analysis of facial features, surpassing the accuracy and reliability of traditional symmetry assessments, which often rely on subjective visual evaluations by clinicians. In addition to developing the system, the researchers conducted a retrospective review of 3D CBCT data from 300 patients who had undergone OGS. The patients’ facial images were analyzed both before and after surgery to assess the clinical utility of the proposed system. The results showed that the facial symmetry algorithm achieved an overall accuracy of 82.5%, indicating its robustness in real-world clinical applications. Postoperative analysis revealed a significant improvement in facial symmetry, with an average score increase of 51%. The mean symmetry score rose from 2.53 preoperatively to 3.89 postoperatively, demonstrating the system's effectiveness in quantifying improvements after OGS. These results underscore the system's potential for providing valuable feedback to surgeons and aiding in the refinement of surgical techniques. The study also led to the development of a web-based system that automates facial symmetry assessment. This system integrates HD computing and 3D contour mapping into a user-friendly platform that allows for rapid and accurate evaluations. Clinicians can easily access this system to perform detailed symmetry assessments, making it a practical tool for clinical settings. Additionally, the system facilitates better communication between clinicians and patients by providing objective, easy-to-understand symmetry scores, which can help patients visualize the expected outcomes of their surgery. In conclusion, this study introduced a valuable and highly effective approach to facial symmetry evaluation in OGS, combining 3D contour mapping, HD computing, and machine learning. The resulting system achieved high accuracy and offers a streamlined, automated solution for clinical use. The development of the web-based platform further enhances its practicality, making it a valuable tool for improving surgical outcomes and patient satisfaction in orthognathic surgery.

Keywords: facial symmetry, orthognathic surgery, facial contour mapping, hyperdimensional computing

Procedia PDF Downloads 34
18 A Bibliometric Analysis of Ukrainian Research Articles on SARS-COV-2 (COVID-19) in Compliance with the Standards of Current Research Information Systems

Authors: Sabina Auhunas

Abstract:

These days in Ukraine, Open Science dramatically develops for the sake of scientists of all branches, providing an opportunity to take a more close look on the studies by foreign scientists, as well as to deliver their own scientific data to national and international journals. However, when it comes to the generalization of data on science activities by Ukrainian scientists, these data are often integrated into E-systems that operate inconsistent and barely related information sources. In order to resolve these issues, developed countries productively use E-systems, designed to store and manage research data, such as Current Research Information Systems that enable combining uncompiled data obtained from different sources. An algorithm for selecting SARS-CoV-2 research articles was designed, by means of which we collected the set of papers published by Ukrainian scientists and uploaded by August 1, 2020. Resulting metadata (document type, open access status, citation count, h-index, most cited documents, international research funding, author counts, the bibliographic relationship of journals) were taken from Scopus and Web of Science databases. The study also considered the info from COVID-19/SARS-CoV-2-related documents published from December 2019 to September 2020, directly from documents published by authors depending on territorial affiliation to Ukraine. These databases are enabled to get the necessary information for bibliometric analysis and necessary details: copyright, which may not be available in other databases (e.g., Science Direct). Search criteria and results for each online database were considered according to the WHO classification of the virus and the disease caused by this virus and represented (Table 1). First, we identified 89 research papers that provided us with the final data set after consolidation and removing duplication; however, only 56 papers were used for the analysis. The total number of documents by results from the WoS database came out at 21641 documents (48 affiliated to Ukraine among them) in the Scopus database came out at 32478 documents (41 affiliated to Ukraine among them). According to the publication activity of Ukrainian scientists, the following areas prevailed: Education, educational research (9 documents, 20.58%); Social Sciences, interdisciplinary (6 documents, 11.76%) and Economics (4 documents, 8.82%). The highest publication activity by institution types was reported in the Ministry of Education and Science of Ukraine (its percent of published scientific papers equals 36% or 7 documents), Danylo Halytsky Lviv National Medical University goes next (5 documents, 15%) and P. L. Shupyk National Medical Academy of Postgraduate Education (4 documents, 12%). Basically, research activities by Ukrainian scientists were funded by 5 entities: Belgian Development Cooperation, the National Institutes of Health (NIH, U.S.), The United States Department of Health & Human Services, grant from the Whitney and Betty MacMillan Center for International and Area Studies at Yale, a grant from the Yale Women Faculty Forum. Based on the results of the analysis, we obtained a set of published articles and preprints to be assessed on the variety of features in upcoming studies, including citation count, most cited documents, a bibliographic relationship of journals, reference linking. Further research on the development of the national scientific E-database continues using brand new analytical methods.

Keywords: content analysis, COVID-19, scientometrics, text mining

Procedia PDF Downloads 118
17 Potential of Hyperion (EO-1) Hyperspectral Remote Sensing for Detection and Mapping Mine-Iron Oxide Pollution

Authors: Abderrazak Bannari

Abstract:

Acid Mine Drainage (AMD) from mine wastes and contaminations of soils and water with metals are considered as a major environmental problem in mining areas. It is produced by interactions of water, air, and sulphidic mine wastes. This environment problem results from a series of chemical and biochemical oxidation reactions of sulfide minerals e.g. pyrite and pyrrhotite. These reactions lead to acidity as well as the dissolution of toxic and heavy metals (Fe, Mn, Cu, etc.) from tailings waste rock piles, and open pits. Soil and aquatic ecosystems could be contaminated and, consequently, human health and wildlife will be affected. Furthermore, secondary minerals, typically formed during weathering of mine waste storage areas when the concentration of soluble constituents exceeds the corresponding solubility product, are also important. The most common secondary mineral compositions are hydrous iron oxide (goethite, etc.) and hydrated iron sulfate (jarosite, etc.). The objectives of this study focus on the detection and mapping of MIOP in the soil using Hyperion EO-1 (Earth Observing - 1) hyperspectral data and constrained linear spectral mixture analysis (CLSMA) algorithm. The abandoned Kettara mine, located approximately 35 km northwest of Marrakech city (Morocco) was chosen as study area. During 44 years (from 1938 to 1981) this mine was exploited for iron oxide and iron sulphide minerals. Previous studies have shown that Kettara surrounding soils are contaminated by heavy metals (Fe, Cu, etc.) as well as by secondary minerals. To achieve our objectives, several soil samples representing different MIOP classes have been resampled and located using accurate GPS ( ≤ ± 30 cm). Then, endmembers spectra were acquired over each sample using an Analytical Spectral Device (ASD) covering the spectral domain from 350 to 2500 nm. Considering each soil sample separately, the average of forty spectra was resampled and convolved using Gaussian response profiles to match the bandwidths and the band centers of the Hyperion sensor. Moreover, the MIOP content in each sample was estimated by geochemical analyses in the laboratory, and a ground truth map was generated using simple Kriging in GIS environment for validation purposes. The acquired and used Hyperion data were corrected for a spatial shift between the VNIR and SWIR detectors, striping, dead column, noise, and gain and offset errors. Then, atmospherically corrected using the MODTRAN 4.2 radiative transfer code, and transformed to surface reflectance, corrected for sensor smile (1-3 nm shift in VNIR and SWIR), and post-processed to remove residual errors. Finally, geometric distortions and relief displacement effects were corrected using a digital elevation model. The MIOP fraction map was extracted using CLSMA considering the entire spectral range (427-2355 nm), and validated by reference to the ground truth map generated by Kriging. The obtained results show the promising potential of the proposed methodology for the detection and mapping of mine iron oxide pollution in the soil.

