Search results for: supervised learning algorithm
10009 Collaborative and Context-Aware Learning Approach Using Mobile Technology
Authors: Sameh Baccari, Mahmoud Neji
Abstract:
In recent years, the rapid developments on mobile devices and wireless technologies enable new dimension capabilities for the learning domain. This dimension facilitates people daily activities and shortens the distances between individuals. When these technologies have been used in learning, a new paradigm has been emerged giving birth to mobile learning. Because of the mobility feature, m-learning courses have to be adapted dynamically to the learner’s context. The main challenge in context-aware mobile learning is to develop an approach building the best learning resources according to dynamic learning situations. In this paper, we propose a context-aware mobile learning system called Collaborative and Context-aware Mobile Learning System (CCMLS). It takes into account the requirements of Mobility, Collaboration and Context-Awareness. This system is based on the semantic modeling of the learning context and the learning content. The adaptation part of this approach is made up of adaptation rules to propose and select relevant resources, learning partners and learning activities based not only on the user’s needs, but also on its current context.Keywords: mobile learning, mobile technologies, context-awareness, collaboration, semantic web, adaptation engine, adaptation strategy, learning object, learning context
Procedia PDF Downloads 30810008 Efficient Heuristic Algorithm to Speed Up Graphcut in Gpu for Image Stitching
Authors: Tai Nguyen, Minh Bui, Huong Ninh, Tu Nguyen, Hai Tran
Abstract:
GraphCut algorithm has been widely utilized to solve various types of computer vision problems. Its expensive computational cost encouraged many researchers to improve the speed of the algorithm. Recent works proposed schemes that work on parallel computing platforms such as CUDA. However, the problem of low convergence speed prevents the usage of GraphCut for real time applications. In this paper, we propose global suppression heuristic to boost the conver-gence process of the algorithm. A parallel implementation of GraphCut algorithm on CUDA designed for the image stitching problem is introduced. Our method achieves up to 3× time boost on the graph of size 80 × 480 compared to the best sequential GraphCut algorithm while achieving satisfactory stitched images, suitable for panorama applications. Our source code will be soon available for further research.Keywords: CUDA, graph cut, image stitching, texture synthesis, maxflow/mincut algorithm
Procedia PDF Downloads 13210007 Investigating Factors Influencing Online Formal and Informal Learning Satisfaction of College Students
Abstract:
Formal learning and informal learning represent two distinct learning styles: one is systematic and organized, another is causal and unstructured. Although there are many factors influencing online learning satisfaction, including self-regulation, self-efficacy, and interaction, factors influencing online formal learning and informal learning satisfaction may differ from each other. This paper investigated and compared influential factors of online formal and informal learning. Two questionnaires were created based on previous studies to explore factors influencing online formal learning and online informal learning satisfaction, respectively. A sample of 105 college students from different departments in a university located in the eastern part of China was selected to participate in this study. They all had an online learning experience and agreed to fill out questionnaires. Correlation analysis, variance analysis, and regression analysis were employed in this study. In addition, five participants were chosen for interviews. The study found that student-content, interaction, self-regulation, and self-efficacy related positively to both online formal learning and informal learning satisfaction. In addition, compared to online formal learning, student-content interaction in informal learning was the most influential factor for online learning satisfaction, perhaps that online informal learning was more goal-oriented and learners paid attention to the quality of content. In addition, results also revealed that interactions among students or teachers had little impact on online informal learning satisfaction. This study compared influential factors in online formal and informal learning satisfaction helped to add discussions to online learning satisfaction and contributed to further practices of online learning.Keywords: learning satisfaction, formal learning, informal learning, online learning
Procedia PDF Downloads 16410006 Extracting Attributes for Twitter Hashtag Communities
Authors: Ashwaq Alsulami, Jianhua Shao
Abstract:
Various organisations often need to understand discussions on social media, such as what trending topics are and characteristics of the people engaged in the discussion. A number of approaches have been proposed to extract attributes that would characterise a discussion group. However, these approaches are largely based on supervised learning, and as such they require a large amount of labelled data. We propose an approach in this paper that does not require labelled data, but rely on lexical sources to detect meaningful attributes for online discussion groups. Our findings show an acceptable level of accuracy in detecting attributes for Twitter discussion groups.Keywords: attributed community, attribute detection, community, social network
