Search results for: siRNA-mediated inhibition
668 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Their Antibacterial Effects on Negative Bacillus Bacteria Causing Urinary Tract Infection
Authors: F. Madani, M. Doudi, L. Rahimzadeh Torabi
Abstract:
The irregular consumption of current antibiotics contributes to an escalation in antibiotic resistance among urinary pathogens on a global scale. The objective of this research was to investigate the process of biologically synthesized silver nanoparticles through the utilization of Zataria multiflora extract. Additionally, the study aimed to evaluate the efficacy of these synthesized nanoparticles in inhibiting the growth of multi-drug resistant negative bacillus bacteria, which commonly contribute to urinary tract infections. The botanical specimen utilized in the current research investigation was Z. multiflora, and its extract was produced employing the Soxhlet extraction technique. The study examined the green synthesis conditions of silver nanoparticles by considering three key parameters: the quantity of extract used, the concentration of silver nitrate salt, and the temperature. The particle dimensions were ascertained using the Zetasizer technique. In order to identify synthesized Silver nanoparticles TEM, XRD, and FTIR methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through a biological method, different concentrations of silver nanoparticles were studied on 140 cases of Multiple drug resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections, for identification of bacteria were used of PCR test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were subjected to analysis using the statistical software SPSS, specifically employing nonparametric Kruskal-Wallis and Mann-Whitney tests. This study yielded noteworthy findings regarding the impacts of varying concentrations of silver nitrate, different quantities of Z. multiflora extract, and levels of temperature on nanoparticles. Specifically, it was observed that an increase in the concentration of silver nitrate, extract amount, and temperature resulted in a reduction in the size of the nanoparticles synthesized. However, the impact of the aforementioned factors on the index of particle diffusion was found to be statistically non-significant. According to the transmission electron microscopy (TEM) findings, the particles exhibited predominantly spherical morphology, with a diameter spanning from 25 to 50 nanometers. Nanoparticles in the examined sample. Nanocrystals of silver. FTIR method illustrated that the spectrums of Z. multiflora and synthesized nanoparticles had clear peaks in the ranges of 1500-2000, and 3500 - 4000. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E. coli, A. bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125 mg/ml and for A. bumanii 250 mg/ml. Comparing the growth inhibitory effect of chemically synthesized the results obtained from the experiment indicated that both nanoparticles and biologically synthesized nanoparticles exhibit a notable growth inhibition effect. Specifically, the chemical method of synthesizing nanoparticles demonstrated the highest level of growth inhibition at a concentration of 62.5 mg/mL The present study demonstrated an inhibitory effect on bacterial growth, facilitating the causative factors of urine infection and multidrug resistance (MDR).Keywords: multiple drug resistance, negative bacillus bacteria, urine infection, Zataria multiflora
Procedia PDF Downloads 104667 Anti-Arthritic Effect of a Herbal Diet Formula Comprising Fruits of Rosa Multiflora and Flowers of Lonicera Japonica
Authors: Brian Chi Yan Cheng, Hui Guo, Tao Su, Xiu‐qiong Fu, Ting Li, Zhi‐ling Yu
Abstract:
Rheumatoid arthritis (RA) affects around 1% of the globe population. Yet, there is still no cure for RA. Toll-like receptor 4 (TLR4) signalling has been found to be involved in the pathogenesis of RA, making it a potential therapeutic target for RA treatment. A herbal formula (RL) consisting of fruits of Rosa Multiflora (Eijitsu rose) and flowers of Lonicera Japonica (Japanese honeysuckle) has been used in treating various inflammatory disorders for more than a thousand year. Both of them are rich sources of nutrients and bioactive phytochemicals, which can be used in producing different food products and supplements. In this study, we would evaluate the anti-arthritic effect of RL on collagen-induced arthritis (CIA) in rats and investigate the involvement of TLR4 signaling in the mode of action of RL. Anti-arthritic efficacy was evaluated using CIA rats induced by bovine type II collagen. The treatment groups were treated with RL (82.5, 165, and 330 mg/kg bw per day, p.o.) or positive control indomethacin (0.25 mg/kg bw per day, p.o.) for 35 days. Clinical signs (hind paw volume and arthritis severity scores), changes in serum inflammatory mediators, pro-/antioxidant status, histological and radiographic changes of joints were investigated. Spleens and peritoneal macrophages were used to determine the effects of RL on innate and adaptive immune responses in CIA rats. The involvement of TLR4 signalling pathways in the anti-arthritic effect of RL was examined in cartilage tissue of CIA rats, murine RAW264.7 macrophages and human THP-1 monocytic cells. The severity of arthritis in the CIA rats was significantly attenuated by RL. Antioxidant status, histological score and radiographic score were efficiently improved by RL. RL could also dose-dependently inhibit pro-inflammatory cytokines in serum of CIA rats. RL significantly inhibited the production of various pro-inflammatory mediators, the expression and/or activity of the components of TLR4 signalling pathways in animal tissue and cell lines. RL possesses anti-arthritic effect on collagen-induced arthritis in rats. The therapeutic effect of RL may be related to its inhibition on pro-inflammatory cytokines in serum. The inhibition of the TAK1/NF-κB and TAK1/MAPK pathways participate in the anti-arthritic effects of RL. This provides a pharmacological justification for the dietary use of RL in the control of various arthritic diseases. Further investigation should be done to develop RL into a anti-arthritic food products and/or supplements.Keywords: japanese honeysuckle, rheumatoid arthritis, rosa multiflora, rosehip
Procedia PDF Downloads 432666 Intelligent CRISPR Design for Bone Regeneration
Authors: Yu-Chen Hu
Abstract:
Gene editing by CRISPR and gene regulation by microRNA or CRISPR activation have dramatically changed the way to manipulate cellular gene expression and cell fate. In recent years, various gene editing and gene manipulation technologies have been applied to control stem cell differentiation to enhance tissue regeneration. This research will focus on how to develop CRISPR, CRISPR activation (CRISPRa), CRISPR inhibition (CRISPRi), as well as bi-directional CRISPR-AI gene regulation technologies to control cell differentiation and bone regeneration. Moreover, in this study, CRISPR/Cas13d-mediated RNA editng for miRNA editing and bone regeneration will be discussed.Keywords: gene therapy, bone regeneration, stem cell, CRISPR, gene regulation