Keywords: hyperion eo-1, hyperspectral, mine iron oxide pollution, environmental impact, unmixing

Procedia PDF Downloads 230
16 Impact of Marangoni Stress and Mobile Surface Charge on Electrokinetics of Ionic Liquids Over Hydrophobic Surfaces

Authors: Somnath Bhattacharyya

Abstract:

The mobile adsorbed surface charge on hydrophobic surfaces can modify the velocity slip condition as well as create a Marangoni stress at the interface. The functionalized hydrophobic walls of micro/nanopores, e.g., graphene nanochannels, may possess physio-sorbed ions. The lateral mobility of the physisorbed absorbed ions creates a friction force as well as an electric force, leading to a modification in the velocity slip condition at the hydrophobic surface. In addition, the non-uniform distribution of these surface ions creates a surface tension gradient, leading to a Marangoni stress. The impact of the mobile surface charge on streaming potential and electrochemical energy conversion efficiency in a pressure-driven flow of ionized liquid through the nanopore is addressed. Also, enhanced electro-osmotic flow through the hydrophobic nanochannel is also analyzed. The mean-filed electrokinetic model is modified to take into account the short-range non-electrostatic steric interactions and the long-range Coulomb correlations. The steric interaction is modeled by considering the ions as charged hard spheres of finite radius suspended in the electrolyte medium. The electrochemical potential is modified by including the volume exclusion effect, which is modeled based on the BMCSL equation of state. The electrostatic correlation is accounted for in the ionic self-energy. The extremal of the self-energy leads to a fourth-order Poisson equation for the electric field. The ion transport is governed by the modified Nernst-Planck equation, which includes the ion steric interactions; born force arises due to the spatial variation of the dielectric permittivity and the dielectrophoretic force on the hydrated ions. This ion transport equation is coupled with the Navier-Stokes equation describing the flow of the ionized fluid and the 3fourth-order Poisson equation for the electric field. We numerically solve the coupled set of nonlinear governing equations along with the prescribed boundary conditions by adopting a control volume approach over a staggered grid arrangement. In the staggered grid arrangements, velocity components are stored on the midpoint of the cell faces to which they are normal, whereas the remaining scalar variables are stored at the center of each cell. The convection and electromigration terms are discretized at each interface of the control volumes using the total variation diminishing (TVD) approach to capture the strong convection resulting from the highly enhanced fluid flow due to the modified model. In order to link pressure to the continuity equation, we adopt a pressure correction-based iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm, in which the discretized continuity equation is converted to a Poisson equation involving pressure correction terms. Our results show that the physisorbed ions on a hydrophobic surface create an enhanced slip velocity when streaming potential, which enhances the convection current. However, the electroosmotic flow attenuates due to the mobile surface ions.

Keywords: microfluidics, electroosmosis, streaming potential, electrostatic correlation, finite sized ions

Procedia PDF Downloads 76
15 Holistic Urban Development: Incorporating Both Global and Local Optimization

Authors: Christoph Opperer

Abstract:

The rapid urbanization of modern societies and the need for sustainable urban development demand innovative solutions that meet both individual and collective needs while addressing environmental concerns. To address these challenges, this paper presents a study that explores the potential of spatial and energetic/ecological optimization to enhance the performance of urban settlements, focusing on both architectural and urban scales. The study focuses on the application of biological principles and self-organization processes in urban planning and design, aiming to achieve a balance between ecological performance, architectural quality, and individual living conditions. The research adopts a case study approach, focusing on a 10-hectare brownfield site in the south of Vienna. The site is surrounded by a small-scale built environment as an appropriate starting point for the research and design process. However, the selected urban form is not a prerequisite for the proposed design methodology, as the findings can be applied to various urban forms and densities. The methodology used in this research involves dividing the overall building mass and program into individual small housing units. A computational model has been developed to optimize the distribution of these units, considering factors such as solar exposure/radiation, views, privacy, proximity to sources of disturbance (such as noise), and minimal internal circulation areas. The model also ensures that existing vegetation and buildings on the site are preserved and incorporated into the optimization and design process. The model allows for simultaneous optimization at two scales, architectural and urban design, which have traditionally been addressed sequentially. This holistic design approach leads to individual and collective benefits, resulting in urban environments that foster a balance between ecology and architectural quality. The results of the optimization process demonstrate a seemingly random distribution of housing units that, in fact, is a densified hybrid between traditional garden settlements and allotment settlements. This urban typology is selected due to its compatibility with the surrounding urban context, although the presented methodology can be extended to other forms of urban development and density levels. The benefits of this approach are threefold. First, it allows for the determination of ideal housing distribution that optimizes solar radiation for each building density level, essentially extending the concept of sustainable building to the urban scale. Second, the method enhances living quality by considering the orientation and positioning of individual functions within each housing unit, achieving optimal views and privacy. Third, the algorithm's flexibility and robustness facilitate the efficient implementation of urban development with various stakeholders, architects, and construction companies without compromising its performance. The core of the research is the application of global and local optimization strategies to create efficient design solutions. By considering both, the performance of individual units and the collective performance of the urban aggregation, we ensure an optimal balance between private and communal benefits. By promoting a holistic understanding of urban ecology and integrating advanced optimization strategies, our methodology offers a sustainable and efficient solution to the challenges of modern urbanization.

