Search results for: artificial neuron network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6317

Search results for: artificial neuron network

2447 A New Verification Based Congestion Control Scheme in Mobile Networks

Authors: P. K. Guha Thakurta, Shouvik Roy, Bhawana Raj

Abstract:

A congestion control scheme in mobile networks is proposed in this paper through a verification based model. The model proposed in this work is represented through performance metric like buffer Occupancy, latency and packet loss rate. Based on pre-defined values, each of the metric is introduced in terms of three different states. A Markov chain based model for the proposed work is introduced to monitor the occurrence of the corresponding state transitions. Thus, the estimation of the network status is obtained in terms of performance metric. In addition, the improved performance of our proposed model over existing works is shown with experimental results.

Keywords: congestion, mobile networks, buffer, delay, call drop, markov chain

Procedia PDF Downloads 441
2446 Little RAGNER: Toward Lightweight, Generative, Named Entity Recognition through Prompt Engineering, and Multi-Level Retrieval Augmented Generation

Authors: Sean W. T. Bayly, Daniel Glover, Don Horrell, Simon Horrocks, Barnes Callum, Stuart Gibson, Mac Misuira

Abstract:

We assess suitability of recent, ∼7B parameter, instruction-tuned Language Models for Generative Named Entity Recognition (GNER). Alongside Retrieval Augmented Generation (RAG), and supported by task-specific prompting, our proposed Multi-Level Information Retrieval method achieves notable improvements over finetuned entity-level and sentence-level methods. We conclude that language models directed toward this task are highly capable when distinguishing between positive classes (precision). However, smaller models seem to struggle to find all entities (recall). Poorly defined classes such as ”Miscellaneous” exhibit substantial declines in performance, likely due to the ambiguity it introduces to the prompt. This is partially resolved through a self-verification method using engineered prompts containing knowledge of the stricter class definitions, particularly in areas where their boundaries are in danger of overlapping, such as the conflation between the location ”Britain” and the nationality ”British”. Finally, we explore correlations between model performance on the GNER task with performance on relevant academic benchmarks.

Keywords: generative named entity recognition, information retrieval, lightweight artificial intelligence, prompt engineering, personal information identification, retrieval augmented generation, self verification

Procedia PDF Downloads 47
2445 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 97
2444 Skill-Based or Necessity-Driven Entrepreneurship in Animal Agriculture for Sustainable Job and Wealth Creations

Authors: I. S. R. Butswat, D. Zahraddeen

Abstract:

This study identified and described some skill-based and necessity-driven entrepreneurship in animal agriculture (AA). AA is an integral segment of the world food industry, and provides a good and rapid source of income. The contribution of AA to the Sub-Saharan economy is quite significant, and there are still large opportunities that remain untapped in the sector. However, it is imperative to understand, simplify and package the various components of AA in order to pave way for rapid wealth creation, poverty eradication and women empowerment programmes in sub-Saharan Africa and other developing countries. The entrepreneurial areas of AA highlighted were animal breeding, livestock fattening, dairy production, poultry farming, meat production (beef, mutton, chevon, etc.), rabbit farming, wool/leather production, animal traction, animal feed industry, commercial pasture management, fish farming, sport animals, micro livestock production, private ownership of abattoirs, slaughter slabs, animal parks and zoos, among others. This study concludes that reproductive biotechnology such as oestrous synchronization, super-/multiple ovulation, artificial insemination and embryo transfer can be employed as a tool for improvement of genetic make-up of low-yielding animals in terms of milk, meat, egg, wool, leather production and other economic traits that will necessitate sustainable job and wealth creations.

Keywords: animal, agriculture, entreprenurship, wealth

Procedia PDF Downloads 248
2443 Research of Applicable Ground Reinforcement Method in Double-Deck Tunnel Junction

Authors: SKhan Park, Seok Jin Lee, Jong Sun Kim, Jun Ho Lee, Bong Chan Kim

Abstract:

Because of the large economic losses caused by traffic congestion in metropolitan areas, various studies on the underground network design and construction techniques has been performed various studies in the developed countries. In Korea, it has performed a study to develop a versatile double-deck of deep tunnel model. This paper is an introduction to develop a ground reinforcement method to enable the safe tunnel construction in the weakened pillar section like as junction of tunnel. Applicable ground reinforcement method in the weakened section is proposed and it is expected to verify the method by the field application tests.