Procedia PDF Downloads 90665 Invitro Study of Anti-Leishmanial Property of Nigella Sativa Methanalic Black Seed Extract
Authors: Tawqeer Ali Syed, Prakash Chandra
Abstract:
This study aims to evaluate the antileishmanial activity of Nigella sativa black seed extract. This well-known plant extract was taken from the botanical garden of Kashmir. Materials and Methods: The methanolic extracts of these plants were screened for their antileishmanial activity against Leishmania major using 3‑(4.5‑dimethylthiazol‑2yl)‑2.5‑diphenyltetrazolium bromide assay or MTT assay. Results: The methanolic extract of Nigella sativa showed potential antileishmanial activity at an inhibition% value of 80.29% ± 0.65%. IC 50 was calculated after 48 hours to be 964.3 µg/ml. Conclusion: Considering these results, these medicinal plants from Kashmir could serve as potential drug sources for antileishmanial compounds.Keywords: MTT assay, antileishmanial, cell viability, Nigella sativa
Procedia PDF Downloads 211664 DPAGT1 Inhibitors: Discovery of Anti-Metastatic Drugs
Authors: Michio Kurosu
Abstract:
Alterations in glycosylation not only directly impact cell growth and survival but also facilitate tumor-induced immunomodulation and eventual metastasis. Identification of cell type-specific glycoconjugates (tumor markers) has led to the discovery of new assay systems for certain cancers via immunodetection reagents. N- and O-linked glycans are the most abundant forms of glycoproteins. Recent studies of cancer immunotherapy are based on the immunogenicity of truncated O-glycan chains (e.g., Tn, sTn, T, and sLea/x). The prevalence of N-linked glycan changes in the development of tumor cells is known; however, therapeutic antibodies against N-glycans have not yet been developed. This is due to the lack of specificity of N-linked glycans between normal/healthy and cancer cells. Abnormal branching of N-linked glycans has been observed, particularly in solid cancer cells. While the discovery of drug-like glycosyltransferase inhibitors that block the biosynthesis of specific branching has a very low likelihood of success, altered glycosylation levels can be exploited by suppressing N-glycan biosynthesis through the inhibition of dolichyl-phosphate N-acetylglucosaminephosphotransferase1 (DPAGT1) activity. Inhibition of DPAGT1 function leads to changes of O-glycosylation on proteins associated with mitochondria and zinc finger binding proteins (indirect effects). On the basis of dynamic crosstalk between DPAGT1 and Snail/Slung/ZEB1 (a family of transcription factors that promote the repression of the adhesion molecules), we have developed pharmacologically acceptable selective DPAGT1 inhibitors. Tunicamycin kills a wide range of cancer and healthy cells in a non-selective manner. In sharp contrast, our DPAGT1 inhibitors display strong cytostatic effects against 16 solid cancers, which require the overexpression of DPAGT1 in their progression but do not affect the cell viability of healthy cells. The identified DPAGT1 inhibitors possess impressive anti-metastatic ability in various solid cancer cell lines and induce their mitochondrial structural changes, resulting in apoptosis. A prototype DPAGT1 inhibitor, APPB has already been proven to shrink solid tumors (e.g., pancreatic cancers, triple-negative breast cancers) in vivo while suppressing metastases and has strong synergistic effects when combined with current cytotoxic drugs (e.g., paclitaxel). At this conference, our discovery of selective DPAGT1 inhibitors with drug-like properties and proof-of-pharmaceutical concept studies of a novel DPAGT1 inhibitor are presented.Keywords: DPAGT1 inhibitors, anti-metastatic drugs, natural product based drug designs, cytostatic effects
Procedia PDF Downloads 75663 Ionic Liquids as Corrosion Inhibitors in CO2 Capture Systems
Abstract:
We present the viability of using thermally stable, practically non-volatile ionic liquids as corrosion inhibitors in aqueous monoethanolamine system. Carbon steel 1020, which widely used as construction material in CO2 capture plants, has been taken as a test material. Corrosion inhibition capacities of typical room-temperature ionic liquids constituting imidazolium cation in concentration range ≤ 3% by weight in CO2 capture applications were investigated. Electrochemical corrosion experiments using the potentiodynamic polarization technique for measuring corrosion current were carried out. The results show that ionic liquids possess ability to suppressing severe operational problems of corrosion in typical CO2 capture plants.Keywords: carbon dioxide, carbon steel, monoethanolamine, corrosion rate, ionic liquids, tafel fit
Procedia PDF Downloads 324662 Bacteriocin-Antibiotic Synergetic Consortia: Augmenting Antimicrobial Activity and Expanding the Inhibition Spectrum of Vancomycin Resistant and Methicillin Resistant Staphylococcus aureus
Authors: Asma Bashir, Neha Farid, Kashif Ali, Kiran Fatima
Abstract:
Background: Bacteriocins are a subclass of antimicrobial peptides that are becoming extremely important in treatments. It is possible to utilise bacteriocins in place of or in addition to traditional antibiotics. It is possible to treat a variety of infections, including Vancomycin-Resistant Staphylococcus aureus (VRSA) and Methicillin-Resistant Staphylococcus aureus (MRSA), using the targeted spectrum of activity of these microorganisms. Method: This study aimed to examine the efficiency of antibiotics and bacteriocin against VRSA and MRSA. The effects of bacteriocins, such as enterocin KAE01, enterocin KAE03, enterocin KAE05, and enterocin KAE06 isolated from Enterococcus faecium strains, alone and in combination with vancomycin and methicillin antibiotics were examined. The selection technique utilized the minimum inhibitory concentrations (MICs) against Gram-positive indicator strain ATCC 6538 Methicillin-Resistant Staphylococcus aureus (MRSA) and indicator strain KSA 02 Vancomycin-Resistant Staphylococcus aureus (VRSA). Results: We report the isolation and identification of enterocins KAE01, KAE03, KAE05, and KAE06 from food isolates of Enterococcus faecium (KAE01, KAE03, KAE05, and KAE06). After isolating the protein, it was partially purified with ammonium sulphate precipitation and purified with fast protein liquid chromatography (FPLC) procedures. Combinations of enterocin KAE01, 1 citric acid, 1 lactic acid, and microcin J25, 1 reuterin, 1 citric acid, and microcin J25, 1 reuterin, 1 lactic acid shown synergistic benefits (FIC index = 0.5) against Vancomycin-Resistant Staphylococcus aureus (VRSA). In addition, a moderately synergistic (FIC index = 0.75) interaction was seen between pediocin PA-1, 1 citric acid, 1 lactic acid, and reuterin 1 citric acid, 1 lactic acid against L. ivanovii HPB28. In the presence of acids, nisin Z exhibited a modestly synergistic effect (FIC index = 0.625-0.75); however, it exhibited additive effects (FIC index = 1) when combined with reuterin or pediocin PA-1 against L. ivanovii HPB28. The efficacy of synergistic consortiums against Gram-positive bacteria was examined. Conclusion: Combining antimicrobials with various modes of action boosted efficacy and expanded the spectrum of inhibition, particularly against multidrug-resistant pathogens, according to our research.Keywords: Enterococcus faecium, bacteriocin, antimicrobial resistance, antagonistic activity, vancomycin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus aureus