Procedia PDF Downloads 16210005 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer
Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom
Abstract:
Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN
Procedia PDF Downloads 7810004 Sterilization Incident Analysis by the Association of Litigation and Risk Management Method
Authors: Souhir Chelly, Asma Ben Cheikh, Hela Ghali, Salwa Khefacha, Lamine Dhidah, Mohamed Ben Rejeb, Houyem Said Latiri
Abstract:
The hospital risk management department is firstly involved in the methodological analysis of grade zero sterilization incidents. The system is based on a subsequent analysis process in compliance with the ongoing requirements of the Haute Autorité de santé (HAS) for a reactive approach to risk, allowing to identify failures and start the appropriate preventive and corrective measures. The use of the association of litigation and risk management (ALARM) method makes easier the grade zero analysis and brings to light the team or institutional, organizational, temporal, individual factors representative of undesirable effects. Two main factors come out again from this analysis, pre-disinfection step of the emergency block unsupervised instrumentalist intern was poorly done since she did not remove the battery from micro air motor. At the sterilization unit, the worker who was not supervised by the nurse did the conditioning of the motor without having checked it if it still contained the battery. The main cause is that the management of human resources was inadequate at both levels, the instrumental trainee in the block who was not supervised by his supervisor and the worker of the sterilization unit who was not supervised by the responsible nurse. There is a lack of research help, advice, and collaboration. The difficulties encountered during this type of analysis are multiple. The first is based on its necessary acceptance by the various actors of care involved, which should not perceive it as a tool leading to individual punishment, but rather as a means to improve their practices.Keywords: ALARM (Association of Litigation and Risk Management Method), incident, risk management, sterilization
Procedia PDF Downloads 21410003 Travel Planning in Public Transport Networks Applying the Algorithm A* for Metropolitan District of Quito
Authors: M. Fernanda Salgado, Alfonso Tierra, Wilbert Aguilar
Abstract:
The present project consists in applying the informed search algorithm A star (A*) to solve traveler problems, applying it by urban public transportation routes. The digitization of the information allowed to identify 26% of the total of routes that are registered within the Metropolitan District of Quito. For the validation of this information, data were taken in field on the travel times and the difference with respect to the times estimated by the program, resulting in that the difference between them was not greater than 2:20 minutes. We validate A* algorithm with the Dijkstra algorithm, comparing nodes vectors based on the public transport stops, the validation was established through the student t-test hypothesis. Then we verified that the times estimated by the program using the A* algorithm are similar to those registered on field. Furthermore, we review the performance of the algorithm generating iterations in both algorithms. Finally, with these iterations, a hypothesis test was carried out again with student t-test where it was concluded that the iterations of the base algorithm Dijsktra are greater than those generated by the algorithm A*.Keywords: algorithm A*, graph, mobility, public transport, travel planning, routes
Procedia PDF Downloads 24110002 Inferring Human Mobility in India Using Machine Learning
Authors: Asra Yousuf, Ajaykumar Tannirkulum
Abstract:
Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.Keywords: development, migration, internal migration, machine learning, prediction
Procedia PDF Downloads 27110001 Assessment of Memetic and Genetic Algorithm for a Flexible Integrated Logistics Network
Authors: E. Behmanesh, J. Pannek
Abstract:
The distribution-allocation problem is known as one of the most comprehensive strategic decision. In real-world cases, it is impossible to solve a distribution-allocation problem in traditional ways with acceptable time. Hence researchers develop efficient non-traditional techniques for the large-term operation of the whole supply chain. These techniques provide near-optimal solutions particularly for large scales test problems. This paper, presents an integrated supply chain model which is flexible in the delivery path. As the solution methodology, we apply a memetic algorithm with a novelty in population presentation. To illustrate the performance of the proposed memetic algorithm, LINGO optimization software serves as a comparison basis for small size problems. In large size cases that we are dealing with in the real world, the Genetic algorithm as the second metaheuristic algorithm is considered to compare the results and show the efficiency of the memetic algorithm.Keywords: integrated logistics network, flexible path, memetic algorithm, genetic algorithm