Keywords: sustainable development, self-organization, ecological performance, solar radiation and exposure, daylight, visibility, accessibility, spatial distribution, local and global optimization

Procedia PDF Downloads 71
14 Sensorless Machine Parameter-Free Control of Doubly Fed Reluctance Wind Turbine Generator

Authors: Mohammad R. Aghakashkooli, Milutin G. Jovanovic

Abstract:

The brushless doubly-fed reluctance generator (BDFRG) is an emerging, medium-speed alternative to a conventional wound rotor slip-ring doubly-fed induction generator (DFIG) in wind energy conversion systems (WECS). It can provide competitive overall performance and similar low failure rates of a typically 30% rated back-to-back power electronics converter in 2:1 speed ranges but with the following important reliability and cost advantages over DFIG: the maintenance-free operation afforded by its brushless structure, 50% synchronous speed with the same number of rotor poles (allowing the use of a more compact, and more efficient two-stage gearbox instead of a vulnerable three-stage one), and superior grid integration properties including simpler protection for the low voltage ride through compliance of the fractional converter due to the comparatively higher leakage inductances and lower fault currents. Vector controlled pulse-width-modulated converters generally feature a much lower total harmonic distortion relative to hysteresis counterparts with variable switching rates and as such have been a predominant choice for BDFRG (and DFIG) wind turbines. Eliminating a shaft position sensor, which is often required for control implementation in this case, would be desirable to address the associated reliability issues. This fact has largely motivated the recent growing research of sensorless methods and developments of various rotor position and/or speed estimation techniques for this purpose. The main limitation of all the observer-based control approaches for grid-connected wind power applications of the BDFRG reported in the open literature is the requirement for pre-commissioning procedures and prior knowledge of the machine inductances, which are usually difficult to accurately identify by off-line testing. A model reference adaptive system (MRAS) based sensor-less vector control scheme to be presented will overcome this shortcoming. The true machine parameter independence of the proposed field-oriented algorithm, offering robust, inherently decoupled real and reactive power control of the grid-connected winding, is achieved by on-line estimation of the inductance ratio, the underlying rotor angular velocity and position MRAS observer being reliant upon. Such an observer configuration will be more practical to implement and clearly preferable to the existing machine parameter dependent solutions, and especially bearing in mind that with very little modifications it can be adapted for commercial DFIGs with immediately obvious further industrial benefits and prospects of this work. The excellent encoder-less controller performance with maximum power point tracking in the base speed region will be demonstrated by realistic simulation studies using large-scale BDFRG design data and verified by experimental results on a small laboratory prototype of the WECS emulation facility.

Keywords: brushless doubly fed reluctance generator, model reference adaptive system, sensorless vector control, wind energy conversion

Procedia PDF Downloads 64
13 Adapting to College: Exploration of Psychological Well-Being, Coping, and Identity as Markers of Readiness

Authors: Marit D. Murry, Amy K. Marks

Abstract:

The transition to college is a critical period that affords abundant opportunities for growth in conjunction with novel challenges for emerging adults. During this time, emerging adults are garnering experiences and acquiring hosts of new information that they are required to synthesize and use to inform life-shaping decisions. This stage is characterized by instability and exploration, which necessitates a diverse set of coping skills to successfully navigate and positively adapt to their evolving environment. However, important sociocultural factors result in differences that occur developmentally for minority emerging adults (i.e., emerging adults with an identity that has been or is marginalized). While the transition to college holds vast potential, not all are afforded the same chances, and many individuals enter into this stage at varying degrees of readiness. Understanding the nuance and diversity of student preparedness for college and contextualizing these factors will better equip systems to support incoming students. Emerging adulthood for ethnic, racial minority students presents itself as an opportunity for growth and resiliency in the face of systemic adversity. Ethnic, racial identity (ERI) is defined as an identity that develops as a function of one’s ethnic-racial group membership. Research continues to demonstrate ERI as a resilience factor that promotes positive adjustment in young adulthood. Adaptive coping responses (e.g., engaging in help-seeking behavior, drawing on personal and community resources) have been identified as possible mechanisms through which ERI buffers youth against stressful life events, including discrimination. Additionally, trait mindfulness has been identified as a significant predictor of general psychological health, and mindfulness practice has been shown to be a self-regulatory strategy that promotes healthy stress responses and adaptive coping strategy selection. The current study employed a person-centered approach to explore emerging patterns across ethnic identity development and psychological well-being criterion variables among college freshmen. Data from 283 incoming college freshmen at Northeastern University were analyzed. The Brief COPE Acceptance and Emotional Support scales, the Five Factor Mindfulness Questionnaire, and MIEM Exploration and Affirmation measures were used to inform the cluster profiles. The TwoStep auto-clustering algorithm revealed an optimal three-cluster solution (BIC = 848.49), which classified 92.6% (n = 262) of participants in the sample into one of the three clusters. The clusters were characterized as ‘Mixed Adjustment’, ‘Lowest Adjustment’, and ‘Moderate Adjustment.’ Cluster composition varied significantly by ethnicity X² (2, N = 262) = 7.74 (p = .021) and gender X² (2, N = 259) = 10.40 (p = .034). The ‘Lowest Adjustment’ cluster contained the highest proportion of students of color, 41% (n = 32), and male-identifying students, 44.2% (n = 34). Follow-up analyses showed higher ERI exploration in ‘Moderate Adjustment’ cluster members, also reported higher levels of psychological distress, with significantly elevated depression scores (p = .011), psychological diagnoses of depression (p = .013), anxiety (p = .005) and psychiatric disorders (p = .025). Supporting prior research, students engaging with identity exploration processes often endure more psychological distress. These results indicate that students undergoing identity development may require more socialization and different services beyond normal strategies.

Keywords: adjustment, coping, college, emerging adulthood, ethnic-racial identity, psychological well-being, resilience

Procedia PDF Downloads 112
12 Remote BioMonitoring of Mothers and Newborns for Temperature Surveillance Using a Smart Wearable Sensor: Techno-Feasibility Study and Clinical Trial in Southern India

Authors: Prem K. Mony, Bharadwaj Amrutur, Prashanth Thankachan, Swarnarekha Bhat, Suman Rao, Maryann Washington, Annamma Thomas, N. Sheela, Hiteshwar Rao, Sumi Antony

Abstract:

The disease burden among mothers and newborns is caused mostly by a handful of avoidable conditions occurring around the time of childbirth and within the first month following delivery. Real-time monitoring of vital parameters of mothers and neonates offers a potential opportunity to impact access as well as the quality of care in vulnerable populations. We describe the design, development and testing of an innovative wearable device for remote biomonitoring (RBM) of body temperatures in mothers and neonates in a hospital in southern India. The architecture consists of: [1] a low-cost, wearable sensor tag; [2] a gateway device for ‘real-time’ communication link; [3] piggy-backing on a commercial GSM communication network; and [4] an algorithm-based data analytics system. Requirements for the device were: long battery-life upto 28 days (with sampling frequency 5/hr); robustness; IP 68 hermetic sealing; and human-centric design. We undertook pre-clinical laboratory testing followed by clinical trial phases I & IIa for evaluation of safety and efficacy in the following sequence: seven healthy adult volunteers; 18 healthy mothers; and three sets of babies – 3 healthy babies; 10 stable babies in the Neonatal Intensive Care Unit (NICU) and 1 baby with hypoxic ischaemic encephalopathy (HIE). The 3-coin thickness, pebble-design sensor weighing about 8 gms was secured onto the abdomen for the baby and over the upper arm for adults. In the laboratory setting, the response-time of the sensor device to attain thermal equilibrium with the surroundings was 4 minutes vis-a-vis 3 minutes observed with a precision-grade digital thermometer used as a reference standard. The accuracy was ±0.1°C of the reference standard within the temperature range of 25-40°C. The adult volunteers, aged 20 to 45 years, contributed a total of 345 hours of readings over a 7-day period and the postnatal mothers provided a total of 403 paired readings. The mean skin temperatures measured in the adults by the sensor were about 2°C lower than the axillary temperature readings (sensor =34.1 vs digital = 36.1); this difference was statistically significant (t-test=13.8; p<0.001). The healthy neonates provided a total of 39 paired readings; the mean difference in temperature was 0.13°C (sensor =36.9 vs digital = 36.7; p=0.2). The neonates in the NICU provided a total of 130 paired readings. Their mean skin temperature measured by the sensor was 0.6°C lower than that measured by the radiant warmer probe (sensor =35.9 vs warmer probe = 36.5; p < 0.001). The neonate with HIE provided a total of 25 paired readings with the mean sensor reading being not different from the radian warmer probe reading (sensor =33.5 vs warmer probe = 33.5; p=0.8). No major adverse events were noted in both the adults and neonates; four adult volunteers reported mild sweating under the device/arm band and one volunteer developed mild skin allergy. This proof-of-concept study shows that real-time monitoring of temperatures is technically feasible and that this innovation appears to be promising in terms of both safety and accuracy (with appropriate calibration) for improved maternal and neonatal health.

Keywords: public health, remote biomonitoring, temperature surveillance, wearable sensors, mothers and newborns

Procedia PDF Downloads 212
11 CLOUD Japan: Prospective Multi-Hospital Study to Determine the Population-Based Incidence of Hospitalized Clostridium difficile Infections

Authors: Kazuhiro Tateda, Elisa Gonzalez, Shuhei Ito, Kirstin Heinrich, Kevin Sweetland, Pingping Zhang, Catia Ferreira, Michael Pride, Jennifer Moisi, Sharon Gray, Bennett Lee, Fred Angulo

Abstract:

Clostridium difficile (C. difficile) is the most common cause of antibiotic-associated diarrhea and infectious diarrhea in healthcare settings. Japan has an aging population; the elderly are at increased risk of hospitalization, antibiotic use, and C. difficile infection (CDI). Little is known about the population-based incidence and disease burden of CDI in Japan although limited hospital-based studies have reported a lower incidence than the United States. To understand CDI disease burden in Japan, CLOUD (Clostridium difficile Infection Burden of Disease in Adults in Japan) was developed. CLOUD will derive population-based incidence estimates of the number of CDI cases per 100,000 population per year in Ota-ku (population 723,341), one of the districts in Tokyo, Japan. CLOUD will include approximately 14 of the 28 Ota-ku hospitals including Toho University Hospital, which is a 1,000 bed tertiary care teaching hospital. During the 12-month patient enrollment period, which is scheduled to begin in November 2018, Ota-ku residents > 50 years of age who are hospitalized at a participating hospital with diarrhea ( > 3 unformed stools (Bristol Stool Chart 5-7) in 24 hours) will be actively ascertained, consented, and enrolled by study surveillance staff. A stool specimen will be collected from enrolled patients and tested at a local reference laboratory (LSI Medience, Tokyo) using QUIK CHEK COMPLETE® (Abbott Laboratories). which simultaneously tests specimens for the presence of glutamate dehydrogenase (GDH) and C. difficile toxins A and B. A frozen stool specimen will also be sent to the Pfizer Laboratory (Pearl River, United States) for analysis using a two-step diagnostic testing algorithm that is based on detection of C. difficile strains/spores harboring toxin B gene by PCR followed by detection of free toxins (A and B) using a proprietary cell cytotoxicity neutralization assay (CCNA) developed by Pfizer. Positive specimens will be anaerobically cultured, and C. difficile isolates will be characterized by ribotyping and whole genomic sequencing. CDI patients enrolled in CLOUD will be contacted weekly for 90 days following diarrhea onset to describe clinical outcomes including recurrence, reinfection, and mortality, and patient reported economic, clinical and humanistic outcomes (e.g., health-related quality of life, worsening of comorbidities, and patient and caregiver work absenteeism). Studies will also be undertaken to fully characterize the catchment area to enable population-based estimates. The 12-month active ascertainment of CDI cases among hospitalized Ota-ku residents with diarrhea in CLOUD, and the characterization of the Ota-ku catchment area, including estimation of the proportion of all hospitalizations of Ota-ku residents that occur in the CLOUD-participating hospitals, will yield CDI population-based incidence estimates, which can be stratified by age groups, risk groups, and source (hospital-acquired or community-acquired). These incidence estimates will be extrapolated, following age standardization using national census data, to yield CDI disease burden estimates for Japan. CLOUD also serves as a model for studies in other countries that can use the CLOUD protocol to estimate CDI disease burden.

Keywords: Clostridium difficile, disease burden, epidemiology, study protocol

Procedia PDF Downloads 266
10 Discovering Causal Structure from Observations: The Relationships between Technophile Attitude, Users Value and Use Intention of Mobility Management Travel App

Authors: Aliasghar Mehdizadeh Dastjerdi, Francisco Camara Pereira

Abstract:

The increasing complexity and demand of transport services strains transportation systems especially in urban areas with limited possibilities for building new infrastructure. The solution to this challenge requires changes of travel behavior. One of the proposed means to induce such change is multimodal travel apps. This paper describes a study of the intention to use a real-time multi-modal travel app aimed at motivating travel behavior change in the Greater Copenhagen Region (Denmark) toward promoting sustainable transport options. The proposed app is a multi-faceted smartphone app including both travel information and persuasive strategies such as health and environmental feedback, tailoring travel options, self-monitoring, tunneling users toward green behavior, social networking, nudging and gamification elements. The prospective for mobility management travel apps to stimulate sustainable mobility rests not only on the original and proper employment of the behavior change strategies, but also on explicitly anchoring it on established theoretical constructs from behavioral theories. The theoretical foundation is important because it positively and significantly influences the effectiveness of the system. However, there is a gap in current knowledge regarding the study of mobility-management travel app with support in behavioral theories, which should be explored further. This study addresses this gap by a social cognitive theory‐based examination. However, compare to conventional method in technology adoption research, this study adopts a reverse approach in which the associations between theoretical constructs are explored by Max-Min Hill-Climbing (MMHC) algorithm as a hybrid causal discovery method. A technology-use preference survey was designed to collect data. The survey elicited different groups of variables including (1) three groups of user’s motives for using the app including gain motives (e.g., saving travel time and cost), hedonic motives (e.g., enjoyment) and normative motives (e.g., less travel-related CO2 production), (2) technology-related self-concepts (i.e. technophile attitude) and (3) use Intention of the travel app. The questionnaire items led to the formulation of causal relationships discovery to learn the causal structure of the data. Causal relationships discovery from observational data is a critical challenge and it has applications in different research fields. The estimated causal structure shows that the two constructs of gain motives and technophilia have a causal effect on adoption intention. Likewise, there is a causal relationship from technophilia to both gain and hedonic motives. In line with the findings of the prior studies, it highlights the importance of functional value of the travel app as well as technology self-concept as two important variables for adoption intention. Furthermore, the results indicate the effect of technophile attitude on developing gain and hedonic motives. The causal structure shows hierarchical associations between the three groups of user’s motive. They can be explained by “frustration-regression” principle according to Alderfer's ERG (Existence, Relatedness and Growth) theory of needs meaning that a higher level need remains unfulfilled, a person may regress to lower level needs that appear easier to satisfy. To conclude, this study shows the capability of causal discovery methods to learn the causal structure of theoretical model, and accordingly interpret established associations.

Keywords: travel app, behavior change, persuasive technology, travel information, causality

Procedia PDF Downloads 146
9 Design, Control and Implementation of 3.5 kW Bi-Directional Energy Harvester for Intelligent Green Energy Management System

Authors: P. Ramesh, Aby Joseph, Arya G. Lal, U. S. Aji

Abstract:

Integration of distributed green renewable energy sources in addition with battery energy storage is an inevitable requirement in a smart grid environment. To achieve this, an Intelligent Green Energy Management System (i-GEMS) needs to be incorporated to ensure coordinated operation between supply and load demand based on the hierarchy of Renewable Energy Sources (RES), battery energy storage and distribution grid. A bi-directional energy harvester is an integral component facilitating Intelligent Green Energy Management System (i-GEMS) and it is required to meet the technical challenges mentioned as follows: (1) capability for bi-directional mode of operation (buck/boost) (2) reduction of circuit parasitic to suppress voltage spikes (3) converter startup problem (4) high frequency magnetics (5) higher power density (6) mode transition issues during battery charging and discharging. This paper is focused to address the above mentioned issues and targeted to design, develop and implement a bi-directional energy harvester with galvanic isolation. In this work, the hardware architecture for bi-directional energy harvester rated 3.5 kW is developed with Isolated Full Bridge Boost Converter (IFBBC) as well as Dual Active Bridge (DAB) Converter configuration using modular power electronics hardware which is identical for both solar PV array and battery energy storage. In IFBBC converter, the current fed full bridge circuit is enabled and voltage fed full bridge circuit is disabled through Pulse Width Modulation (PWM) pulses for boost mode of operation and vice-versa for buck mode of operation. In DAB converter, all the switches are in active state so as to adjust the phase shift angle between primary full bridge and secondary full bridge which in turn decides the power flow directions depending on modes (boost/buck) of operation. Here, the control algorithm is developed to ensure the regulation of the common DC link voltage and maximum power extraction from the renewable energy sources depending on the selected mode (buck/boost) of operation. The circuit analysis and simulation study are conducted using PSIM 9.0 in three scenarios which are - 1.IFBBC with passive clamp, 2. IFBBC with active clamp, 3. DAB converter. In this work, a common hardware prototype for bi-directional energy harvester with 3.5 kW rating is built for IFBBC and DAB converter configurations. The power circuit is equipped with right choice of MOSFETs, gate drivers with galvanic isolation, high frequency transformer, filter capacitors, and filter boost inductor. The experiment was conducted for IFBBC converter with passive clamp under boost mode and the prototype confirmed the simulation results showing the measured efficiency as 88% at 2.5 kW output power. The digital controller hardware platform is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the bi-directional energy harvester is written in C language and developed using code composer studio. The comprehensive analyses of the power circuit design, control strategy for battery charging/discharging under buck/boost modes and comparative performance evaluation using simulation and experimental results will be presented.

Keywords: bi-directional energy harvester, dual active bridge, isolated full bridge boost converter, intelligent green energy management system, maximum power point tracking, renewable energy sources

Procedia PDF Downloads 144
8 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 95
7 Ensemble Sampler For Infinite-Dimensional Inverse Problems

Authors: Jeremie Coullon, Robert J. Webber

Abstract:

We introduce a Markov chain Monte Carlo (MCMC) sam-pler for infinite-dimensional inverse problems. Our sam-pler is based on the affine invariant ensemble sampler, which uses interacting walkers to adapt to the covariance structure of the target distribution. We extend this ensem-ble sampler for the first time to infinite-dimensional func-tion spaces, yielding a highly efficient gradient-free MCMC algorithm. Because our ensemble sampler does not require gradients or posterior covariance estimates, it is simple to implement and broadly applicable. In many Bayes-ian inverse problems, Markov chain Monte Carlo (MCMC) meth-ods are needed to approximate distributions on infinite-dimensional function spaces, for example, in groundwater flow, medical imaging, and traffic flow. Yet designing efficient MCMC methods for function spaces has proved challenging. Recent gradi-ent-based MCMC methods preconditioned MCMC methods, and SMC methods have improved the computational efficiency of functional random walk. However, these samplers require gradi-ents or posterior covariance estimates that may be challenging to obtain. Calculating gradients is difficult or impossible in many high-dimensional inverse problems involving a numerical integra-tor with a black-box code base. Additionally, accurately estimating posterior covariances can require a lengthy pilot run or adaptation period. These concerns raise the question: is there a functional sampler that outperforms functional random walk without requir-ing gradients or posterior covariance estimates? To address this question, we consider a gradient-free sampler that avoids explicit covariance estimation yet adapts naturally to the covariance struc-ture of the sampled distribution. This sampler works by consider-ing an ensemble of walkers and interpolating and extrapolating between walkers to make a proposal. This is called the affine in-variant ensemble sampler (AIES), which is easy to tune, easy to parallelize, and efficient at sampling spaces of moderate dimen-sionality (less than 20). The main contribution of this work is to propose a functional ensemble sampler (FES) that combines func-tional random walk and AIES. To apply this sampler, we first cal-culate the Karhunen–Loeve (KL) expansion for the Bayesian prior distribution, assumed to be Gaussian and trace-class. Then, we use AIES to sample the posterior distribution on the low-wavenumber KL components and use the functional random walk to sample the posterior distribution on the high-wavenumber KL components. Alternating between AIES and functional random walk updates, we obtain our functional ensemble sampler that is efficient and easy to use without requiring detailed knowledge of the target dis-tribution. In past work, several authors have proposed splitting the Bayesian posterior into low-wavenumber and high-wavenumber components and then applying enhanced sampling to the low-wavenumber components. Yet compared to these other samplers, FES is unique in its simplicity and broad applicability. FES does not require any derivatives, and the need for derivative-free sam-plers has previously been emphasized. FES also eliminates the requirement for posterior covariance estimates. Lastly, FES is more efficient than other gradient-free samplers in our tests. In two nu-merical examples, we apply FES to challenging inverse problems that involve estimating a functional parameter and one or more scalar parameters. We compare the performance of functional random walk, FES, and an alternative derivative-free sampler that explicitly estimates the posterior covariance matrix. We conclude that FES is the fastest available gradient-free sampler for these challenging and multimodal test problems.

