Search results for: metallurgical image processing
2073 Analyzing the Market Growth in Application Programming Interface Economy Using Time-Evolving Model
Authors: Hiroki Yoshikai, Shin’ichi Arakawa, Tetsuya Takine, Masayuki Murata
Abstract:
API (Application Programming Interface) economy is expected to create new value by converting corporate services such as information processing and data provision into APIs and using these APIs to connect services. Understanding the dynamics of a market of API economy under the strategies of participants is crucial to fully maximize the values of the API economy. To capture the behavior of a market in which the number of participants changes over time, we present a time-evolving market model for a platform in which API providers who provide APIs to service providers participate in addition to service providers and consumers. Then, we use the market model to clarify the role API providers play in expanding market participants and forming ecosystems. The results show that the platform with API providers increased the number of market participants by 67% and decreased the cost to develop services by 25% compared to the platform without API providers. Furthermore, during the expansion phase of the market, it is found that the profits of participants are mostly the same when 70% of the revenue from consumers is distributed to service providers and API providers. It is also found that when the market is mature, the profits of the service provider and API provider will decrease significantly due to their competition, and the profit of the platform increases.Keywords: API economy, ecosystem, platform, API providers
Procedia PDF Downloads 912072 Impact of Self-Concept on Performance and Mental Wellbeing of Preservice Teachers
Authors: José María Agugusto-landa, Inmaculada García-Martínez, Lara Checa Domene, Óscar Gavín Chocano
Abstract:
Self-concept is the perception that a person has of himself, of his abilities, skills, traits, and values. Self-concept is composed of different dimensions, such as academic self-concept, physical self-concept, social self-concept, emotional self-concept, and family self-concept. The relationship between the dimensions of self-concept and mental health and academic performance among future teachers is a topic of interest for educational psychology. Some studies have found that: (i) There is a positive relationship between general self-concept, academic self-concept and academic performance, that is, students who have a more positive image of themselves tend to get better grades and be more motivated to learn. (ii) There is a positive relationship between emotional intelligence, physical self-concept and healthy habits, that is, students who regulate and understand their emotions better have a higher satisfaction with their physical appearance and follow a more balanced diet and a higher physical activity. As for gender differences in the dimensions of self-concept among future teachers, some studies have found that: (i) Girls tend to have a higher self-concept in the social, family and verbal dimensions, that is, they perceive themselves as more capable of relating to others, communicating effectively and receiving support from their family. (ii) Boys tend to have a higher self-concept in the physical, emotional and mathematical dimensions, that is, they perceive themselves as more capable of performing physical activities, controlling their emotions and solving mathematical problems. (iii) There are no significant differences between general self-concept and academic self-concept according to gender, that is, both girls and boys have a similar perception of their global worth and academic competence.Keywords: preservice teachers, self-concept, academic performance, mental wellbeing
Procedia PDF Downloads 812071 Psychosocial Determinants of Quality of Life After Treatment For Colorectal Cancer - A Systematic Review
Authors: Lakmali Anthony, Madeline Gillies
Abstract:
Purpose: Long-term survivorship in colorectal cancer (CRC) is increasing as mortality decreases, leading to increased focus on patient-reported outcomes such as quality of life (QoL). CRC patients often have decreased QoL even after treatment is complete. This systematic review of the literature aims to identify psychosocial factors associated with decreased QoL in post-treatment CRC patients. Methodology: This systematic review was performed in accordance with the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses recommendations. The search was conducted in MEDLINE, EMBASE, and PsychINFO using MeSH headings. The two authors screened studies for relevance and extracted data. Results: Seventeen studies were identified, including 6,272 total participants (mean = 392, 58% male) with a mean age of 60.6 years. The European Organisation for Research and Treatment of Cancer QLQ-C30 was the most common measure of QoL (n=14, 82.3%). Most studies (n=15, 88.2%) found that emotional distress correlated with poor global QoL. This was most commonly measured with the Hospital Anxiety & Depression Scale (n=11, 64.7%). Other psychosocial factors associated with QoL were lack of social support, body image, and financial difficulties. Clinicopathologic determinants included presence of stoma and metastasis. Conclusion: This systematic review provides a summary of the psychosocial determinants of poor QoL in post-treatment CRC patients, as well as the most commonly reported measures of these. An understanding of these potentially modifiable determinants of poor outcome is pivotal to the provision of quality, patient-centred care in surgical oncology.Keywords: colorectal cancer, cancer surgery, quality of life, oncology, social determinants
Procedia PDF Downloads 892070 The Staff Performance Efficiency of the Faculty of Management Science, Suan Sunandha Rajabhat University
Authors: Nipawan Tharasak, Ladda Hirunyava
Abstract:
The objective of the research was to study factors affecting working efficiency and the relationship between working environment, satisfaction to human resources management and operation employees’ working efficiency of Faculty of Management Science, Suan Sunandha Rajabhat University. The sample size of the research was based on 33 employees of Faculty of Management Science. The researcher had classified the support employees into 4 divisions by using Stratified Random Sampling. Individual sample was randomized by using Simple Random Sampling. Data was collected through the instrument. The Statistical Package for the Windows was utilized for data processing. Percentage, mean, standard deviation, the t-test, One-way ANOVA, and Pearson product moment correlation coefficient were applied. The result found the support employees’ satisfaction in human resources management of Faculty of Management Science in following areas: remuneration; employee recruitment & selection; manpower planning; performance evaluation; staff training & developing; and spirit & fairness were overall in good level.Keywords: faculty of management science, operational factors, practice performance, staff working
Procedia PDF Downloads 2352069 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images
Authors: Masood Varshosaz, Kamyar Hasanpour
Abstract:
In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.Keywords: human recognition, deep learning, drones, disaster mitigation
Procedia PDF Downloads 952068 Quaternary Ammonium Salts Based Algerian Petroleum Products: Synthesis and Characterization
Authors: Houria Hamitouche, Abdellah Khelifa
Abstract:
Quaternary ammonium salts (QACs) are the most common cationic surfactants of natural or synthetic origin usually. They possess one or more hydrophobic hydrocarbon chains and hydrophilic cationic group. In fact, the hydrophobic groups are derived from three main sources: petrochemicals, vegetable oils, and animal fats. These QACs have attracted the attention of chemists for a long time, due to their general simple synthesis and their broad application in several fields. They are important as ingredients of cosmetic products and are also used as corrosion inhibitors, in emulsion polymerization and textile processing. Within biological applications, QACs show a good antimicrobial activity and can be used as medicines, gene delivery agents or in DNA extraction methods. The 2004 worldwide annual consumption of QACs was reported as 500,000 tons. The petroleum product is considered a true reservoir of a variety of chemical species, which can be used in the synthesis of quaternary ammonium salts. The purpose of the present contribution is to synthesize the quaternary ammonium salts by Menschutkin reaction, via chloromethylation/quaternization sequences, from Algerian petroleum products namely: reformate, light naphtha and kerosene and characterize.Keywords: quaternary ammonium salts, reformate, light naphtha, kerosene
Procedia PDF Downloads 3362067 Split-Flow Method to Reduce Duty Required in Amine Gas Sweetening Units
Authors: Abdallah Sofiane Berrouk, Dara Satyadileep
Abstract:
This paper investigates the feasibility of retrofitting a middle-east based commercial amine sweetening unit with a split-flow scheme which involves withdrawing a portion of partially stripped semi-lean solvent from the stripping column and re-injecting it in the absorption column to reduce the overall energy consumption of the unit. This method is comprehensively explored by performing parametric analysis of the split fraction of the semi-lean solvent using a kinetics based process simulator ProMax V 3.2. Re-boiler duty, condenser duty, solvent cooling and pumping loads are analysed as functions of a split fraction of the semi-lean solvent from the stripper. It is shown that the proposed method significantly reduces the overall energy consumption of the unit resulting in an annual savings of 325,000 USD. The thorough economic analysis is performed using Aspen Economic Evaluation V 8.4 to reveal that the retrofit scheme pays back the capital cost in less than eight years and is highly recommended for any commercial plant having suitable provisions for solvent inlet/withdrawal on the columns.Keywords: split flow, Amine, gas processing, optimization
Procedia PDF Downloads 3302066 A Microwave Heating Model for Endothermic Reaction in the Cement Industry
Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira
Abstract:
Microwave technology has been gaining importance in contributing to decarbonization processes in high energy demand industries. Despite the several numerical models presented in the literature, a proper Verification and Validation exercise is still lacking. This is important and required to evaluate the physical process model accuracy and adequacy. Another issue addresses impedance matching, which is an important mechanism used in microwave experiments to increase electromagnetic efficiency. Such mechanism is not available in current computational tools, thus requiring an external numerical procedure. A numerical model was implemented to study the continuous processing of limestone with microwave heating. This process requires the material to be heated until a certain temperature that will prompt a highly endothermic reaction. Both a 2D and 3D model were built in COMSOL Multiphysics to solve the two-way coupling between Maxwell and Energy equations, along with the coupling between both heat transfer phenomena and limestone endothermic reaction. The 2D model was used to study and evaluate the required numerical procedure, being also a benchmark test, allowing other authors to implement impedance matching procedures. To achieve this goal, a controller built in MATLAB was used to continuously matching the cavity impedance and predicting the required energy for the system, thus successfully avoiding energy inefficiencies. The 3D model reproduces realistic results and therefore supports the main conclusions of this work. Limestone was modeled as a continuous flow under the transport of concentrated species, whose material and kinetics properties were taken from literature. Verification and Validation of the coupled model was taken separately from the chemical kinetic model. The chemical kinetic model was found to correctly describe the chosen kinetic equation by comparing numerical results with experimental data. A solution verification was made for the electromagnetic interface, where second order and fourth order accurate schemes were found for