Procedia PDF Downloads 148661 Zoledronic Acid with Neoadjuvant Chemotherapy in Advanced Breast Cancer Prospective Study 2011–2014
Authors: S. Sakhri
Abstract:
Background: The use of Zoledronic acid (ZA) is an established place in the treatment of malignant tumors with a predilection for the skeleton of interest (in particular metastasis). Although the main target of Zoledronic acid was osteoclasts, there are preclinical data suggest that Zoledronic acid may have an antitumor effect on cells other than osteoclasts, including tumor cells. Antitumor activity, including the inhibition of tumor cell growth and the induction of apoptosis of tumor cells, inhibition of tumor cell adhesion and invasion, and anti-angiogenic effects have been demonstrated. Methods. From (2012 to 2014), 438 patients were included respondents the inclusion criteria, respectively. This is a prospective study over a 4 year period. Of all patients (N=438), 432 received neoadjuvant chemotherapy with Zoledronic acid. The primary end point was the pathologic complete response in advancer breast cancer stage. The secondary end point is to evaluate Clinical response according to RECIST criteria; estimate the bone density before and at the end of chemotherapy in women with locally advanced breast cancer, Toxicity Evaluation and Overall survival using Kaplan-Meier and log test. Result: The Objective response rate was 97% after (C4) with 3% stabilizations and 99, 3% of which 0.7% C8 after stabilization. The clinical complete response was 28% after C4 respectively, and 46.8% after C8, the pathologic complete response rate was 40.13% according to the classification Sataloff. We observed that the pathologic complete response rate was the most raised in the group including Her2 (luminal Her2 and Her2) the lowest in the triple negative group as classified by Sataloff. We found that the pCR is significantly higher in the age group (35-50 years) with 53.17%. Those who have more than 50 years in 2nd place with 27.7% and the lower in young woman 35 years pCR was 19%, not statistically significant, -The pCR was also in favor of the menopausal group in 51, 4%, and 48, 55% for non-menopausal women. The average duration of overall survival was also significantly in the subgroup (Luminal -Her2, Her2) compared with triple negative. It is 47.18 months in the luminal group vs. 38.95 in the triple negative group. -Was observed in our study a difference in quality of life between (C1) was the admission of the patient, and after (C8), we found an increase in general signs and a deterioration in the psychological state C1, in contrast to the C8 these general signs and mental status improves, up to 12, and 24 months. Conclusion The results of this study suggest that the addition of ZA to néoadjuvant CT has potential anti-cancer benefit in patients (Luminal -Her2, Her2) compared with triple negative with or without menopause status.Keywords: HER2+, RH+, breast cancer, tyrosine kinase
Procedia PDF Downloads 209660 Synthesis and Anticholinesterase Activity of Carvacrol Derivatives
Authors: Fatih Sonmez
Abstract:
Alzheimer’s disease (AD) is a progressive neurodegenerative disease and it is the most common form of dementia that affects aged people. Acetylcholinesterase is a hydrolase involved in the termination of impulse transmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter ACh in the central and peripheral nervous system. Carvacrol (5-iso-propyl-2-methyl-phenol) is a main bioactive monoterpene isolated from many medicinal herbs, such as Thymus vulgaris, Monarda punctate and Origanum vulgare spp. It is known that carvacrol has been widely used as an active anti-inflammatory ingredient, which can inhibit the isoproterenol induced inflammation in myocardial infarcted rats. In this paper, a series of 12 carvacrol substituted carbamate derivatives (2a-l) was synthesized and their inhibitory activities on AChE and BuChE were evaluated. Among them, 2d exhibited the strongest inhibition against AChE with an IC50 value of 2.22 µM, which was 130-fold more than that of carvacrol (IC50 = 288.26 µM).Keywords: Acetylcholinesterase, Butyrylcholinesterase, Carbamate, Carvacrol
Procedia PDF Downloads 352659 Antagonistic Potential of Epiphytic Bacteria Isolated in Kazakhstan against Erwinia amylovora, the Causal Agent of Fire Blight
Authors: Assel E. Molzhigitova, Amankeldi K. Sadanov, Elvira T. Ismailova, Kulyash A. Iskandarova, Olga N. Shemshura, Ainur I. Seitbattalova
Abstract:
Fire blight is a very harmful for commercial apple and pear production quarantine bacterial disease. To date, several different methods have been proposed for disease control, including the use of copperbased preparations and antibiotics, which are not always reliable or effective. The use of bacteria as biocontrol agents is one of the most promising and eco-friendly alternative methods. Bacteria with protective activity against the causal agent of fire blight are often present among the epiphytic microorganisms of the phyllosphere of host plants. Therefore, the main objective of our study was screening of local epiphytic bacteria as possible antagonists against Erwinia amylovora, the causal agent of fire blight. Samples of infected organs of apple and pear trees (shoots, leaves, fruits) were collected from the industrial horticulture areas in various agro-ecological zones of Kazakhstan. Epiphytic microorganisms were isolated by standard and modified methods on specific nutrient media. The primary screening of selected microorganisms under laboratory conditions to determine the ability to suppress the growth of Erwinia amylovora was performed by agar-diffusion-test. Among 142 bacteria isolated from the fire blight host plants, 5 isolates, belonging to the genera Bacillus, Lactobacillus, Pseudomonas, Paenibacillus and Pantoea showed higher antagonistic