Keywords: double-deck tunnel, ground reinforcement, tunnel construction, weakened pillar section

Procedia PDF Downloads 409
2442 Between Reality and Fiction: Self-Representation as an Avatar and Its Effects on Self-Presence

Authors: Leonie Laskowitz

Abstract:

A self-confident appearance is a basic prerequisite for success in the world of work 4.0. Within a few seconds, people convey a first impression that usually lasts. Artificial intelligence is making it increasingly important how our virtual selves appear and communicate (nonverbally) in digital worlds such as the metaverse. In addition to the modified creation of an avatar, the field of photogrammetry is developing fast, creating exact likenesses of ourselves in virtual environments. Given the importance of self-representation in virtual space for future collaborations, it is important to investigate the impact of phenotype in virtual worlds and how an avatar type can profitably be used situationally. We analyzed the effect of self-similar versus desirable self-presentation as an avatar on one's self-awareness, considering various theoretical constructs in the area of self-awareness and stress stimuli. The avatars were arbitrarily created on the one hand and scanned on the other hand with the help of a lidar sensor, the state-of-the-art photogrammetry method. All subjects were exposed to the established Trier Social Stress Test. The results showed that especially insecure people prefer to create rather than be scanned when confronted with a stressful work situation. (1) If they are in a casual work environment and a relaxed situation, they prefer a 3D photorealistic avatar that reflects them in detail. (2) Confident people will give their avatar their true appearance in any situation, while insecure people would only do so for honesty and authenticity. (3) Thus, the choice of avatar type has considerable impact on self-confidence in different situations.

Keywords: avatar, virtual identity, self-presentation, metaverse, virtual reality, self-awareness

Procedia PDF Downloads 148
2441 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.

Keywords: control system, hydroponics, machine learning, reinforcement learning

Procedia PDF Downloads 185
2440 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise

Authors: Yasser F. Hassan

Abstract:

The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.

Keywords: rough sets, rough neural networks, cellular automata, image processing

Procedia PDF Downloads 439
2439 Defect Detection for Nanofibrous Images with Deep Learning-Based Approaches

Authors: Gaokai Liu

Abstract:

Automatic defect detection for nanomaterial images is widely required in industrial scenarios. Deep learning approaches are considered as the most effective solutions for the great majority of image-based tasks. In this paper, an edge guidance network for defect segmentation is proposed. First, the encoder path with multiple convolution and downsampling operations is applied to the acquisition of shared features. Then two decoder paths both are connected to the last convolution layer of the encoder and supervised by the edge and segmentation labels, respectively, to guide the whole training process. Meanwhile, the edge and encoder outputs from the same stage are concatenated to the segmentation corresponding part to further tune the segmentation result. Finally, the effectiveness of the proposed method is verified via the experiments on open nanofibrous datasets.

Keywords: deep learning, defect detection, image segmentation, nanomaterials

Procedia PDF Downloads 149
2438 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms

Authors: Sagri Sharma

Abstract:

Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.

Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine

Procedia PDF Downloads 429
2437 Swelling Behavior of Cross-Linked Poly (2-hydroxyethyl methacrylate)

Authors: Salah Hamri, Tewfik Bouchaour, Ulrich Maschke

Abstract:

The aim of this works is the study of swelling ratio of cross-linked polymer networks poly (2-hydroxyethyl methacrylate) (PHEMA). The system composed of erythrosine and Triethanolamine, in aqueous medium, is used as photo-initiator and 1,6-Hexanediol diacrylate as cross-linker. The analysis of UV-visible and infrared spectra, which were taken at different times during polymerization/cross linking, makes it possible to obtain useful information on the reaction mechanism. The swelling behavior was study by changing the nature of solvent, dye sensitizer (erythrosine, rose Bengal and eosin), and pH of the medium. The exploitation of experimental results using Fick diffusion model is also expected and shows a good correlation between theoretical and experimental results.