linear and quadratic elements, respectively, with numerical uncertainty lower than 0.03%. Regarding the coupled model, it was demonstrated that the numerical error would diverge for the heat transfer interface with the mapped mesh. Results showed numerical stability for the triangular mesh, and the numerical uncertainty was less than 0.1%. This study evaluated limestone velocity, heat transfer, and load influence on thermal decomposition and overall process efficiency. The velocity and heat transfer coefficient were studied with the 2D model, while different loads of material were studied with the 3D model. Both models demonstrated to be highly unstable when solving non-linear temperature distributions. High velocity flows exhibited propensity to thermal runways, and the thermal efficiency showed the tendency to stabilize for the higher velocities and higher filling ratio. Microwave efficiency denoted an optimal velocity for each heat transfer coefficient, pointing out that electromagnetic efficiency is a consequence of energy distribution uniformity. The 3D results indicated the inefficient development of the electric field for low filling ratios. Thermal efficiencies higher than 90% were found for the higher loads and microwave efficiencies up to 75% were accomplished. The 80% fill ratio was demonstrated to be the optimal load with an associated global efficiency of 70%.Keywords: multiphysics modeling, microwave heating, verification and validation, endothermic reactions modeling, impedance matching, limestone continuous processing
Procedia PDF Downloads 1402065 A Brain Controlled Robotic Gait Trainer for Neurorehabilitation
Authors: Qazi Umer Jamil, Abubakr Siddique, Mubeen Ur Rehman, Nida Aziz, Mohsin I. Tiwana
Abstract:
This paper discusses a brain controlled robotic gait trainer for neurorehabilitation of Spinal Cord Injury (SCI) patients. Patients suffering from Spinal Cord Injuries (SCI) become unable to execute motion control of their lower proximities due to degeneration of spinal cord neurons. The presented approach can help SCI patients in neuro-rehabilitation training by directly translating patient motor imagery into walkers motion commands and thus bypassing spinal cord neurons completely. A non-invasive EEG based brain-computer interface is used for capturing patient neural activity. For signal processing and classification, an open source software (OpenVibe) is used. Classifiers categorize the patient motor imagery (MI) into a specific set of commands that are further translated into walker motion commands. The robotic walker also employs fall detection for ensuring safety of patient during gait training and can act as a support for SCI patients. The gait trainer is tested with subjects, and satisfactory results were achieved.Keywords: brain computer interface (BCI), gait trainer, spinal cord injury (SCI), neurorehabilitation
Procedia PDF Downloads 1612064 Food Security Indicators in Deltaic and Coastal Research: A Scoping Review
Authors: Sylvia Szabo, Thilini Navaratne, Indrajit Pal, Seree Park
Abstract:
Deltaic and coastal regions are often strategically important both from local and regional perspectives. While deltas are known to be bread baskets of the world, delta inhabitants often face the risk of food and nutritional insecurity. These risks are highly exacerbated by the impacts of climate and environmental change. While numerous regional studies examined the prevalence and the determinants of food security in specific delta and coastal regions, there is still a lack of a systematic analysis of the most widely used scientific food security indicators. In order to fill this gap, a systematic review was carried out using Covidence, a Cochrane-adopted systematic review processing software. Papers included in the review were selected from the SCOPUS, Thomson Reuters Web of Science, Science Direct, ProQuest, and Google Scholar databases. Both scientific papers and grey literature (e.g., reports by international organizations) were considered. The results were analyzed by food security components (access, availability, quality, and strategy) and by world regions. Suggestions for further food security, nutrition, and health research, as well as policy-related implications, are also discussed.Keywords: delta regions, coastal, food security, indicators, systematic review
Procedia PDF Downloads 2402063 Improving Waste Recycling and Resource Productivity by Integrating Smart Resource Tracking System
Authors: Atiq Zaman
Abstract:
The high contamination rate in the recycling waste stream is one of the major problems in Australia. In addition, a lack of reliable waste data makes it even more difficult for designing and implementing an effective waste management plan. This article conceptualizes the opportunity to improve resource productivity by integrating smart resource tracking system (SRTS) into the Australian household waste management system. The application of the smart resource tracking system will be implemented through the following ways: (i) mobile application-based resource tracking system used to measure the household’s material flow; (ii) RFID, smart image and weighing system used to track waste generation, recycling and contamination; (iii) informing and motivating manufacturer and retailers to improve their problematic products’ packaging; and (iv) ensure quality and reliable data through open-sourced cloud data for public use. The smart mobile application, imaging, radio-frequency identification (RFID) and weighing technologies are not new, but the very straightforward idea of using these technologies in the household resource consumption, waste bins and collection trucks will open up a new era of accurately measuring and effectively managing our waste. The idea will bring the most urgently needed reliable, data and clarity on household consumption, recycling behaviour and waste management practices in the context of available local infrastructure and policies. Therefore, the findings of this study would be very important for decision makers to improve resource productivity in the waste industry by using smart resource tracking system.Keywords: smart devices, mobile application, smart sensors, resource tracking, waste management, resource productivity