Keywords: Bayesian inverse problems, Markov chain Monte Carlo, infinite-dimensional inverse problems, dimensionality reduction

Procedia PDF Downloads 157
6 Predicting Open Chromatin Regions in Cell-Free DNA Whole Genome Sequencing Data by Correlation Clustering  

Authors: Fahimeh Palizban, Farshad Noravesh, Amir Hossein Saeidian, Mahya Mehrmohamadi

Abstract:

In the recent decade, the emergence of liquid biopsy has significantly improved cancer monitoring and detection. Dying cells, including those originating from tumors, shed their DNA into the blood and contribute to a pool of circulating fragments called cell-free DNA. Accordingly, identifying the tissue origin of these DNA fragments from the plasma can result in more accurate and fast disease diagnosis and precise treatment protocols. Open chromatin regions are important epigenetic features of DNA that reflect cell types of origin. Profiling these features by DNase-seq, ATAC-seq, and histone ChIP-seq provides insights into tissue-specific and disease-specific regulatory mechanisms. There have been several studies in the area of cancer liquid biopsy that integrate distinct genomic and epigenomic features for early cancer detection along with tissue of origin detection. However, multimodal analysis requires several types of experiments to cover the genomic and epigenomic aspects of a single sample, which will lead to a huge amount of cost and time. To overcome these limitations, the idea of predicting OCRs from WGS is of particular importance. In this regard, we proposed a computational approach to target the prediction of open chromatin regions as an important epigenetic feature from cell-free DNA whole genome sequence data. To fulfill this objective, local sequencing depth will be fed to our proposed algorithm and the prediction of the most probable open chromatin regions from whole genome sequencing data can be carried out. Our method integrates the signal processing method with sequencing depth data and includes count normalization, Discrete Fourie Transform conversion, graph construction, graph cut optimization by linear programming, and clustering. To validate the proposed method, we compared the output of the clustering (open chromatin region+, open chromatin region-) with previously validated open chromatin regions related to human blood samples of the ATAC-DB database. The percentage of overlap between predicted open chromatin regions and the experimentally validated regions obtained by ATAC-seq in ATAC-DB is greater than 67%, which indicates meaningful prediction. As it is evident, OCRs are mostly located in the transcription start sites (TSS) of the genes. In this regard, we compared the concordance between the predicted OCRs and the human genes TSS regions obtained from refTSS and it showed proper accordance around 52.04% and ~78% with all and the housekeeping genes, respectively. Accurately detecting open chromatin regions from plasma cell-free DNA-seq data is a very challenging computational problem due to the existence of several confounding factors, such as technical and biological variations. Although this approach is in its infancy, there has already been an attempt to apply it, which leads to a tool named OCRDetector with some restrictions like the need for highly depth cfDNA WGS data, prior information about OCRs distribution, and considering multiple features. However, we implemented a graph signal clustering based on a single depth feature in an unsupervised learning manner that resulted in faster performance and decent accuracy. Overall, we tried to investigate the epigenomic pattern of a cell-free DNA sample from a new computational perspective that can be used along with other tools to investigate genetic and epigenetic aspects of a single whole genome sequencing data for efficient liquid biopsy-related analysis.

Keywords: open chromatin regions, cancer, cell-free DNA, epigenomics, graph signal processing, correlation clustering

Procedia PDF Downloads 157
5 EcoTeka, an Open-Source Software for Urban Ecosystem Restoration through Technology

Authors: Manon Frédout, Laëtitia Bucari, Mathias Aloui, Gaëtan Duhamel, Olivier Rovellotti, Javier Blanco

Abstract:

Ecosystems must be resilient to ensure cleaner air, better water and soil quality, and thus healthier citizens. Technology can be an excellent tool to support urban ecosystem restoration projects, especially when based on Open Source and promoting Open Data. This is the goal of the ecoTeka application: one single digital tool for tree management which allows decision-makers to improve their urban forestry practices, enabling more responsible urban planning and climate change adaptation. EcoTeka provides city councils with three main functionalities tackling three of their challenges: easier biodiversity inventories, better green space management, and more efficient planning. To answer the cities’ need for reliable tree inventories, the application has been first built with open data coming from the websites OpenStreetMap and OpenTrees, but it will also include very soon the possibility of creating new data. To achieve this, a multi-source algorithm will be elaborated, based on existing artificial intelligence Deep Forest, integrating open-source satellite images, 3D representations from LiDAR, and street views from Mapillary. This data processing will permit identifying individual trees' position, height, crown diameter, and taxonomic genus. To support urban forestry management, ecoTeka offers a dashboard for monitoring the city’s tree inventory and trigger alerts to inform about upcoming due interventions. This tool was co-constructed with the green space departments of the French cities of Alès, Marseille, and Rouen. The third functionality of the application is a decision-making tool for urban planning, promoting biodiversity and landscape connectivity metrics to drive ecosystem restoration roadmap. Based on landscape graph theory, we are currently experimenting with new methodological approaches to scale down regional ecological connectivity principles to local biodiversity conservation and urban planning policies. This methodological framework will couple graph theoretic approach and biological data, mainly biodiversity occurrences (presence/absence) data available on both international (e.g., GBIF), national (e.g., Système d’Information Nature et Paysage) and local (e.g., Atlas de la Biodiversté Communale) biodiversity data sharing platforms in order to help reasoning new decisions for ecological networks conservation and restoration in urban areas. An experiment on this subject is currently ongoing with Montpellier Mediterranee Metropole. These projects and studies have shown that only 26% of tree inventory data is currently geo-localized in France - the rest is still being done on paper or Excel sheets. It seems that technology is not yet used enough to enrich the knowledge city councils have about biodiversity in their city and that existing biodiversity open data (e.g., occurrences, telemetry, or genetic data), species distribution models, landscape graph connectivity metrics are still underexploited to make rational decisions for landscape and urban planning projects. This is the goal of ecoTeka: to support easier inventories of urban biodiversity and better management of urban spaces through rational planning and decisions relying on open databases. Future studies and projects will focus on the development of tools for reducing the artificialization of soils, selecting plant species adapted to climate change, and highlighting the need for ecosystem and biodiversity services in cities.