activity against the pathogen. The diameters of inhibition zone have been depended on the species and ranged from 10 mm to 48 mm. The maximum diameter of inhibition zone (48 mm) was exhibited by B. amyloliquefaciens. Less inhibitory effect was showed by Pantoea agglomerans PA1 (19 mm). The study of inhibitory effect of Lactobacillus species against E. amylovora showed that among 7 isolates tested only one (Lactobacillus plantarum 17M) demonstrated inhibitory zone (30 mm). In summary, this study was devoted to detect the beneficial epiphytic bacteria from plants organs of pear and apple trees due to fire blight control in Kazakhstan. Results obtained from the in vitro experiments showed that the most efficient bacterial isolates are Lactobacillus plantarum 17M, Bacillus amyloliquefaciens MB40, and Pantoea agglomerans PA1. These antagonists are suitable for development as biocontrol agents for fire blight control. Their efficacies will be evaluated additionally, in biological tests under in vitro and field conditions during our further study.Keywords: antagonists, epiphytic bacteria, Erwinia amylovora, fire blight
Procedia PDF Downloads 166658 The Influence of the Variety and Harvesting Date on Haskap Composition and Anti-Diabetic Properties
Authors: Aruma Baduge Kithma Hansanee De Silva
Abstract:
Haskap (Lonicera caerulea L.), also known as blue honeysuckle, is a recently commercialized berry crop in Canada. Haskap berries are rich in polyphenols, including anthocyanins, which are known for potential health-promoting effects. Cyanidin-3-O-glucoside (C3G) is the most prominent anthocyanin of haskap berries. Recent literature reveals the efficacy of C3G in reducing the risk of type 2 diabetes (T2D), which has become an increasingly common health issue around the world. The T2D is characterized as a metabolic disorder of hyperglycemia and insulin resistance. It has been demonstrated that C3G has anti-diabetic effects in various ways, including improvement in insulin sensitivity, and inhibition of activities of carbohydrate-hydrolyzing enzymes, including alpha-amylase and alpha-glucosidase. The goal of this study was to investigate the influence of variety and harvesting date on haskap composition, biological properties, and antidiabetic properties. The polyphenolic compounds present in four commercially grown haskap cultivars, Aurora, Rebecca, Larissa and Evie among five harvesting stages (H1-H5), were extracted separately in 80% ethanol and analyzed to characterize their phenolic profiles. The haskap berries contain different types of polyphenols including flavonoids and phenolic acids. Anthocyanin is the major type of flavonoid. C3G is the most prominent type of anthocyanin, which accounts for 79% of total anthocyanin in all extracts. The variety Larissa at H5 contained the highest average C3G content, and its ethanol extract had the highest (1212.3±63.9 mg/100g FW) while, Evie at H1 contained the lowest C3G content (96.9±40.4 mg/100g FW). The average C3G content of Larissa from H1 – H5 varies from 208 – 1212 mg/100g FW. Quarcetin-3-Rutinoside (Q3Rut) is the major type of flavonol and highest is observed in Rebecca at H4 (47.81 mg/100g FW). The haskap berries also contained phenolic acids, but approximately 95% of the phenolic acids consisted of chlorogenic acid. The cultivar Larissa has a higher level of anthocyanin than the other four cultivars. The highest total phenolic content is observed in Evie at H5 (2.97±1.03 mg/g DW) while the lowest in Rebecca at H1 (1.47±0.96 mg/g DW). The antioxidant capacity of Evie at H5 was higher (14.40±2.21 µmol TE/ g DW) among other cultivars and the lowest observed in Aurora at H3 (5.69±0.34 µmol TE/ g DW). Furthermore, Larissa H5 shows the greatest inhibition of carbohydrate-hydrolyzing enzymes including alpha-glucosidase and alpha-amylase. In conclusion Larissa, at H5 demonstrated highest polyphenol composition and antidiabetic properties.Keywords: anthocyanin, cyanidin-3-O-glucoside, haskap, type 2 diabetes
Procedia PDF Downloads 456657 Combination of Silver-Curcumin Nanoparticle for the Treatment of Root Canal Infection
Authors: M. Gowri, E. K. Girija, V. Ganesh
Abstract:
Background and Significance: Among the dental infections, inflammation and infection of the root canal are common among all age groups. Currently, the management of root canal infections involves cleaning the canal with powerful irrigants followed by intracanal medicament application. Though these treatments have been in vogue for a long time, root canal failures do occur. Treatment for root canal infections is limited due to the anatomical complexity in terms of small micrometer volumes and poor penetration of drugs. Thus, infections of the root canal seem to be a challenge that demands development of new agents that can eradicate C. albicans. Methodology: In the present study, we synthesized and screened silver-curcumin nanoparticle against Candida albicans. Detailed molecular studies were carried out with silver-curcumin nanoparticle on C. albicans pathogenicity. Morphological cell damage and antibiofilm activity of silver-curcumin nanoparticle on C. albicans was studied using scanning electron microscopy (SEM). Biochemical evidence for membrane damage was studied using flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model. Results: Screening data showed that silver-curcumin nanoparticle was active against C. albicans. Silver-curcumin nanoparticle exerted time kill effect and post antifungal effect. When used in combination with fluconazole or nystatin, silver-curcumin nanoparticle revealed a minimum inhibitory concentration (MIC) decrease for both drugs used. In-depth molecular studies with silver-curcumin nanoparticle on C. albicans showed that silver-curcumin nanoparticle inhibited yeast to hyphae (Y-H) conversion. Further, SEM images of C. albicans showed that silver-curcumin nanoparticle caused membrane damage and inhibited biofilm formation. Biochemical evidence for membrane damage was confirmed by increased propidium iodide (PI) uptake in flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model, which mimics human tooth root canal infection. Confocal laser scanning microscopy studies showed eradication of C. albicans and reduction in colony forming unit (CFU) after 24 h treatment in the infected tooth samples in this model. Conclusion: The results of this study can pave the way for developing new antifungal agents with well deciphered mechanisms of action and can be a promising antifungal agent or medicament against root canal infection.Keywords: C. albicans, ex vivo dentine model, inhibition of biofilm formation, root canal infection, yeast to hyphae conversion inhibition
Procedia PDF Downloads 208656 Evaluation of Antimicrobial Activity of Phenolic Compounds Extracted from Jordanian Juglans regia L.