Procedia PDF Downloads 1442062 Carbon-Doped TiO2 Nanofibers Prepared by Electrospinning
Authors: ChoLiang Chung, YuMin Chen
Abstract:
C-doped TiO2 nanofibers were prepared by electrospinning successfully. Different amounts of carbon were added into the nanofibers by using chitosan, aiming to shift the wave length that is required to excite the photocatalyst from ultraviolet light to visible light. Different amounts of carbon and different atmosphere fibers were calcined at 500oC, and the optical characteristic of C-doped TiO2 nanofibers had been changed. characterizes of nanofibers were identified by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), UV-vis, Atomic Force Microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). The XRD is used to identify the phase composition of nanofibers. The morphology of nanofibers were explored by FE-SEM and AFM. Optical characteristics of absorption were measured by UV-Vis. Three dimension surface images of C-doped TiO2 nanofibers revealed different effects of processing. The results of XRD showed that the phase of C-doped TiO2 nanofibers transformed to rutile phase and anatase phase successfully. The results of AFM showed that the surface morphology of nanofibers became smooth after high temperature treatment. Images from FE-SEM revealed the average size of nanofibers. UV-vis results showed that the band-gap of TiO2 were reduced. Finally, we found out C-doped TiO2 nanofibers can change countenance of nanofiber and make it smoother.Keywords: carbon, TiO2, chitosan, electrospinning
Procedia PDF Downloads 2572061 Combined Proteomic and Metabolomic Analysis Approaches to Investigate the Modification in the Proteome and Metabolome of in vitro Models Treated with Gold Nanoparticles (AuNPs)
Authors: H. Chassaigne, S. Gioria, J. Lobo Vicente, D. Carpi, P. Barboro, G. Tomasi, A. Kinsner-Ovaskainen, F. Rossi
Abstract:
Emerging approaches in the area of exposure to nanomaterials and assessment of human health effects combine the use of in vitro systems and analytical techniques to study the perturbation of the proteome and/or the metabolome. We investigated the modification in the cytoplasmic compartment of the Balb/3T3 cell line exposed to gold nanoparticles. On one hand, the proteomic approach is quite standardized even if it requires precautions when dealing with in vitro systems. On the other hand, metabolomic analysis is challenging due to the chemical diversity of cellular metabolites that complicate data elaboration and interpretation. Differentially expressed proteins were found to cover a range of functions including stress response, cell metabolism, cell growth and cytoskeleton organization. In addition, de-regulated metabolites were annotated using the HMDB database. The "omics" fields hold huge promises in the interaction of nanoparticles with biological systems. The combination of proteomics and metabolomics data is possible however challenging.Keywords: data processing, gold nanoparticles, in vitro systems, metabolomics, proteomics
Procedia PDF Downloads 5032060 Cultural Heritage, Manga, and Film: Japanese Tourism at Petit Trianon, Versailles
Authors: Denise C. I. Maior-Barron
Abstract:
This conference presentation proposes to discuss the Japanese tourist perception of Marie Antoinette, at the heritage site which represents the home par excellence of the last Queen of France: Petit Trianon, Versailles. The underpinning analysis has a two-fold aim of firstly identifying the elements that contributed at the said perception and secondly of placing this in the wider context of tabi (travel) culture. The contribution of the presentation lies in its relevance to the analysis of postmodern trends of Japanese travel culture in relation to the consumption of European cultural heritage, through an insight into Japanese contemporary perception of heritage sites and their associated historical figures subject to controversy. Based upon the author’s doctoral studies field research at Petit Trianon - survey led in situ between 2010-2012, applied with the questionnaire method on a total of 307 respondents out of which 53 Japanese nationals - the media sources that were revealed to have had a direct influence on these nationals’ perception of Marie Antoinette, were Riyoko Ikeda’s shōjo manga La Rose de Versailles (1972) and Sofia Coppola’s film Marie-Antoinette (2006). The interpretation of the survey results through an assessment of visitor discourse determined the research methodology to be qualitative as opposed to quantitative, thus what confirmed the empirical hypothesis of the survey was a pattern of perception instead of percentages. Consequently, the interpretation focused on the answers to the questions relating to the image of Marie Antoinette in relation to historical knowledge, cultural background and last but not least media influences.Keywords: cultural heritage, manga, film, tabi
Procedia PDF Downloads 4372059 Revitalization of Industrial Brownfields in Historical Districts
Authors: Adel Menchawy, Noha Labib
Abstract:
Many cities have quarters that confer on them sense of identity and place through its cultural history. They are often vital part of the cities charm and appeal, their functional and visual qualities are important to the city’s image and identity. Brownfield sites present an important part of our built landscape. They provide tangible and intangible links to our past and have great potential to play significant roles in the future of our cities, towns and rural environments. Brownfield sites are places that were previously industrial factories or areas that might have had waste kept at that location or been exposed to many types of hazards. Thus its redevelopment revitalizes and strengthens towns and communities as it helps in economic growth, builds community pride and protects public health and the environment Three case studies are discussed in this paper; the first one is the city of Sterling which was developed and revitalized entirely and became a city with identity after it was derelict, the Second is the city of Castlefield with was a place no one was eager to visit now it became a touristic area. And finally the city of Cleveland which adopted a strategy that transferred it from being a polluted, derelict place into a mixed use development city Brownfield revitalization offers a great opportunity to transfer the city from being derelict, useless and contaminated into a place where tourists would love to come. Also it will increase the economy of the place, increase the social level, it can improve energy efficiency, reduce natural consumption, clean air, water and land and take advantage of existing buildings and sites and transfers them into an adaptive reuse after being remediatedKeywords: Brownfield Revitalization, Sustainable Brownfield, Historical conservation, Adaptive reuse