Keywords: digital software, ecological design of urban landscapes, sustainable urban development, urban ecological corridor, urban forestry, urban planning

Procedia PDF Downloads 77
4 Synthetic Method of Contextual Knowledge Extraction

Authors: Olga Kononova, Sergey Lyapin

Abstract:

Global information society requirements are transparency and reliability of data, as well as ability to manage information resources independently; particularly to search, to analyze, to evaluate information, thereby obtaining new expertise. Moreover, it is satisfying the society information needs that increases the efficiency of the enterprise management and public administration. The study of structurally organized thematic and semantic contexts of different types, automatically extracted from unstructured data, is one of the important tasks for the application of information technologies in education, science, culture, governance and business. The objectives of this study are the contextual knowledge typologization, selection or creation of effective tools for extracting and analyzing contextual knowledge. Explication of various kinds and forms of the contextual knowledge involves the development and use full-text search information systems. For the implementation purposes, the authors use an e-library 'Humanitariana' services such as the contextual search, different types of queries (paragraph-oriented query, frequency-ranked query), automatic extraction of knowledge from the scientific texts. The multifunctional e-library «Humanitariana» is realized in the Internet-architecture in WWS-configuration (Web-browser / Web-server / SQL-server). Advantage of use 'Humanitariana' is in the possibility of combining the resources of several organizations. Scholars and research groups may work in a local network mode and in distributed IT environments with ability to appeal to resources of any participating organizations servers. Paper discusses some specific cases of the contextual knowledge explication with the use of the e-library services and focuses on possibilities of new types of the contextual knowledge. Experimental research base are science texts about 'e-government' and 'computer games'. An analysis of the subject-themed texts trends allowed to propose the content analysis methodology, that combines a full-text search with automatic construction of 'terminogramma' and expert analysis of the selected contexts. 'Terminogramma' is made out as a table that contains a column with a frequency-ranked list of words (nouns), as well as columns with an indication of the absolute frequency (number) and the relative frequency of occurrence of the word (in %% ppm). The analysis of 'e-government' materials showed, that the state takes a dominant position in the processes of the electronic interaction between the authorities and society in modern Russia. The media credited the main role in these processes to the government, which provided public services through specialized portals. Factor analysis revealed two factors statistically describing the used terms: human interaction (the user) and the state (government, processes organizer); interaction management (public officer, processes performer) and technology (infrastructure). Isolation of these factors will lead to changes in the model of electronic interaction between government and society. In this study, the dominant social problems and the prevalence of different categories of subjects of computer gaming in science papers from 2005 to 2015 were identified. Therefore, there is an evident identification of several types of contextual knowledge: micro context; macro context; dynamic context; thematic collection of queries (interactive contextual knowledge expanding a composition of e-library information resources); multimodal context (functional integration of iconographic and full-text resources through hybrid quasi-semantic algorithm of search). Further studies can be pursued both in terms of expanding the resource base on which they are held, and in terms of the development of appropriate tools.

Keywords: contextual knowledge, contextual search, e-library services, frequency-ranked query, paragraph-oriented query, technologies of the contextual knowledge extraction

Procedia PDF Downloads 362
3 Cycleloop Personal Rapid Transit: An Exploratory Study for Last Mile Connectivity in Urban Transport

Authors: Suresh Salla

Abstract:

In this paper, author explores for most sustainable last mile transport mode addressing present problems of traffic congestion, jams, pollution and travel stress. Development of energy-efficient sustainable integrated transport system(s) is/are must to make our cities more livable. Emphasis on autonomous, connected, electric, sharing system for effective utilization of systems (vehicles and public infrastructure) is on the rise. Many surface mobility innovations like PBS, Ride hailing, ride sharing, etc. are, although workable but if we analyze holistically, add to the already congested roads, difficult to ride in hostile weather, causes pollution and poses commuter stress. Sustainability of transportation is evaluated with respect to public adoption, average speed, energy consumption, and pollution. Why public prefer certain mode over others? How commute time plays a role in mode selection or shift? What are the factors play-ing role in energy consumption and pollution? Based on the study, it is clear that public prefer a transport mode which is exhaustive (i.e., less need for interchange – network is widespread) and intensive (i.e., less waiting time - vehicles are available at frequent intervals) and convenient with latest technologies. Average speed is dependent on stops, number of intersections, signals, clear route availability, etc. It is clear from Physics that higher the kerb weight of a vehicle; higher is the operational energy consumption. Higher kerb weight also demands heavier infrastructure. Pollution is dependent on source of energy, efficiency of vehicle, average speed. Mode can be made exhaustive when the unit infrastructure cost is less and can be offered intensively when the vehicle cost is less. Reliable and seamless integrated mobility till last ¼ mile (Five Minute Walk-FMW) is a must to encourage sustainable public transportation. Study shows that average speed and reliability of dedicated modes (like Metro, PRT, BRT, etc.) is high compared to road vehicles. Electric vehicles and more so battery-less or 3rd rail vehicles reduce pollution. One potential mode can be Cycleloop PRT, where commuter rides e-cycle in a dedicated path – elevated, at grade or underground. e-Bike with kerb weight per rider at 15 kg being 1/50th of car or 1/10th of other PRT systems makes it sustainable mode. Cycleloop tube will be light, sleek and scalable and can be modular erected, either on modified street lamp-posts or can be hanged/suspended between the two stations. Embarking and dis-embarking points or offline stations can be at an interval which suits FMW to mass public transit. In terms of convenience, guided e-Bike can be made self-balancing thus encouraging driverless on-demand vehicles. e-Bike equipped with smart electronics and drive controls can intelligently respond to field sensors and autonomously move reacting to Central Controller. Smart switching allows travel from origin to destination without interchange of cycles. DC Powered Batteryless e-cycle with voluntary manual pedaling makes it sustainable and provides health benefits. Tandem e-bike, smart switching and Platoon operations algorithm options provide superior through-put of the Cycleloop. Thus Cycleloop PRT will be exhaustive, intensive, convenient, reliable, speedy, sustainable, safe, pollution-free and healthy alternative mode for last mile connectivity in cities.