Keywords: cross-linker, photo-sensitizer, polymer network, swelling ratio

Procedia PDF Downloads 318
2436 Centralized Peak Consumption Smoothing Revisited for Habitat Energy Scheduling

Authors: M. Benbouzid, Q. Bresson, A. Duclos, K. Longo, Q. Morel

Abstract:

Currently, electricity suppliers must predict the consumption of their customers in order to deduce the power they need to produce. It is, then, important in a first step to optimize household consumption to obtain more constant curves by limiting peaks in energy consumption. Here centralized real time scheduling is proposed to manage the equipment's starting in parallel. The aim is not to exceed a certain limit while optimizing the power consumption across a habitat. The Raspberry Pi is used as a box; this scheduler interacts with the various sensors in 6LoWPAN. At the scale of a single dwelling, household consumption decreases, particularly at times corresponding to the peaks. However, it would be wiser to consider the use of a residential complex so that the result would be more significant. So, the ceiling would no longer be fixed. The scheduling would be done on two scales, firstly, per dwelling, and secondly, at the level of a residential complex.

Keywords: smart grid, energy box, scheduling, Gang Model, energy consumption, energy management system, wireless sensor network

Procedia PDF Downloads 313
2435 Designing a Refractive Index Gas Biosensor Exploiting Defects in Photonic Crystal Core-Shell Rods

Authors: Bilal Tebboub, AmelLabbani

Abstract:

This article introduces a compact sensor based on high-transmission, high-sensitivity two-dimensional photonic crystals. The photonic crystal consists of a square network of silicon rods in the air. The sensor is composed of two waveguide couplers and a microcavity designed for monitoring the percentage of hydrogen in the air and identifying gas types. Through the Finite-Difference Time-Domain (FDTD) method, we demonstrate that the sensor's resonance wavelength is contingent upon changes in the gas refractive index. We analyze transmission spectra, quality factors, and sensor sensitivity. The sensor exhibits a notable quality factor and a sensitivity value of 1374 nm/RIU. Notably, the sensor's compact structure occupies an area of 74.5 μm2, rendering it suitable for integrated optical circuits.

Keywords: 2-D photonic crystal, sensitivity, F.D.T.D method, label-free biosensing

Procedia PDF Downloads 92
2434 Prediction of Unsaturated Permeability Functions for Clayey Soil

Authors: F. Louati, H. Trabelsi, M. Jamei

Abstract:

Desiccation cracks following drainage-humidification cycles. With water loss, mainly due to evaporation, suction in the soil increases, producing volumetric shrinkage and tensile stress. When the tensile stress reaches tensile strength, the soil cracks. Desiccation cracks networks can directly control soil hydraulic properties. The aim of this study was for quantifying the hydraulic properties for examples the water retention curve, the saturated hydraulic conductivity, the unsaturated hydraulic conductivity function, the shrinkage dynamics in Tibar soil- clay soil in the Northern of Tunisia. Then a numerical simulation of unsaturated hydraulic properties for a crack network has been attempted. The finite elements code ‘CODE_BRIGHT’ can be used to follow the hydraulic distribution in cracked porous media.

Keywords: desiccation, cracks, permeability, unsaturated hydraulic flow, simulation

Procedia PDF Downloads 300
2433 Poly(propylene fumarate) Copolymers with Phosphonic Acid-based Monomers Designed as Bone Tissue Engineering Scaffolds

Authors: Görkem Cemali̇, Avram Aruh, Gamze Torun Köse, Erde Can ŞAfak

Abstract:

In order to heal bone disorders, the conventional methods which involve the use of autologous and allogenous bone grafts or permanent implants have certain disadvantages such as limited supply, disease transmission, or adverse immune response. A biodegradable material that acts as structural support to the damaged bone area and serves as a scaffold that enhances bone regeneration and guides bone formation is one desirable solution. Poly(propylene fumarate) (PPF) which is an unsaturated polyester that can be copolymerized with appropriate vinyl monomers to give biodegradable network structures, is a promising candidate polymer to prepare bone tissue engineering scaffolds. In this study, hydroxyl-terminated PPF was synthesized and thermally cured with vinyl phosphonic acid (VPA) and diethyl vinyl phosphonate (VPES) in the presence of radical initiator benzoyl peroxide (BP), with changing co-monomer weight ratios (10-40wt%). In addition, the synthesized PPF was cured with VPES comonomer at body temperature (37oC) in the presence of BP initiator, N, N-Dimethyl para-toluidine catalyst and varying amounts of Beta-tricalcium phosphate (0-20 wt% ß-TCP) as filler via radical polymerization to prepare composite materials that can be used in injectable forms. Thermomechanical properties, compressive properties, hydrophilicity and biodegradability of the PPF/VPA and PPF/VPES copolymers were determined and analyzed with respect to the copolymer composition. Biocompatibility of the resulting polymers and their composites was determined by the MTS assay and osteoblast activity was explored with von kossa, alkaline phosphatase and osteocalcin activity analysis and the effects of VPA and VPES comonomer composition on these properties were investigated. Thermally cured PPF/VPA and PPF/VPES copolymers with different compositions exhibited compressive modulus and strength values in the wide range of 10–836 MPa and 14–119 MPa, respectively. MTS assay studies showed that the majority of the tested compositions were biocompatible and the overall results indicated that PPF/VPA and PPF/VPES network polymers show significant potential for applications as bone tissue engineering scaffolds where varying PPF and co-monomer ratio provides adjustable and controllable properties of the end product. The body temperature cured PPF/VPES/ß-TCP composites exhibited significantly lower compressive modulus and strength values than the thermal cured PPF/VPES copolymers and were therefore found to be useful as scaffolds for cartilage tissue engineering applications.

Keywords: biodegradable, bone tissue, copolymer, poly(propylene fumarate), scaffold

Procedia PDF Downloads 166
2432 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video

Authors: Nidhal K. Azawi, John M. Gauch

Abstract:

Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.

Keywords: colonoscopy classification, feature extraction, image alignment, machine learning

Procedia PDF Downloads 253
2431 Proposing of an Adaptable Land Readjustment Model for Developing of the Informal Settlements in Kabul City

Authors: Habibi Said Mustafa, Hiroko Ono

Abstract:

Since 2006, Afghanistan is dealing with one of the most dramatic trend of urban movement in its history, cities and towns are expanding in size and number. Kabul is the capital of Afghanistan and as well as the fast-growing city in the Asia. The influx of the returnees from neighbor countries and other provinces of Afghanistan caused high rate of artificial growth which slums increased. As an unwanted consequence of this growth, today informal settlements have covered a vast portion of the city. Land Readjustment (LR) has proved to be an important tool for developing informal settlements and reorganizing urban areas but its implementation always varies from country to country and region to region within the countries. Consequently, to successfully develop the informal settlements in Kabul, we need to define an Afghan model of LR specifically for Afghanistan which needs to incorporate all those factors related to the socio-economic condition of the country. For this purpose, a part of the old city of Kabul has selected as a study area which is located near the Central Business District (CBD). After the further analysis and incorporating all needed factors, the result shows a positive potential for the implementation of an adaptable Land Readjustment model for Kabul city which is more sustainable and socio-economically friendly. It will enhance quality of life and provide better urban services for the residents. Moreover, it will set a vision and criteria by which sustainable developments shall proceed in other similar informal settlements of Kabul.

Keywords: adaptation, informal settlements, Kabul, land readjustment, preservation

Procedia PDF Downloads 203
2430 Experimental Study and Evaluation of Farm Environmental Monitoring System Based on the Internet of Things, Sudan

Authors: Farid Eltom A. E., Mustafa Abdul-Halim, Abdalla Markaz, Sami Atta, Mohamed Azhari, Ahmed Rashed

Abstract:

Smart environment sensors integrated with ‘Internet of Things’ (IoT) technology can provide a new concept in tracking, sensing, and monitoring objects in the environment. The aim of the study is to evaluate the farm environmental monitoring system based on (IoT) and to realize the automated management of agriculture and the implementation of precision production. Until now, irrigation monitoring operations in Sudan have been carried out using traditional methods, which is a very costly and unreliable mechanism. However, by utilizing soil moisture sensors, irrigation can be conducted only when needed without fear of plant water stress. The result showed that software application allows farmers to display current and historical data on soil moisture and nutrients in the form of line charts. Design measurements of the soil factors: moisture, electrical, humidity, conductivity, temperature, pH, phosphorus, and potassium; these factors, together with a timestamp, are sent to the data server using the Lora WAN interface. It is considered scientifically agreed upon in the modern era that artificial intelligence works to arrange the necessary procedures to take care of the terrain, predict the quality and quantity of production through deep analysis of the various operations in agricultural fields, and also support monitoring of weather conditions.