Procedia PDF Downloads 2672058 Photo Catalytic Treatment of Wastewater from Processing Poultry by-Products
Authors: J. Franco Macías, E. Montes Alba, A. López Vásquez
Abstract:
The growing development in the poultry industry has generated a strong and adverse impact on quality and availability of water resources. Inside this industry, is finding out the treatment of by-products such as feathers, viscera and blood demanding highly water consumption, generating contaminant discharges as well. As one of current of treatment of by-products is the effluent of cooking condensate steam that has contaminant organic load; therefore, it is necessary to implement removal treatments before discharging it toward water sources. The photo catalysis appears as a promising alternative of treatment due to the different advantages it has, among others, includes low cost, easily operation, high efficiency and elimination of a wide variety of contaminants in a watery environment. This study has evaluated a heterogeneous photo catalytic treatment for removal contaminant organic load. This process was developed in oxidation and reduction conditions. It was analyzed the effect of factors such as pH, catalyst and sacrifice agent concentration. Finally, good conditions to removal contaminant organic load were achieved to determine percentage of contaminant organic load by means of response surface methodology.Keywords: poultry industry, advanced oxidation process, photocatalysis, photodegradation, TiO2
Procedia PDF Downloads 4042057 Planning for Brownfield Regeneration in Malaysia: An Integrated Approach in Creating Sustainable Ex-Landfill Redevelopment
Authors: Mazifah Simis, Azahan Awang, Kadir Arifin
Abstract:
The brownfield regeneration is being implemented in developped countries. However, as a group 1 developing country in the South East Asia, the rapid development and increasing number of urban population in Malaysia have urged the needs to incorporate the brownfield regeneration into its physical planning development. The increasing number of urban ex-landfills is seen as a new resource that could overcome the issues of inadequate urban green space provisions. With regards to the new development approach in urban planning, this perception study aims to identify the sustainable planning approach based on what the stakeholders have in mind. Respondents consist of 375 local communities within four urban ex-landfill areas and 61 landscape architect and town planner officers in the Malaysian Local Authorities. Three main objectives are set to be achieved, which are (i) to identify ex-landfill issues that need to be overcome prior to the ex-landfill redevelopment (ii) to identify the most suitable types of ex-landfill redevelopment, and (iii) to identify the priority function for ex-landfill redevelopment as the public parks. From the data gathered through the survey method, the order of priorities based on stakeholders' perception was produced. The results show different perception among the stakeholders, but they agreed to the development of the public park as the main development. Hence, this study attempts to produce an integrated approach as a model for sustainable ex-landfill redevelopment that could be accepted by the stakeholders as a beneficial future development that could change the image of 296 ex-landfills in Malaysia into the urban public parks by the year 2020.Keywords: brownfield regeneration, ex-landfill redevelopment, integrated approach, stakeholders' perception
Procedia PDF Downloads 3522056 Insulation, Sustainable Construction, and Architectural Design to Reduce Energy Consumption in Sustainable Buildings
Authors: Gholamreza Namavar, Ali Bayati
Abstract:
Nowadays according to increasing the population all around the world, consuming of fossil fuels increased dramatically. Many believe that most of the atmospheric pollution comes by using fossil fuels. The process of natural sources entering cities show one of the large challenges in consumption sources management. Nowadays, everyone considered about the consumption of fossil fuels and also reduction of consumption civil energy in megacities that play a key role in solving serious problems such as air pollution, producing greenhouse gasses, global warming and damage ozone layer. In construction industry we should use the materials with the lowest need to energy for making and carrying them, and also the materials which need the lowest energy and expenses to recycling. In this way, the kind of usage material, the way of processing, regional materials and the adaption with environment is critical. Otherwise, the isolation should be use and mention in long term. Accordingly, in this article we investigates the new ways in order to reduce environmental pollution and save more energy by using materials that are not harmful to the environment, fully insulated materials in buildings, sustainable and diversified buildings, suitable urban design and using solar energy more efficiently in order to reduce energy consumption.Keywords: architectural design, insulation, sustainable construction, reducing energy consumption
Procedia PDF Downloads 2522055 The Neurofunctional Dissociation between Animal and Tool Concepts: A Network-Based Model
Authors: Skiker Kaoutar, Mounir Maouene
Abstract:
Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from McRae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.Keywords: animals, tools, network, semantics, small-worls, resilience to damage