Procedia PDF Downloads 37610000 An Investigation on Engineering Students’ Perceptions Towards E-learning in the UK
Authors: Vida Razzaghifard
Abstract:
E-learning, also known as online learning, has indicated an increased growth in recent years. One of the critical factors in the successful application of e-learning in higher education is students’ perceptions towards it. The main purpose of this paper is to investigate the perceptions of engineering students about e-learning in UK. For the purpose of the present study, 145 second year Engineering students were randomly selected from the total population of 1280 participants. The participants were asked to complete a questionnaire containing 16 items. The data collected from the questionnaire were analyzed through the Statistical Package for Social Science (SPSS) software. The findings of the study revealed that the majority of participants have negative perceptions on e-learning. Most of the students had trouble interacting effectively during online classes. Furthermore, the majority of participants had negative experiences with the learning platform they used during e-learning. Suggestions were made on what could be done to improve the students’ perceptions towards e-learning.Keywords: E-learning, higher, education, engineering education, online learning
Procedia PDF Downloads 969999 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm
Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim
Abstract:
All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.Keywords: currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features
Procedia PDF Downloads 2359998 Features Reduction Using Bat Algorithm for Identification and Recognition of Parkinson Disease
Authors: P. Shrivastava, A. Shukla, K. Verma, S. Rungta
Abstract:
Parkinson's disease is a chronic neurological disorder that directly affects human gait. It leads to slowness of movement, causes muscle rigidity and tremors. Gait serve as a primary outcome measure for studies aiming at early recognition of disease. Using gait techniques, this paper implements efficient binary bat algorithm for an early detection of Parkinson's disease by selecting optimal features required for classification of affected patients from others. The data of 166 people, both fit and affected is collected and optimal feature selection is done using PSO and Bat algorithm. The reduced dataset is then classified using neural network. The experiments indicate that binary bat algorithm outperforms traditional PSO and genetic algorithm and gives a fairly good recognition rate even with the reduced dataset.Keywords: parkinson, gait, feature selection, bat algorithm
Procedia PDF Downloads 5499997 Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction
Authors: Najmeh Mohsenifar, Narjes Mohsenifar, Abbas Kargar
Abstract:
In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %.Keywords: electrocardiogram, RBF artificial neural network, PSO algorithm, predict, accuracy
Procedia PDF Downloads 6289996 Challenges and Opportunities of Cloud-Based E-Learning Systems
Authors: Kashif Laeeq, Zubair A. Shaikh
Abstract:
The paradigm of education is drastically changing from conventional to e-learning model. Due to ease of learning with various other benefits, several educational institutions are adopting the e-learning models. Some institutions are still willing to transform their educational system on to e-learning, but due to limited resources, they are still compromising on the old traditional system. The cloud computing could be one of the best solutions to overcome this problem by providing hardware, software, and infrastructure resources with cost efficient manner. The adoption of cloud computing in education will bring revolution in this paradigm. This paper introduces various positive features of e-learning and presents a way how cloud computing technology can be provisioned e-learning model. This paper also investigates the numerous challenges and opportunities that would be observed in cloud computing adoption in e-learning domain. The concept and knowledge present in this paper may create a new direction of research in the domain of cloud-based e-learning.Keywords: cloud-based e-learning, e-learning, cloud computing application, smart learning
Procedia PDF Downloads 4099995 Students’ Perception of E-Learning Systems at Hashemite University
Authors: Muneer Abbad
Abstract:
In search of better, traditional learning universities have expanded their ways to deliver knowledge and integrate cost effective e-learning systems. Universities’ use of information and communication technologies has grown tremendously over the last decade. To ensure efficient use of the e-learning system, this project aimed to evaluate the good and bad practices, detect errors and determine areas for further improvements in usage. This project critically evaluated the students’ perception of the e-learning system and recommended changes to improve students’ e-learning usage, through conducting questionnaire given to the students that have experience with e-learning systems. Results of the study indicated that, in general, students have favourable perceptions toward using the e-learning system. They seemed to value the resources tool and its contribution to building their knowledge more than other e-learning tools. However, they seemed to perceive a limited value from the audio or video podcasts. This study has shown that technology acceptance is the most variable, factor that contributes to students’ perception and satisfaction of the e-learning system.Keywords: e-learning, perception, Jordan, universities