Keywords: smart environment, monitoring systems, IoT, LoRa Gateway, center pivot

Procedia PDF Downloads 48
2429 Transient Signal Generator For Fault Indicator Testing

Authors: Mohamed Shaban, Ali Alfallah

Abstract:

This paper describes an application for testing of a fault indicator but it could be used for other network protection testing. The application is created in the LabVIEW environment and consists of three parts. The first part of the application is determined for transient phenomenon generation and imitates voltage and current transient signal at ground fault originate. The second part allows to set sequences of trend for each current and voltage output signal, up to six trends for each phase. The last part of the application generates harmonic signal with continuously controllable amplitude of current or voltage output signal and phase shift of each signal can be changed there. Further any sub-harmonics and upper harmonics can be added to selected current output signal

Keywords: signal generator-fault indicator, harmonic signal generator, voltage output

Procedia PDF Downloads 495
2428 Highway Casualty Rate in Nigeria: Implication for Human Capital Development

Authors: Ali Maji

Abstract:

Highway development is an important factor for economic growth and development in both developed and developing countries. In Nigeria about two-third of transportation of goods and persons are done through highway network. It was this that made highway investment to enjoy position of relative high priority on the list of government expenditure programmes in Nigeria today. The paper noted that despite expansion of public investment in highway construction and maintenance of them, road traffic accident is increasing rate. This has acted as a drain of human capital which is a key to economic growth and development in Nigeria. In order to avoid this, the paper recommend introduction of Highway Safety Education (HSE) in Nigerian’s education system and investment in train transportation among other as a sure measure for curtailing highway accident.

Keywords: accident rate, high way development, human capital, national development

Procedia PDF Downloads 286
2427 Land Use/Land Cover Mapping Using Landsat 8 and Sentinel-2 in a Mediterranean Landscape

Authors: Moschos Vogiatzis, K. Perakis

Abstract:

Spatial-explicit and up-to-date land use/land cover information is fundamental for spatial planning, land management, sustainable development, and sound decision-making. In the last decade, many satellite-derived land cover products at different spatial, spectral, and temporal resolutions have been developed, such as the European Copernicus Land Cover product. However, more efficient and detailed information for land use/land cover is required at the regional or local scale. A typical Mediterranean basin with a complex landscape comprised of various forest types, crops, artificial surfaces, and wetlands was selected to test and develop our approach. In this study, we investigate the improvement of Copernicus Land Cover product (CLC2018) using Landsat 8 and Sentinel-2 pixel-based classification based on all available existing geospatial data (Forest Maps, LPIS, Natura2000 habitats, cadastral parcels, etc.). We examined and compared the performance of the Random Forest classifier for land use/land cover mapping. In total, 10 land use/land cover categories were recognized in Landsat 8 and 11 in Sentinel-2A. A comparison of the overall classification accuracies for 2018 shows that Landsat 8 classification accuracy was slightly higher than Sentinel-2A (82,99% vs. 80,30%). We concluded that the main land use/land cover types of CLC2018, even within a heterogeneous area, can be successfully mapped and updated according to CLC nomenclature. Future research should be oriented toward integrating spatiotemporal information from seasonal bands and spectral indexes in the classification process.