Procedia PDF Downloads 5432054 Reconstruction Spectral Reflectance Cube Based on Artificial Neural Network for Multispectral Imaging System
Authors: Iwan Cony Setiadi, Aulia M. T. Nasution
Abstract:
The multispectral imaging (MSI) technique has been used for skin analysis, especially for distant mapping of in-vivo skin chromophores by analyzing spectral data at each reflected image pixel. For ergonomic purpose, our multispectral imaging system is decomposed in two parts: a light source compartment based on LED with 11 different wavelenghts and a monochromatic 8-Bit CCD camera with C-Mount Objective Lens. The software based on GUI MATLAB to control the system was also developed. Our system provides 11 monoband images and is coupled with a software reconstructing hyperspectral cubes from these multispectral images. In this paper, we proposed a new method to build a hyperspectral reflectance cube based on artificial neural network algorithm. After preliminary corrections, a neural network is trained using the 32 natural color from X-Rite Color Checker Passport. The learning procedure involves acquisition, by a spectrophotometer. This neural network is then used to retrieve a megapixel multispectral cube between 380 and 880 nm with a 5 nm resolution from a low-spectral-resolution multispectral acquisition. As hyperspectral cubes contain spectra for each pixel; comparison should be done between the theoretical values from the spectrophotometer and the reconstructed spectrum. To evaluate the performance of reconstruction, we used the Goodness of Fit Coefficient (GFC) and Root Mean Squared Error (RMSE). To validate reconstruction, the set of 8 colour patches reconstructed by our MSI system and the one recorded by the spectrophotometer were compared. The average GFC was 0.9990 (standard deviation = 0.0010) and the average RMSE is 0.2167 (standard deviation = 0.064).Keywords: multispectral imaging, reflectance cube, spectral reconstruction, artificial neural network
Procedia PDF Downloads 3222053 Field Evaluation of Fusarium Head Blight in Durum Wheat Caused by Fusarium culmorum in Algeria
Authors: Salah Hadjout, Mohamed Zouidi
Abstract:
In Algeria, several works carried out in recent years have shown the importance of fusarium head blight in durum wheat. Indeed, this disease is caused by a complex of Fusarium genus pathogens. The research carried out reports that F. culmorum is the main species infecting cereals. These informations motivated our interest in the field evaluation of the behavior of some durum wheat genotypes (parental varieties and lines) with regard to fusarium head blight, mainly caused by four F. culmorum isolates. Our research work focused on following the evolution of symptom development throughout the grain filling, after artificial inoculation of ears by Fusarium isolates in order to establish a first image on the differences in genotype behavior to fusarium haed blight. Field disease assessment criteria are: disease assessment using a grading scale, thousand grain weight measurement and AUDPC. The results obtained revealed that the varieties and lines resulting from crosses had a quite different level of sensitivity to F. culmorum species and no genotype showed complete resistance in our culture conditions. Among the material tested, some lines showed higher resistance than their parents. The results also show a slight behavioral variability also linked to the aggressiveness of the Fusarium species studied in this work. Our results open very important research perspectives on fusarium head blight, in particular the search for toxins produced by Fusarium species.Keywords: fusarium head blight, durum wheat, Fusarium culmorum, field disease assessment criteria, Algeria
Procedia PDF Downloads 1002052 Expanded Polyurethane Foams and Waterborne-Polyurethanes from Vegetable Oils
Authors: A.Cifarelli, L. Boggioni, F. Bertini, L. Magon, M. Pitalieri, S. Losio
Abstract:
Nowadays, the growing environmental awareness and the dwindling of fossil resources stimulate the polyurethane (PU) industry towards renewable polymers with low carbon footprint to replace the feed stocks from petroleum sources. The main challenge in this field consists in replacing high-performance products from fossil-fuel with novel synthetic polymers derived from 'green monomers'. The bio-polyols from plant oils have attracted significant industrial interest and major attention in scientific research due to their availability and biodegradability. Triglycerides rich in unsaturated fatty acids, such as soybean oil (SBO) and linseed oil (ELO), are particularly interesting because their structures and functionalities are tunable by chemical modification in order to obtain polymeric materials with expected final properties. Unfortunately, their use is still limited for processing or performance problems because a high functionality, as well as OH number of the polyols will result in an increase in cross-linking densities of the resulting PUs. The main aim of this study is to evaluate soy and linseed-based polyols as precursors to prepare prepolymers for the production of polyurethane foams (PUFs) or waterborne-polyurethanes (WPU) used as coatings. An effective reaction route is employed for its simplicity and economic impact. Indeed, bio-polyols were synthesized by a two-step method: epoxidation of the double bonds in vegetable oils and solvent-free ring-opening reaction of the oxirane with organic acids. No organic solvents have been used. Acids with different moieties (aliphatic or aromatics) and different length of hydrocarbon backbones can be used to customize polyols with different functionalities. The ring-opening reaction requires a fine tuning of the experimental conditions (time, temperature, molar ratio of carboxylic acid and epoxy group) to control the acidity value of end-product as well as the amount of residual starting materials. Besides, a Lewis base catalyst is used to favor the ring opening reaction of internal epoxy groups of the epoxidized oil and minimize the formation of cross-linked structures in order to achieve less viscous and more processable polyols with narrower polydispersity indices (molecular weight lower than 2000 g/mol⁻¹). The functionality of optimized polyols is tuned from 2 to 4 per molecule. The