Procedia PDF Downloads 4909994 Data Poisoning Attacks on Federated Learning and Preventive Measures
Authors: Beulah Rani Inbanathan
Abstract:
In the present era, it is vivid from the numerous outcomes that data privacy is being compromised in various ways. Machine learning is one technology that uses the centralized server, and then data is given as input which is being analyzed by the algorithms present on this mentioned server, and hence outputs are predicted. However, each time the data must be sent by the user as the algorithm will analyze the input data in order to predict the output, which is prone to threats. The solution to overcome this issue is federated learning, where the models alone get updated while the data resides on the local machine and does not get exchanged with the other local models. Nevertheless, even on these local models, there are chances of data poisoning, and it is crystal clear from various experiments done by many people. This paper delves into many ways where data poisoning occurs and the many methods through which it is prevalent that data poisoning still exists. It includes the poisoning attacks on IoT devices, Edge devices, Autoregressive model, and also, on Industrial IoT systems and also, few points on how these could be evadible in order to protect our data which is personal, or sensitive, or harmful when exposed.Keywords: data poisoning, federated learning, Internet of Things, edge computing
Procedia PDF Downloads 879993 Education and Learning in Indonesia to Refer to the Democratic and Humanistic Learning System in Finland
Authors: Nur Sofi Hidayah, Ratih Tri Purwatiningsih
Abstract:
Learning is a process attempts person to obtain a new behavior changes as a whole, as a result of his own experience in the interaction with the environment. Learning involves our brain to think, while the ability of the brain to each student's performance is different. To obtain optimal learning results then need time to learn the exact hour that the brain's performance is not too heavy. Referring to the learning system in Finland which apply 45 minutes to learn and a 15-minute break is expected to be the brain work better, with the rest of the brain, the brain will be more focused and lessons can be absorbed well. It can be concluded that learning in this way students learn with brain always fresh and the best possible use of the time, but it can make students not saturated in a lesson.Keywords: learning, working hours brain, time efficient learning, working hours in the brain receive stimulus.
Procedia PDF Downloads 3999992 Introduction to Multi-Agent Deep Deterministic Policy Gradient
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decisionmaking problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security). By modeling the multi-job collaborative cryptographic service scheduling problem as a multiobjective optimized job flow scheduling problem, and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing, and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: multi-agent reinforcement learning, non-stationary dynamics, multi-agent systems, cooperative and competitive agents
Procedia PDF Downloads 269991 VR/AR Applications in Personalized Learning
Authors: Andy Wang
Abstract:
Personalized learning refers to an educational approach that tailors instruction to meet the unique needs, interests, and abilities of each learner. This method of learning aims at providing students with a customized learning experience that is more engaging, interactive, and relevant to their personal lives. With generative AI technology, the author has developed a Personal Tutoring Bot (PTB) that supports personalized learning. The author is currently testing PTB in his EE 499 – Microelectronics Metrology course. Virtual Reality (VR) and Augmented Reality (AR) provide interactive and immersive learning environments that can engage student in online learning. This paper presents the rationale of integrating VR/AR tools in PTB and discusses challenges and solutions of incorporating VA/AR into the Personal Tutoring Bot (PTB).Keywords: personalized learning, online education, hands-on practice, VR/AR tools
Procedia PDF Downloads 709990 Application of a New Efficient Normal Parameter Reduction Algorithm of Soft Sets in Online Shopping
Authors: Xiuqin Ma, Hongwu Qin
Abstract:
A new efficient normal parameter reduction algorithm of soft set in decision making was proposed. However, up to the present, few documents have focused on real-life applications of this algorithm. Accordingly, we apply a New Efficient Normal Parameter Reduction algorithm into real-life datasets of online shopping, such as Blackberry Mobile Phone Dataset. Experimental results show that this algorithm is not only suitable but feasible for dealing with the online shopping.Keywords: soft sets, parameter reduction, normal parameter reduction, online shopping
Procedia PDF Downloads 5119989 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics
Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo
Abstract:
Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model
Procedia PDF Downloads 1579988 Deep Reinforcement Learning Model for Autonomous Driving
Authors: Boumaraf Malak
Abstract:
The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning
Procedia PDF Downloads 859987 A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah
Abstract:
Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object classification as HSI semantic interpretation. However, HSI classification still faces some issues, among which are the following: The spatial variability of spectral signatures, the high number of spectral bands, and the high cost of true sample labeling. Therefore, the high number of spectral bands and the low number of training samples pose the problem of the curse of dimensionality. In order to resolve this problem, we propose to introduce the process of dimensionality reduction trying to improve the classification of HSI. The presented approach is a semi-supervised band selection method based on spatial hypergraph embedding model to represent higher order relationships with different weights of the spatial neighbors corresponding to the centroid of pixel. This semi-supervised band selection has been developed to select useful bands for object classification. The presented approach is evaluated on AVIRIS and ROSIS HSIs and compared to other dimensionality reduction methods. The experimental results demonstrate the efficacy of our approach compared to many existing dimensionality reduction methods for HSI classification.Keywords: dimensionality reduction, hyperspectral image, semantic interpretation, spatial hypergraph
Procedia PDF Downloads 3069986 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing
Authors: Huan Ting Liao
Abstract:
In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning
Procedia PDF Downloads 269985 Composite Approach to Extremism and Terrorism Web Content Classification
Authors: Kolade Olawande Owoeye, George Weir
Abstract:
Terrorism and extremism activities on the internet are becoming the most significant threats to national security because of their potential dangers. In response to this challenge, law enforcement and security authorities are actively implementing comprehensive measures by countering the use of the internet for terrorism. To achieve the measures, there is need for intelligence gathering via the internet. This includes real-time monitoring of potential websites that are used for recruitment and information dissemination among other operations by extremist groups. However, with billions of active webpages, real-time monitoring of all webpages become almost impossible. To narrow down the search domain, there is a need for efficient webpage classification techniques. This research proposed a new approach tagged: SentiPosit-based method. SentiPosit-based method combines features of the Posit-based method and the Sentistrenght-based method for classification of terrorism and extremism webpages. The experiment was carried out on 7500 webpages obtained through TENE-webcrawler by International Cyber Crime Research Centre (ICCRC). The webpages were manually grouped into three classes which include the ‘pro-extremist’, ‘anti-extremist’ and ‘neutral’ with 2500 webpages in each category. A supervised learning algorithm is then applied on the classified dataset in order to build the model. Results obtained was compared with existing classification method using the prediction accuracy and runtime. It was observed that our proposed hybrid approach produced a better classification accuracy compared to existing approaches within a reasonable runtime.Keywords: sentiposit, classification, extremism, terrorism
Procedia PDF Downloads 2809984 Learning Object Interface Adapted to the Learner's Learning Style
Authors: Zenaide Carvalho da Silva, Leandro Rodrigues Ferreira, Andrey Ricardo Pimentel
Abstract:
Learning styles (LS) refer to the ways and forms that the student prefers to learn in the teaching and learning process. Each student has their own way of receiving and processing information throughout the learning process. Therefore, knowing their LS is important to better understand their individual learning preferences, and also, understand why the use of some teaching methods and techniques give better results with some students, while others it does not. We believe that knowledge of these styles enables the possibility of making propositions for teaching; thus, reorganizing teaching methods and techniques in order to allow learning that is adapted to the individual needs of the student. Adapting learning would be possible through the creation of online educational resources adapted to the style of the student. In this context, this article presents the structure of a learning object interface adaptation based on the LS. The structure created should enable the creation of the adapted learning object according to the student's LS and contributes to the increase of student’s motivation in the use of a learning object as an educational resource.Keywords: adaptation, interface, learning object, learning style
Procedia PDF Downloads 4069983 Discretization of Cuckoo Optimization Algorithm for Solving Quadratic Assignment Problems
Authors: Elham Kazemi
Abstract:
Quadratic Assignment Problem (QAP) is one the combinatorial optimization problems about which research has been done in many companies for allocating some facilities to some locations. The issue of particular importance in this process is the costs of this allocation and the attempt in this problem is to minimize this group of costs. Since the QAP’s are from NP-hard problem, they cannot be solved by exact solution methods. Cuckoo Optimization Algorithm is a Meta-heuristicmethod which has higher capability to find the global optimal points. It is an algorithm which is basically raised to search a continuous space. The Quadratic Assignment Problem is the issue which can be solved in the discrete space, thus the standard arithmetic operators of Cuckoo Optimization Algorithm need to be redefined on the discrete space in order to apply the Cuckoo Optimization Algorithm on the discrete searching space. This paper represents the way of discretizing the Cuckoo optimization algorithm for solving the quadratic assignment problem.Keywords: Quadratic Assignment Problem (QAP), Discrete Cuckoo Optimization Algorithm (DCOA), meta-heuristic algorithms, optimization algorithms
Procedia PDF Downloads 5179982 Stackelberg Security Game for Optimizing Security of Federated Internet of Things Platform Instances
Authors: Violeta Damjanovic-Behrendt
Abstract:
This paper presents an approach for optimal cyber security decisions to protect instances of a federated Internet of Things (IoT) platform in the cloud. The presented solution implements the repeated Stackelberg Security Game (SSG) and a model called Stochastic Human behaviour model with AttRactiveness and Probability weighting (SHARP). SHARP employs the Subjective Utility Quantal Response (SUQR) for formulating a subjective utility function, which is based on the evaluations of alternative solutions during decision-making. We augment the repeated SSG (including SHARP and SUQR) with a reinforced learning algorithm called Naïve Q-Learning. Naïve Q-Learning belongs to the category of active and model-free Machine Learning (ML) techniques in which the agent (either the defender or the attacker) attempts to find an optimal security solution. In this way, we combine GT and ML algorithms for discovering optimal cyber security policies. The proposed security optimization components will be validated in a collaborative cloud platform that is based on the Industrial Internet Reference Architecture (IIRA) and its recently published security model.Keywords: security, internet of things, cloud computing, stackelberg game, machine learning, naive q-learning
Procedia PDF Downloads 3559981 Group Learning for the Design of Human Resource Development for Enterprise
Authors: Hao-Hsi Tseng, Hsin-Yun Lee, Yu-Cheng Kuo
Abstract:
In order to understand whether there is a better than the learning function of learning methods and improve the CAD Courses for enterprise’s design human resource development, this research is applied in learning practical learning computer graphics software. In this study, Revit building information model for learning content, design of two different modes of learning curriculum to learning, learning functions, respectively, and project learning. Via a post-test, questionnaires and student interviews, etc., to study the effectiveness of a comparative analysis of two different modes of learning. Students participate in a period of three weeks after a total of nine-hour course, and finally written and hands-on test. In addition, fill in the questionnaire response by the student learning, a total of fifteen questionnaire title, problem type into the base operating software, application software and software-based concept features three directions. In addition to the questionnaire, and participants were invited to two different learning methods to conduct interviews to learn more about learning students the idea of two different modes. The study found that the ad hoc short-term courses in learning, better learning outcomes. On the other hand, functional style for the whole course students are more satisfied, and the ad hoc style student is difficult to accept the ad hoc style of learning.Keywords: development, education, human resource, learning
Procedia PDF Downloads 3609980 Omani PE Candidate Self-Reports of Learning Strategies Used to Learn Sport Skills
Authors: Nasser Al-Rawahi
Abstract:
The study aims at determining self-regulated learning strategies used by Omani physical education candidates to learn sport skills. The data were collected by a self-regulated learning theory questionnaire. The sample of the study comprised of 145 undergraduate physical education students enrolled in the department of physical education at the College of Education, Sultan Qaboos University. The findings of the study revealed that the most commonly used strategies for learning sport skills by Omani physical education candidate are ‘the effort learning strategies, planning learning strategies and evaluation learning strategies’. However, the reflection learning strategies, self-monitoring and self-efficacy learning strategies were revealed as the least used strategies by the PE candidates in learning and acquiring sport skills. Based on these findings, suggestions and recommendations for future research were provided.Keywords: learning strategies, physical education candidates, self-regulated learning theory, Oman
Procedia PDF Downloads 617