Authors: Hamoud Alshammari, Adnan Almezani, Hamdan Alshammari, Faris Alharbi
Abstract:
In this study we have examined of antimicrobial activity for unripe Juglan Regia phenolic extracts against a wide range of pathogenic microorganisms. Walnut (Juglans regia L.) is a member of Juglandaceae family used as a remedy in folk medicine. Leaves, barks, fruits and husk (peel) reported to harbor distinctive medical effect. In our study, we examined the anti-microbial effect against a set of gram positive and negative bacteria and even we have tested them against eukaryotic candida strains in a concentration gradual manner. Ethyl acetate extract of J. regia had the best antibacterial activity when compared with ciprofloxacin. The Minimum inhibition concentration for S. aureus, P. aerogenosa and S. epidermidis MIC was 0.85 mg/mL.Keywords: antimicrobial, J. regia, S. aureus, phytochemistry
Procedia PDF Downloads 200655 Phase Transition of Aqueous Ternary (THF + Polyvinylpyrrolidone + H2O) System as Revealed by Terahertz Time-Domain Spectroscopy
Authors: Hyery Kang, Dong-Yeun Koh, Yun-Ho Ahn, Huen Lee
Abstract:
Determination of the behavior of clathrate hydrate with inhibitor in the THz region will provide useful information about hydrate plug control in the upstream of the oil and gas industry. In this study, terahertz time-domain spectroscopy (THz-TDS) revealed the inhibition of the THF clathrate hydrate system with dosage of polyvinylpyrrolidone (PVP) with three different molecular weights. Distinct footprints of phase transition in the THz region (0.4–2.2 THz) were analyzed and absorption coefficients and real part of refractive indices are obtained in the temperature range of 253 K to 288 K. Along with the optical properties, ring breathing and stretching modes for different molecular weights of PVP in THF hydrate are analyzed by Raman spectroscopy.Keywords: clathrate hydrate, terahertz spectroscopy, tetrahydrofuran, inhibitor
Procedia PDF Downloads 339654 Freshwater Cyanobacterial Bioactive Insights: Planktothricoides raciorskii Compounds vs. Green Synthesized Silver Nanoparticles: Characterization, in vitro Cytotoxicity, and Antibacterial Exploration
Authors: Sujatha Edla
Abstract:
Introduction: New compounds and possible uses for the bioactive substances produced by freshwater cyanobacteria are constantly being discovered through research. Certain molecules are hazardous to the environment and human health, but others have potential applications in industry, biotechnology, and pharmaceuticals. These discoveries advance our knowledge of the varied functions these microbes perform in different ecosystems. Cyanobacterial silver nanoparticles (AgNPs) have special qualities and possible therapeutic advantages, which make them very promising for a range of medicinal uses. Aim: In our study; the attention was focused on the analysis and characterization of bioactive compounds extracted from freshwater cyanobacteria Planktothricoides raciorskii and its comparative study on Cyanobacteria-mediated silver nanoparticles synthesized by cell-free extract of Planktothricoides raciorskii. Material and Methods: A variety of bioactive secondary metabolites have been extracted, purified, and identified from cyanobacterial species using column chromatography, FTIR, and GC-MS/MS chromatography techniques and evaluated for antibacterial and cytotoxic studies, where the Cyanobacterial silver nanoparticles (CSNPs) were characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) analysis and were further tested for antibacterial and cytotoxic efficiency. Results: The synthesis of CSNPs was confirmed through visible color change and shift of peaks at 430–445 nm by UV-Vis spectroscopy. The size of CSNPs was between 22 and 34 nm and oval-shaped which were confirmed by SEM and TEM analyses. The FTIR spectra showed a new peak at the range of 3,400–3,460 cm−1 compared to the control, confirming the reduction of silver nitrate. The antibacterial activity of both crude bioactive compound extract and CSNPs showed remarkable activity with Zone of inhibition against E. coli with 9.5mm and 10.2mm, 13mm and 14.5mm against S. paratyphi, 9.2mm and 9.8mm zone of inhibition against K. pneumonia by both crude extract and CSNPs, respectively. The cytotoxicity as evaluated by extracts of Planktothricoides raciorskii against MCF7-Human Breast Adenocarcinoma cell line and HepG2- Human Hepatocellular Carcinoma cell line employing MTT assay gave IC50 value of 47.18ug/ml, 110.81ug/ml against MCF7cell line and HepG2 cell line, respectively. The cytotoxic evaluation of Planktothricoides raciorskii CSNPs against the MCF7cell line was 43.37 ug/ml and 20.88 ug/ml against the HepG2 cell line. Our ongoing research in this field aims to uncover the full therapeutic potential of cyanobacterial silver nanoparticles and address any associated challenges.Keywords: cyanobacteria, silvernanoparticles, pharmaceuticals, bioactive compounds, cytotoxic
Procedia PDF Downloads 62653 Computational Insights Into Allosteric Regulation of Lyn Protein Kinase: Structural Dynamics and Impacts of Cancer-Related Mutations
Authors: Mina Rabipour, Elena Pallaske, Floyd Hassenrück, Rocio Rebollido-Rios
Abstract:
Protein tyrosine kinases, including Lyn kinase of the Src family kinases (SFK), regulate cell proliferation, survival, and differentiation. Lyn kinase has been implicated in various cancers, positioning it as a promising therapeutic target. However, the conserved ATP-binding pocket across SFKs makes developing selective inhibitors challenging. This study aims to address this limitation by exploring the potential for allosteric modulation of Lyn kinase, focusing on how its structural dynamics and specific oncogenic mutations impact its conformation and function. To achieve this, we combined homology modeling, molecular dynamics simulations, and data science techniques to conduct microsecond-length simulations. Our approach allowed a detailed investigation into the interplay between Lyn’s catalytic and regulatory domains, identifying key conformational states involved in allosteric regulation. Additionally, we evaluated the structural effects of Dasatinib, a competitive inhibitor, and ATP binding on Lyn active conformation. Notably, our simulations show that cancer-related mutations, specifically I364L/N and E290D/K, shift Lyn toward an inactive conformation, contrasting with the active state of the wild-type protein. This may suggest how these mutations contribute to aberrant signaling in cancer cells. We conducted a dynamical network analysis to assess residue-residue