Keywords: classification, land use/land cover, mapping, random forest

Procedia PDF Downloads 126
2426 Degradation of the Cu-DOM Complex by Bacteria: A Way to Increase Phytoextraction of Copper in a Vineyard Soil

Authors: Justine Garraud, Hervé Capiaux, Cécile Le Guern, Pierre Gaudin, Clémentine Lapie, Samuel Chaffron, Erwan Delage, Thierry Lebeau

Abstract:

The repeated use of Bordeaux mixture (copper sulphate) and other chemical forms of copper (Cu) has led to its accumulation in wine-growing soils for more than a century, to the point of modifying the ecosystem of these soils. Phytoextraction of copper could progressively reduce the Cu load in these soils, and even to recycle copper (e.g. as a micronutrient in animal nutrition) by cultivating the extracting plants in the inter-row of the vineyards. Soil cleaning up usually requires several years because the chemical speciation of Cu in solution is mainly based on forms complexed with dissolved organic matter (DOM) that are not phytoavailable, unlike the "free" forms (Cu2+). Indeed, more than 98% of Cu in the solution is bound to DOM. The selection and inoculation of invineyardsoils in vineyard soils ofbacteria(bioaugmentation) able to degrade Cu-DOM complexes could increase the phytoavailable pool of Cu2+ in the soil solution (in addition to bacteria which first mobilize Cu in solution from the soil bearing phases) in order to increase phytoextraction performance. In this study, sevenCu-accumulating plants potentially usable in inter-row were tested for their Cu phytoextraction capacity in hydroponics (ray-grass, brown mustard, buckwheat, hemp, sunflower, oats, and chicory). Also, a bacterial consortium was tested: Pseudomonas sp. previously studied for its ability to mobilize Cu through the pyoverdine siderophore (complexing agent) and potentially to degrade Cu-DOM complexes, and a second bacterium (to be selected) able to promote the survival of Pseudomonas sp. following its inoculation in soil. Interaction network method was used based on the notions of co-occurrence and, therefore, of bacterial abundance found in the same soils. Bacteria from the EcoVitiSol project (Alsace, France) were targeted. The final step consisted of incoupling the bacterial consortium with the chosen plant in soil pots. The degradation of Cu-DOMcomplexes is measured on the basis of the absorption index at 254nm, which gives insight on the aromaticity of the DOM. The“free” Cu in solution (from the mobilization of Cu and/or the degradation of Cu-MOD complexes) is assessed by measuring pCu. Eventually, Cu accumulation in plants is measured by ICP-AES. The selection of the plant is currently being finalized. The interaction network method targeted the best positive interactions ofFlavobacterium sp. with Pseudomonassp. These bacteria are both PGPR (plant growth promoting rhizobacteria) with the ability to improve the plant growth and to mobilize Cu from the soil bearing phases (siderophores). Also, these bacteria are known to degrade phenolic groups, which are highly present in DOM. They could therefore contribute to the degradation of DOM-Cu. The results of the upcoming bacteria-plant coupling tests in pots will be also presented.

Keywords: complexes Cu-DOM, bioaugmentation, phytoavailability, phytoextraction

Procedia PDF Downloads 82
2425 Parallelization of Random Accessible Progressive Streaming of Compressed 3D Models over Web

Authors: Aayushi Somani, Siba P. Samal

Abstract:

Three-dimensional (3D) meshes are data structures, which store geometric information of an object or scene, generally in the form of vertices and edges. Current technology in laser scanning and other geometric data acquisition technologies acquire high resolution sampling which leads to high resolution meshes. While high resolution meshes give better quality rendering and hence is used often, the processing, as well as storage of 3D meshes, is currently resource-intensive. At the same time, web applications for data processing have become ubiquitous owing to their accessibility. For 3D meshes, the advancement of 3D web technologies, such as WebGL, WebVR, has enabled high fidelity rendering of huge meshes. However, there exists a gap in ability to stream huge meshes to a native client and browser application due to high network latency. Also, there is an inherent delay of loading WebGL pages due to large and complex models. The focus of our work is to identify the challenges faced when such meshes are streamed into and processed on hand-held devices, owing to its limited resources. One of the solutions that are conventionally used in the graphics community to alleviate resource limitations is mesh compression. Our approach deals with a two-step approach for random accessible progressive compression and its parallel implementation. The first step includes partition of the original mesh to multiple sub-meshes, and then we invoke data parallelism on these sub-meshes for its compression. Subsequent threaded decompression logic is implemented inside the Web Browser Engine with modification of WebGL implementation in Chromium open source engine. This concept can be used to completely revolutionize the way e-commerce and Virtual Reality technology works for consumer electronic devices. These objects can be compressed in the server and can be transmitted over the network. The progressive decompression can be performed on the client device and rendered. Multiple views currently used in e-commerce sites for viewing the same product from different angles can be replaced by a single progressive model for better UX and smoother user experience. Can also be used in WebVR for commonly and most widely used activities like virtual reality shopping, watching movies and playing games. Our experiments and comparison with existing techniques show encouraging results in terms of latency (compressed size is ~10-15% of the original mesh), processing time (20-22% increase over serial implementation) and quality of user experience in web browser.