Keywords: cycleloop PRT, five-minute walk, lean modular infrastructure, self-balanced intelligent e-cycle

Procedia PDF Downloads 135
2 Microfabrication and Non-Invasive Imaging of Porous Osteogenic Structures Using Laser-Assisted Technologies

Authors: Irina Alexandra Paun, Mona Mihailescu, Marian Zamfirescu, Catalin Romeo Luculescu, Adriana Maria Acasandrei, Cosmin Catalin Mustaciosu, Roxana Cristina Popescu, Maria Dinescu

Abstract:

A major concern in bone tissue engineering is to develop complex 3D architectures that mimic the natural cells environment, facilitate the cells growth in a defined manner and allow the flow transport of nutrients and metabolic waste. In particular, porous structures of controlled pore size and positioning are indispensable for growing human-like bone structures. Another concern is to monitor both the structures and the seeded cells with high spatial resolution and without interfering with the cells natural environment. The present approach relies on laser-based technologies employed for fabricating porous biomimetic structures that support the growth of osteoblast-like cells and for their non-invasive 3D imaging. Specifically, the porous structures were built by two photon polymerization –direct writing (2PP_DW) of the commercially available photoresists IL-L780, using the Photonic Professional 3D lithography system. The structures consist of vertical tubes with micrometer-sized heights and diameters, in a honeycomb-like spatial arrangement. These were fabricated by irradiating the IP-L780 photoresist with focused laser pulses with wavelength centered at 780 nm, 120 fs pulse duration and 80 MHz repetition rate. The samples were precisely scanned in 3D by piezo stages. The coarse positioning was done by XY motorized stages. The scanning path was programmed through a writing language (GWL) script developed by Nanoscribe. Following laser irradiation, the unexposed regions of the photoresist were washed out by immersing the samples in the Propylene Glycol Monomethyl Ether Acetate (PGMEA). The porous structures were seeded with osteoblast like MG-63 cells and their osteogenic potential was tested in vitro. The cell-seeded structures were analyzed in 3D using the digital holographic microscopy technique (DHM). DHM is a marker free and high spatial resolution imaging tool, where the hologram acquisition is performed non-invasively i.e. without interfering with the cells natural environment. Following hologram recording, a digital algorithm provided a 3D image of the sample, as well as information about its refractive index, which is correlated with the intracellular content. The axial resolution of the images went down to the nanoscale, while the temporal scales ranged from milliseconds up to hours. The hologram did not involve sample scanning and the whole image was available in one frame recorded going over 200μm field of view. The digital holograms processing provided 3D quantitative information on the porous structures and allowed a quantitative analysis of the cellular response in respect to the porous architectures. The cellular shape and dimensions were found to be influenced by the underlying micro relief. Furthermore, the intracellular content gave evidence on the beneficial role of the porous structures in promoting osteoblast differentiation. In all, the proposed laser-based protocol emerges as a promising tool for the fabrication and non-invasive imaging of porous constructs for bone tissue engineering. Acknowledgments: This work was supported by a grant of the Romanian Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project PN-II-RU-TE-2014-4-2534 (contract 97 from 01/10/2015) and by UEFISCDI PN-II-PT-PCCA no. 6/2012. A part of this work was performed in the CETAL laser facility, supported by the National Program PN 16 47 - LAPLAS IV.

Keywords: biomimetic, holography, laser, osteoblast, two photon polymerization

Procedia PDF Downloads 275
1 Computational Fluid Dynamics Simulation of a Nanofluid-Based Annular Solar Collector with Different Metallic Nano-Particles

Authors: Sireetorn Kuharat, Anwar Beg

Abstract:

Motivation- Solar energy constitutes the most promising renewable energy source on earth. Nanofluids are a very successful family of engineered fluids, which contain well-dispersed nanoparticles suspended in a stable base fluid. The presence of metallic nanoparticles (e.g. gold, silver, copper, aluminum etc) significantly improves the thermo-physical properties of the host fluid and generally results in a considerable boost in thermal conductivity, density, and viscosity of nanofluid compared with the original base (host) fluid. This modification in fundamental thermal properties has profound implications in influencing the convective heat transfer process in solar collectors. The potential for improving solar collector direct absorber efficiency is immense and to gain a deeper insight into the impact of different metallic nanoparticles on efficiency and temperature enhancement, in the present work, we describe recent computational fluid dynamics simulations of an annular solar collector system. The present work studies several different metallic nano-particles and compares their performance. Methodologies- A numerical study of convective heat transfer in an annular pipe solar collector system is conducted. The inner tube contains pure water and the annular region contains nanofluid. Three-dimensional steady-state incompressible laminar flow comprising water- (and other) based nanofluid containing a variety of metallic nanoparticles (copper oxide, aluminum oxide, and titanium oxide nanoparticles) is examined. The Tiwari-Das model is deployed for which thermal conductivity, specific heat capacity and viscosity of the nanofluid suspensions is evaluated as a function of solid nano-particle volume fraction. Radiative heat transfer is also incorporated using the ANSYS solar flux and Rosseland radiative models. The ANSYS FLUENT finite volume code (version 18.1) is employed to simulate the thermo-fluid characteristics via the SIMPLE algorithm. Mesh-independence tests are conducted. Validation of the simulations is also performed with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation achieved. The influence of volume fraction on temperature, velocity, pressure contours is computed and visualized. Main findings- The best overall performance is achieved with copper oxide nanoparticles. Thermal enhancement is generally maximized when water is utilized as the base fluid, although in certain cases ethylene glycol also performs very efficiently. Increasing nanoparticle solid volume fraction elevates temperatures although the effects are less prominent in aluminum and titanium oxide nanofluids. Significant improvement in temperature distributions is achieved with copper oxide nanofluid and this is attributed to the superior thermal conductivity of copper compared to other metallic nano-particles studied. Important fluid dynamic characteristics are also visualized including circulation and temperature shoots near the upper region of the annulus. Radiative flux is observed to enhance temperatures significantly via energization of the nanofluid although again the best elevation in performance is attained consistently with copper oxide. Conclusions-The current study generalizes previous investigations by considering multiple metallic nano-particles and furthermore provides a good benchmark against which to calibrate experimental tests on a new solar collector configuration currently being designed at Salford University. Important insights into the thermal conductivity and viscosity with metallic nano-particles is also provided in detail. The analysis is also extendable to other metallic nano-particles including gold and zinc.

Keywords: heat transfer, annular nanofluid solar collector, ANSYS FLUENT, metallic nanoparticles

Procedia PDF Downloads 146