interactions and the impact of mutations on the Lyn intramolecular network. This revealed significant disruptions due to mutations, especially in regions distant from the ATP-binding site. These disruptions suggest potential allosteric sites as therapeutic targets, offering an alternative strategy for Lyn inhibition with higher specificity and fewer off-target effects compared to ATP-competitive inhibitors. Our findings provide insights into Lyn kinase regulation and highlight allosteric sites as avenues for selective drug development. Targeting these sites may modulate Lyn activity in cancer cells, reducing toxicity and improving outcomes. Furthermore, our computational strategy offers a scalable approach for analyzing other SFK members or kinases with similar properties, facilitating the discovery of selective allosteric modulators and contributing to precise cancer therapies.Keywords: lyn tyrosine kinase, mutation analysis, conformational changes, dynamic network analysis, allosteric modulation, targeted inhibition
Procedia PDF Downloads 14652 Investigation of the Function of Chemotaxonomy of White Tea on the Regulatory Function of Genes in Pathway of Colon Cancer
Authors: Fereydoon Bondarian, Samira Shaygan
Abstract:
Today, many nutritionists recommend the consumption of plants, fruits, and vegetables to provide the antioxidants needed by the body because the use of plant antioxidants usually causes fewer side effects and better treatment. Natural antioxidants increase the power of plasma antioxidants and reduce the incidence of some diseases, such as cancer. Bad lifestyles and environmental factors play an important role in increasing the incidence of cancer. In this study, different extracts of white teas taken from two types of tea available in Iran (clone 100 and Chinese hybrid) due to the presence of a hydroxyl functional group in their structure to inhibit free radicals and anticancer properties, using 3 aqueous, methanolic and aqueous-methanolic methods were used. The total polyphenolic content was calculated using the Folin-Ciocalcu method, and the percentage of inhibition and trapping of free radicals in each of the extracts was calculated using the DPPH method. With the help of high-performance liquid chromatography, a small amount of each catechin in the tea samples was obtained. Clone 100 white tea was found to be the best sample of tea in terms of all the examined attributes (total polyphenol content, antioxidant properties, and individual amount of each catechin). The results showed that aqueous and aqueous-methanolic extracts of Clone 100 white tea have the highest total polyphenol content with 27.59±0.08 and 36.67±0.54 (equivalent gallic acid per gram dry weight of leaves), respectively. Due to having the highest level of different groups of catechin compounds, these extracts have the highest property of inhibiting and trapping free radicals with 66.61±0.27 and 71.74±0.27% (mg/l) of the extracted sample against ascorbic acid). Using the MTT test, the inhibitory effect of clone 100 white tea extract in inhibiting the growth of HCT-116 colon cancer cells was investigated and the best time and concentration treatments were 500, 150 and 1000 micrograms in 8, 16 and 24 hours, respectively. To investigate gene expression changes, selected genes, including tumorigenic genes, proto-oncogenes, tumor suppressors, and genes involved in apoptosis, were selected and analyzed using the real-time PCR method and in the presence of concentrations obtained for white tea. White tea extract at a concentration of 1000 μg/ml 3 times 16, 8, and 24 hours showed the highest growth inhibition in cancer cells with 53.27, 55.8, and 86.06%. The concentration of 1000 μg/ml aqueous extract of white tea under 24-hour treatment increased the expression of tumor suppressor genes compared to the normal sample.Keywords: catechin, gene expression, suppressor genes, colon cell line
Procedia PDF Downloads 58651 Amniotic Fluid Stem Cells Ameliorate Cisplatin-Induced Acute Renal Failure through Autophagy Induction and Inhibition of Apoptosis
Authors: Soniya Nityanand, Ekta Minocha, Manali Jain, Rohit Anthony Sinha, Chandra Prakash Chaturvedi
Abstract:
Amniotic fluid stem cells (AFSC) have been shown to contribute towards the amelioration of Acute Renal Failure (ARF), but the mechanisms underlying the renoprotective effect are largely unknown. Therefore, the main goal of the current study was to evaluate the therapeutic efficacy of AFSC in a cisplatin-induced rat model of ARF and to investigate the underlying mechanisms responsible for its renoprotective effect. To study the therapeutic efficacy of AFSC, ARF was induced in Wistar rats by an intra-peritoneal injection of cisplatin, and five days after administration, the rats were randomized into two groups and injected with either AFSC or normal saline intravenously. On day 8 and 12 after cisplatin injection, i.e., day 3 and day7 post-therapy respectively, the blood biochemical parameters, histopathological changes, apoptosis and expression of pro-apoptotic, anti-apoptotic and autophagy-related proteins in renal tissues were studied in both groups of rats. Administration of AFSC in ARF rats resulted in improvement of renal function and attenuation of renal damage as reflected by significant decrease in blood urea nitrogen, serum creatinine levels, tubular cell apoptosis as assessed by Bax/Bcl2 ratio, and expression of the pro-apoptotic proteins viz. PUMA, Bax, cleaved caspase-3 and cleaved caspase-9 as compared to saline-treated group. Furthermore, in the AFSC-treated group as compared to saline-treated group, there was a significant increase in the activation of autophagy as evident by increased expression of LC3-II, ATG5, ATG7, Beclin1 and phospho-AMPK levels with a concomitant decrease in phospho-p70S6K and p62 expression levels. To further confirm whether the protective effects of AFSC on cisplatin-induced apoptosis were dependent on autophagy, chloroquine, an autophagy inhibitor was administered by the intra-peritoneal route. Chloroquine administration led to significant reduction in the anti-apoptotic effects of the AFSC therapy and further deterioration in the renal structure and function caused by cisplatin. Collectively, our results put forth that AFSC ameliorates cisplatin-induced ARF through induction of autophagy and inhibition of apoptosis. Furthermore, the protective effects of AFSC were blunted by chloroquine, highlighting that activation of autophagy is an important mechanism of action for the protective role of AFSC in cisplatin-induced renal injury.Keywords: amniotic fluid stem cells, acute renal failure, autophagy, cisplatin