obtained polyols are characterized by means of GPC, NMR (¹H, ¹³C) and FT-IR spectroscopy to evaluate molecular masses, molecular mass distributions, microstructures and linkage pathways. Several polyurethane foams have been prepared by prepolymer method blending conventional synthetic polyols with new bio-polyols from soybean and linseed oils without using organic solvents. The compatibility of such bio-polyols with commercial polyols and diisocyanates is demonstrated. The influence of the bio-polyols on the foam morphology (cellular structure, interconnectivity), density, mechanical and thermal properties has been studied. Moreover, bio-based WPUs have been synthesized by well-established processing technology. In this synthesis, a portion of commercial polyols is substituted by the new bio-polyols and the properties of the coatings on leather substrates have been evaluated to determine coating hardness, abrasion resistance, impact resistance, gloss, chemical resistance, flammability, durability, and adhesive strength.Keywords: bio-polyols, polyurethane foams, solvent free synthesis, waterborne-polyurethanes
Procedia PDF Downloads 1302051 Application of Rapid Prototyping to Create Additive Prototype Using Computer System
Authors: Meftah O. Bashir, Fatma A. Karkory
Abstract:
Rapid prototyping is a new group of manufacturing processes, which allows fabrication of physical of any complexity using a layer by layer deposition technique directly from a computer system. The rapid prototyping process greatly reduces the time and cost necessary to bring a new product to market. The prototypes made by these systems are used in a range of industrial application including design evaluation, verification, testing, and as patterns for casting processes. These processes employ a variety of materials and mechanisms to build up the layers to build the part. The present work was to build a FDM prototyping machine that could control the X-Y motion and material deposition, to generate two-dimensional and three-dimensional complex shapes. This study focused on the deposition of wax material. This work was to find out the properties of the wax materials used in this work in order to enable better control of the FDM process. This study will look at the integration of a computer controlled electro-mechanical system with the traditional FDM additive prototyping process. The characteristics of the wax were also analysed in order to optimize the model production process. These included wax phase change temperature, wax viscosity and wax droplet shape during processing.Keywords: rapid prototyping, wax, manufacturing processes, shape
Procedia PDF Downloads 4642050 Challenges in the Characterization of Black Mass in the Recovery of Graphite from Spent Lithium Ion Batteries
Authors: Anna Vanderbruggen, Kai Bachmann, Martin Rudolph, Rodrigo Serna
Abstract:
Recycling of lithium-ion batteries has attracted a lot of attention in recent years and focuses primarily on valuable metals such as cobalt, nickel, and lithium. Despite the growth in graphite consumption and the fact that it is classified as a critical raw material in the European Union, USA, and Australia, there is little work focusing on graphite recycling. Thus, graphite is usually considered waste in recycling treatments, where graphite particles are concentrated in the “black mass”, a fine fraction below 1mm, which also contains the foils and the active cathode particles such as LiCoO2 or LiNiMnCoO2. To characterize the material, various analytical methods are applied, including X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Atomic Absorption Spectrometry (AAS), and SEM-based automated mineralogy. The latter consists of the combination of a scanning electron microscopy (SEM) image analysis and energy-dispersive X-ray spectroscopy (EDS). It is a powerful and well-known method for primary material characterization; however, it has not yet been applied to secondary material such as black mass, which is a challenging material to analyze due to fine alloy particles and to the lack of an existing dedicated database. The aim of this research is to characterize the black mass depending on the metals recycling process in order to understand the liberation mechanisms of the active particles from the foils and their effect on the graphite particle surfaces and to understand their impact on the subsequent graphite flotation. Three industrial processes were taken into account: purely mechanical, pyrolysis-mechanical, and mechanical-hydrometallurgy. In summary, this article explores various and common challenges for graphite and secondary material characterization.Keywords: automated mineralogy, characterization, graphite, lithium ion battery, recycling
Procedia PDF Downloads 2472049 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectivelyKeywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm
Procedia PDF Downloads 4802048 Time Series Simulation by Conditional Generative Adversarial Net
Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto
Abstract:
Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.Keywords: conditional generative adversarial net, market and credit risk management, neural network, time series
Procedia PDF Downloads 1432047 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes
Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali
Abstract:
Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture
Procedia PDF Downloads 542046 Architectural Design, Low Energy, and Isolation Materials to Have Sustainable Buildings in Iran
Authors: Mohammadreza Azarnoush, Ali Bayati, Jamileh Azarnoush
Abstract:
Nowadays according to increasing the population all around the world, consuming of fossil fuels increased dramatically. Many believe that most of the atmospheric pollution comes by using fossil fuels. The process of natural sources entering cities shows one of the large challenges in consumption sources management. Nowadays, everyone considers the consumption of fossil fuels and also reduction of consumption civil energy in megacities as playing a key role in solving serious problems such as air pollution, producing greenhouse gasses, global warming, and damage ozone layer. In the construction industry, we should use the materials with the lowest need to energy for making and carrying them, and also the materials which need the lowest energy and expenses to recycling. In this way, the kind of usage material, the way of processing, regional materials, and the adoption to the environment is critical. Otherwise, the isolation should be use and mention in the long term. Accordingly, in this article, we investigate the new ways in order to reduce environmental pollution and save more energy by using materials that are not harmful to the environment, fully insulated materials in buildings, sustainable and diversified buildings, suitable urban design and using solar energy more efficiently in order to reduce energy consumption.Keywords: building design, construction masonry, insulation, sustainable construction
Procedia PDF Downloads 4142045 Use of Computer and Machine Learning in Facial Recognition
Authors: Neha Singh, Ananya Arora
Abstract:
Facial expression measurement plays a crucial role in the identification of emotion. Facial expression plays a key role in psychophysiology, neural bases, and emotional disorder, to name a few. The Facial Action Coding System (FACS) has proven to be the most efficient and widely used of the various systems used to describe facial expressions. Coders can manually code facial expressions with FACS and, by viewing video-recorded facial behaviour at a specified frame rate and slow motion, can decompose into action units (AUs). Action units are the most minor visually discriminable facial movements. FACS explicitly differentiates between facial actions and inferences about what the actions mean. Action units are the fundamental unit of FACS methodology. It is regarded as the standard measure for facial behaviour and finds its application in various fields of study beyond emotion science. These include facial neuromuscular disorders, neuroscience, computer vision, computer graphics and animation, and face encoding for digital processing. This paper discusses the conceptual basis for FACS, a numerical listing of discrete facial movements identified by the system, the system's psychometric evaluation, and the software's recommended training requirements.Keywords: facial action, action units, coding, machine learning
Procedia PDF Downloads 1062044 Thermally Conductive Polymer Nanocomposites Based on Graphene-Related Materials
Authors: Alberto Fina, Samuele Colonna, Maria del Mar Bernal, Orietta Monticelli, Mauro Tortello, Renato Gonnelli, Julio Gomez, Chiara Novara, Guido Saracco
Abstract:
Thermally conductive polymer nanocomposites are of high interest for several applications including low-temperature heat recovery, heat exchangers in a corrosive environment and heat management in electronics and flexible electronics. In this paper, the preparation of thermally conductive nanocomposites exploiting graphene-related materials is addressed, along with their thermal characterization. In particular, correlations between 1- chemical and physical features of the nanoflakes and 2- processing conditions with the heat conduction properties of nanocomposites is studied. Polymers are heat insulators; therefore, the inclusion of conductive particles is the typical solution to obtain a sufficient thermal conductivity. In addition to traditional microparticles such as graphite and ceramics, several nanoparticles have been proposed, including carbon nanotubes and graphene, for the use in polymer nanocomposites. Indeed, thermal conductivities for both carbon nanotubes and graphenes were reported in the wide range of about 1500 to 6000 W/mK, despite such property may decrease dramatically as a function of the size, number of layers, the density of topological defects, re-hybridization defects as well as on the presence of impurities. Different synthetic techniques have been developed, including mechanical cleavage of graphite, epitaxial growth on SiC, chemical vapor deposition, and liquid phase exfoliation. However, the industrial scale-up of graphene, defined as an individual, single-atom-thick sheet of hexagonally arranged sp2-bonded carbons still remains very challenging. For large scale bulk applications in polymer nanocomposites, some graphene-related materials such as multilayer graphenes (MLG), reduced graphene oxide (rGO) or graphite nanoplatelets (GNP) are currently the most interesting graphene-based materials. In this paper, different types of graphene-related materials were characterized for their chemical/physical as well as for thermal properties of individual flakes. Two selected rGOs were annealed at 1700°C in vacuum for 1 h to reduce defectiveness of the carbon structure. Thermal conductivity increase of individual GNP with annealing was assessed via scanning thermal microscopy. Graphene nano papers were prepared from both conventional RGO and annealed RGO flakes. Characterization of the nanopapers evidenced a five-fold increase in the thermal diffusivity on the nano paper plane for annealed nanoflakes, compared to pristine ones, demonstrating the importance of structural defectiveness reduction to maximize the heat dissipation performance. Both pristine and annealed RGO were used to prepare polymer nanocomposites, by melt reactive extrusion. Thermal conductivity showed two- to three-fold increase in the thermal conductivity of the nanocomposite was observed for high temperature treated RGO compared to untreated RGO, evidencing the importance of using low defectivity nanoflakes. Furthermore, the study of different processing paremeters (time, temperature, shear rate) during the preparation of poly (butylene terephthalate) nanocomposites evidenced a clear correlation with the dispersion and fragmentation of the GNP nanoflakes; which in turn affected the thermal conductivity performance. Thermal conductivity of about 1.7 W/mK, i.e. one order of magnitude higher than for pristine polymer, was obtained with 10%wt of annealed GNPs, which is in line with state of the art nanocomposites prepared by more complex and less upscalable in situ polymerization processes.Keywords: graphene, graphene-related materials, scanning thermal microscopy, thermally conductive polymer nanocomposites
Procedia PDF Downloads 268