Keywords: 3D compression, 3D mesh, 3D web, chromium, client-server architecture, e-commerce, level of details, parallelization, progressive compression, WebGL, WebVR

Procedia PDF Downloads 170
2424 Channels Splitting Strategy for Optical Local Area Networks of Passive Star Topology

Authors: Peristera Baziana

Abstract:

In this paper, we present a network configuration for a WDM LANs of passive star topology that assume that the set of data WDM channels is split into two separate sets of channels, with different access rights over them. Especially, a synchronous transmission WDMA access algorithm is adopted in order to increase the probability of successful transmission over the data channels and consequently to reduce the probability of data packets transmission cancellation in order to avoid the data channels collisions. Thus, a control pre-transmission access scheme is followed over a separate control channel. An analytical Markovian model is studied and the average throughput is mathematically derived. The performance is studied for several numbers of data channels and various values of control phase duration.

Keywords: access algorithm, channels division, collisions avoidance, wavelength division multiplexing

Procedia PDF Downloads 296
2423 Integration of UPQC Based on Fuzzy Controller for Power Quality Enhancement in Distributed Network

Authors: M. Habab, C. Benachaiba, B. Mazari, H. Madi, C. Benoudjafer

Abstract:

The use of Distributed Generation (DG) has been increasing in recent years to fill the gap between energy supply and demand. This paper presents the grid connected wind energy system with UPQC based on fuzzy controller to compensate for voltage and current disturbances. The proposed system can improve power quality at the point of installation on power distribution systems. Simulation results show the capability of the DG-UPQC intelligent system to compensate sags voltage and current harmonics at the Point of Common Coupling (PCC).

Keywords: shunt active filter, series active filter, UPQC, power quality, sags voltage, distributed generation, wind turbine

Procedia PDF Downloads 407
2422 Improvement of the Robust Proportional–Integral–Derivative (PID) Controller Parameters for Controlling the Frequency in the Intelligent Multi-Zone System at the Present of Wind Generation Using the Seeker Optimization Algorithm

Authors: Roya Ahmadi Ahangar, Hamid Madadyari

Abstract:

The seeker optimization algorithm (SOA) is increasingly gaining popularity among the researchers society due to its effectiveness in solving some real-world optimization problems. This paper provides the load-frequency control method based on the SOA for removing oscillations in the power system. A three-zone power system includes a thermal zone, a hydraulic zone and a wind zone equipped with robust proportional-integral-differential (PID) controllers. The result of simulation indicates that load-frequency changes in the wind zone for the multi-zone system are damped in a short period of time. Meanwhile, in the oscillation period, the oscillations amplitude is not significant. The result of simulation emphasizes that the PID controller designed using the seeker optimization algorithm has a robust function and a better performance for oscillations damping compared to the traditional PID controller. The proposed controller’s performance has been compared to the performance of PID controller regulated with Particle Swarm Optimization (PSO) and. Genetic Algorithm (GA) and Artificial Bee Colony (ABC) algorithms in order to show the superior capability of the proposed SOA in regulating the PID controller. The simulation results emphasize the better performance of the optimized PID controller based on SOA compared to the PID controller optimized with PSO, GA and ABC algorithms.

Keywords: load-frequency control, multi zone, robust PID controller, wind generation

Procedia PDF Downloads 304
2421 The Impact of Artificial Intelligence on Torism Ouputs

Authors: Nancy Ayman Kamal Mohamed Mehrz

Abstract:

As the economies of other countries in the Mediterranean Basin, the tourism sector in our country has a high denominator in economics. Tourism businesses, which are building blocks of tourism, sector faces with a variety of problems during their activities. These problems faced make business efficiency and competition conditions of the businesses difficult. Most of the problems faced by the tourism businesses and the information of consumers about consumers’ rights were used in this study, which is conducted to determine the problems of tourism businesses in the Central Anatolia Region. It is aimed to contribute the awareness of staff and executives working at tourism sector and to attract attention of businesses active concurrently with tourism sector and legislators. E-tourism is among the issues that have recently been entered into the field of tourism. In order to achieve this type of tourism, Information and Communications Technology (or ICT) infrastructures as well as Co-governmental organizations and tourism resources are important. In this study, the opinions of managers and tourism officials about the e-tourism in Leman city were measured; it also surveyed the impact of level of digital literacy of managers and tourism officials on attracting tourists. This study was conducted. One of the environs of the Esfahan province. This study is a documentary – survey and the sources include library resources and also questionnaires. The results obtained indicate that if managers use ICT, it may help e-tourism to be developed in the region, and increasing managers’ beliefs on e-tourism and upgrading their level of digital literacy may affect e-tourism development.

Keywords: financial problems, the problems of tourism businesses, tourism businesses, internet, marketing, tourism, tourism management economic competitiveness, enhancing competitiveness

Procedia PDF Downloads 72
2420 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform

Authors: Reza Mohammadzadeh

Abstract:

The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.

Keywords: data model, geotechnical risks, machine learning, underground coal mining

Procedia PDF Downloads 274
2419 The Effects of Scientific Studies on the Future Fashion Trends

Authors: Basak Ozkendirci

Abstract:

The discovery of chemical dyes, the development of regenerated fibers, and warp knitting technology have enormous effects on the fashion world. The trends created by the information obtained in the context of various studies today shape the fashion world. Trend analysts must follow scientific developments as well as sociological events, political developments and artwork to obtain healthy data on trends. Digital printing technologies have changed the dynamics of textile printing production and also the style of printed designs. Fashion designers already have started design 3D printed accessories and garments. The research fields like the internet of things, artificial intelligence, hologram technologies, mechatronics, energy storage systems, nanotechnology are seen as the technologies that will change the social life and economy of the future. It is clear that research carried out in these areas will affect the textiles of the future and whereat the trends of fashion. The article aims to create a future vision for trend researchers and designers by giving clues about the changes to be experienced in the fashion world. In the first part of the article, information about the scientific studies that are thought to shape the future is given, and the forecasting about how the inventions that can be obtained from these studies can be adapted at the textile are presented. In the second part of the article, examples of how the new generation of innovative textiles will affect the daily life experience of the user are given.

Keywords: biotextiles, fashion trends, nanotextiles, new materials, smart textiles, techno textiles

Procedia PDF Downloads 338
2418 Preparation and Characterization of Phosphate-Nickel-Titanium Composite Coating Obtained by Sol Gel Process for Corrosion Protection

Authors: Khalidou Ba, Abdelkrim Chahine, Mohamed Ebn Touhami

Abstract:

A strong industrial interest is focused on the development of coatings for anticorrosion protection. In this context, phosphate composite materials are expanding strongly due to their chemical characteristics and their interesting physicochemical properties. Sol-gel coatings offer high homogeneity and purity that may lead to obtain coating presenting good adhesion to metal surface. The goal behind this work is to develop efficient coatings for corrosion protection of steel to extend its life. In this context, a sol gel process allowing to obtain thin film coatings on carbon steel with high resistance to corrosion has been developed. The optimization of several experimental parameters such as the hydrolysis time, the temperature, the coating technique, the molar ratio between precursors, the number of layers and the drying mode has been realized in order to obtain a coating showing the best anti-corrosion properties. The effect of these parameters on the microstructure and anticorrosion performance of the films sol gel coating has been investigated using different characterization methods (FTIR, XRD, Raman, XPS, SEM, Profilometer, Salt Spray Test, etc.). An optimized coating presenting good adhesion and very stable anticorrosion properties in salt spray test, which consists of a corrosive attack accelerated by an artificial salt spray consisting of a solution of 5% NaCl, pH neutral, under precise conditions of temperature (35 °C) and pressure has been obtained.

Keywords: sol gel, coating, corrosion, XPS

Procedia PDF Downloads 128