Procedia PDF Downloads 104650 The Creation of a Yeast Model for 5-oxoproline Accumulation
Authors: Pratiksha Dubey, Praveen Singh, Shantanu Sen Gupta, Anand K. Bachhawat
Abstract:
5-oxoproline (pyroglutamic acid) is a cyclic lactam of glutamic acid. In the cell, it can be produced by several different pathways and is metabolized into glutamate with the help of the 5-oxoprolinase enzyme (OPLAH or OXP1). The inhibition of 5-oxoprolinase enzyme in mammals was found to result in heart failure and is thought to be a consequence of oxidative stress [1]. To analyze the consequences of 5-oxoproline accumulation more clearly, we are generating models for 5-oxoproline accumulation in yeast. The 5-oxoproline accumulation model in yeast is being developed by two different strategies. The first one is by overexpression of the mouse -glutamylcyclotransferase enzyme. It degrades -glu-met dipeptide into 5-oxoproline and methionine taken by the cell from the medium. The second strategy is by providing high concentration of 5-oxoproline externally to the yeast cells. The intracellular 5-oxoproline levels in both models are being evaluated. In addition, the metabolic and cellular consequences are being investigated.Keywords: 5-oxoproline, pyroglutamic acid, yeast, genetics
Procedia PDF Downloads 85649 Immunomodulatory Role of Heat Killed Mycobacterium indicus pranii against Cervical Cancer
Authors: Priyanka Bhowmik, Subrata Majumdar, Debprasad Chattopadhyay
Abstract:
Background: Cervical cancer is the third major cause of cancer in women and the second most frequent cause of cancer related deaths causing 300,000 deaths annually worldwide. Evasion of immune response by Human Papilloma Virus (HPV), the key contributing factor behind cancer and pre-cancerous lesions of the uterine cervix, makes immunotherapy a necessity to treat this disease. Objective: A Heat killed fraction of Mycobacterium indicus pranii (MIP), a non-pathogenic Mycobacterium has been shown to exhibit cytotoxic effects on different cancer cells, including human cervical carcinoma cell line HeLa. However, the underlying mechanisms remain unknown. The aim of this study is to decipher the mechanism of MIP induced HeLa cell death. Methods: The cytotoxicity of Mycobacterium indicus pranii against HeLa cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected by annexin V and Propidium iodide (PI) staining. The assessment of reactive oxygen species (ROS) generation and cell cycle analysis were measured by flow cytometry. The expression of apoptosis associated genes was analyzed by real time PCR. Result: MIP could inhibit the proliferation of HeLa cell in a time and dose dependent manner but caused minor damage to normal cells. The induction of apoptosis was confirmed by the cell surface presentation of phosphatidyl serine, DNA fragmentation, and mitochondrial damage. MIP caused very early (as early as 30 minutes) transcriptional activation of p53, followed by a higher activation (32 fold) at 24 hours suggesting prime importance of p53 in MIP-induced apoptosis in HeLa cell. The up regulation of p53 dependent pro-apoptotic genes Bax, Bak, PUMA, and Noxa followed a lag phase that was required for the transcriptional p53 program. MIP also caused the transcriptional up regulation of Toll like receptor 2 and 4 after 30 minutes of MIP treatment suggesting recognition of MIP by toll like receptors. Moreover, MIP caused the inhibition of expression of HPV anti apoptotic gene E6, which is known to interfere with p53/PUMA/Bax apoptotic cascade. This inhibition might have played a role in transcriptional up regulation of PUMA and subsequently apoptosis. ROS was generated transiently which was concomitant with the highest transcription activation of p53 suggesting a plausible feedback loop network of p53 and ROS in the apoptosis of HeLa cells. Scavenger of ROS, such as N-acetyl-L-cysteine, decreased apoptosis suggesting ROS is an important effector of MIP induced apoptosis. Conclusion: Taken together, MIP possesses full potential to be a novel therapeutic agent in the clinical treatment of cervical cancer.Keywords: cancer, mycobacterium, immunity, immunotherapy.
Procedia PDF Downloads 249648 Investigation of Acidizing Corrosion Inhibitors for Mild Steel in Hydrochloric Acid: Theoretical and Experimental Approaches
Authors: Ambrish Singh
Abstract:
The corrosion inhibition performance of pyran derivatives (AP) on mild steel in 15% HCl was investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, weight loss, contact angle, and scanning electron microscopy (SEM) measurements, DFT and molecular dynamic simulation. The adsorption of APs on the surface of mild steel obeyed Langmuir isotherm. The potentiodynamic polarization study confirmed that inhibitors are mixed type with cathodic predominance. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface. The theoretical data obtained are, in most cases, in agreement with experimental results.Keywords: acidizing inhibitor, pyran derivatives, DFT, molecular simulation, mild steel, EIS
Procedia PDF Downloads 195647 Ethylene Sensitivity in Orchids and Its Control Using 1-MCP: A Review
Authors: Parviz Almasi
Abstract:
Ethylene is produced as a gaseous growth regulator in all plants and their constructive parts such as roots, stems, leaves, flowers and fruits. It is considered a multifunctional phytohormone that regulates both growths including flowering, fruit ripening, inhibition of root growth, and senescence such as senescence of leaves and flowers and etc. In addition, exposure to external ethylene is caused some changes that are often undesirable and harmful. Some flowers are more sensitive to others and when exposed to ethylene; their aging process is hastened. 1-MCP is an exogenous and endogenous ethylene action inhibitor, which binds to the ethylene receptors in the plants and prevents ethylene-dependent reactions. The binding affinity of 1- MCP for the receptors is about 10 times more than ethylene. Hence, 1-MCP can be a potential candidate for controlling of ethylene injury in horticultural crops. This review integrates knowledge of ethylene biosynthesis in the plants and also a mode of action of 1-MCP in preventing of ethylene injury.Keywords: ethylene injury, biosynthesis, ethylene sensitivity, 1-MCP
Procedia PDF Downloads 100646 Oncolytic H-1 Parvovirus Entry in Cancer Cells through Clathrin-Mediated Endocytosis
Authors: T. Ferreira, A. Kulkarni, C. Bretscher, K. Richter, M. Ehrlich, A. Marchini
Abstract:
H-1 protoparvovirus (H-1PV) is a virus with inherent oncolytic and oncosuppressive activities while remaining non-pathogenic in humans. H-1PV was the first oncolytic parvovirus to undergo clinical testing. Results from trials in patients with glioblastoma or pancreatic carcinoma showed an excellent safety profile and first signs of efficacy. H-1PV infection is vastly dependent on cellular factors, from cell attachment and entry to viral replication and egress. Hence, we believe that the characterisation of the parvovirus life cycle would ultimately help further improve H-1PV clinical outcome. In the present study, we explored the entry pathway of H-1PV in cervical HeLa and glioma NCH125 cancer cell lines. Electron and confocal microscopy showed viral particles associated with clathrin-coated pits and vesicles, providing the first evidence that H-1PV cell entry occurs through clathrin-mediated endocytosis. Accordingly, we observed that by blocking clathrin-mediated endocytosis with hypertonic sucrose, chlorpromazine, or pitstop 2, H-1PV transduction was markedly decreased. Accordingly, siRNA-mediated knockdown of AP2M1, which retains a crucial role in clathrin-mediated endocytosis, verified the reliance of H-1PV on this route to enter HeLa and NCH125 cancer cells. By contrast, we found no evidence of viral entry through caveolae-mediated endocytosis. Indeed, pre-treatment of cells with nystatin or methyl-β-cyclodextrin, both inhibitors of caveolae-mediated endocytosis, did not affect viral transduction levels. Unexpectedly, siRNA-mediated knockdown of caveolin-1, the main driver of caveolae-mediated endocytosis, increased H-1PV transduction, suggesting caveolin-1 is a negative modulator of H-1PV infection. We also show that H-1PV entry is dependent on dynamin, a protein responsible for mediating the scission of vesicle neck and promoting further internalisation. Furthermore, since dynamin inhibition almost completely abolished H-1PV infection, makes it unlikely that H-1PV uses macropinocytosis as an alternative pathway to enter cells. After viral internalisation, H-1PV passes through early to late endosomes as observed by confocal microscopy. Inside these endocytic compartments, the acidic environment proved to be crucial for a productive infection. Inhibition of acidification of pH dramatically reduced H-1PV transduction. Besides, a fraction of H-1PV particles was observed inside LAMP1-positive lysosomes, most likely following a non-infectious route. To the author's best knowledge, this is the first study to characterise the cell entry pathways of H-1PV. Along these lines, this work will further contribute to understand H-1PV oncolytic properties as well as to improve its clinical potential in cancer virotherapy.Keywords: clathrin-mediated endocytosis, H-1 parvovirus, oncolytic virus, virus entry
Procedia PDF Downloads 155645 L. rhamnosus GG Lysate Can Inhibit Cytotoxic Effects of S. aureus on Keratinocytes in vitro
Authors: W. Mohammed Saeed, A. J. Mcbain, S. M. Cruickshank, C. A. O’Neill
Abstract:
In the gut, probiotics have been shown to protect epithelial cells from pathogenic bacteria through a number of mechanisms: 1-Increasing epithelial barrier function, 2-Modulation of the immune response especially innate immune response, 3-Inhibition of pathogen adherence and down regulation of virulence factors. Since probiotics have positive impacts on the gut, their potential effects on other body tissues, such as skin have begun to be investigated. The purpose of this project is to characterize the potential of probiotic bacteria lysate as therapeutic agent for preventing or reducing the S. aureus infection. Normal human primary keratinocytes (KCs) were exposed to S. aureus (106/ml) in the presence or absence of L. rhamnosus GG lysate (extracted from 108cfu/ml). The viability of the KCs was measured after 24 hours using a trypan blue exclusion assay. When KCs were treated with S aureus alone, only 25% of the KCs remained viable at 24 hours post infection. However, in the presence of L. rhamnosus GG lysate the viability of pathogen infected KCs increased to 58% (p=0.008, n=3). Furthermore, when KCs co-exposed, pre- exposed or post-exposed to L. rhamnosus GG lysate, the viability of the KCs increased to ≈60%, the L. rhamnosus GG lysate was afforded equal protection in different conditions. These data suggests that two possible separate mechanisms are involved in the protective effects of L. rhamnosus GG such as reducing S. aureus growth, or inhibiting of pathogenic adhesion. Interestingly, a lysate of L rhamnosus GG provided significant reduction in S. aureus growth and adhesion of S. aureus that being viable following 24 hours incubation with S aureus. Therefore, a series of Liquid Chromatography (RP-LC) methods were adopted to partially purify the lysate in combination with functional assays to elucidate in which fractions the efficacious molecules were contained. In addition, the Mass Spectrometry-based protein sequencing was used to identify putative proteins in the fractions. The data presented from purification process demonstrated that L. rhamnosus GG lysate has the potential to protect keratinocytes from the toxic effects of the skin pathogen, S. aureus. Three potential mechanisms were identified: inhibition of pathogen growth; competitive exclusion; and displacement of the pathogen from keratinocyte binding sites. In this study, ‘moonlight’ proteins were identified in the current study’s MS/MS data for L. rhamnosus GG lysate, which could elucidate the ability of lysate in the competitive exclusion and displacement of S. aureus from keratinocyte binding sites. Taken together, it can be speculated that L. rhamnosus GG lysate utilizes different mechanisms to protect keratinocytes from S. aureus toxicity. The present study indicates that the proteinaceous substances are involved in anti-adhesion activity. This is achieved by displacing the pathogen and preventing the severity of pathogen infection and the moonlight proteins might be involved in inhibiting the adhesion of pathogens.Keywords: lysate, fractions, adhesion, L. rhamnosus GG, S. aureus toxicity
Procedia PDF Downloads 292644 In vitro Antioxidant, Anti-Diabetic and Nutritional Properties of Breynia retusa
Authors: Parimelazhagan Thangaraj
Abstract:
Natural products serves human kind as a source of all drugs and higher plants provide most of these therapeutic agents. These products are widely recognized in the pharmaceutical industry for their broad structural diversity as well as their wide range of pharmacological activities. Euphorbiaceae is one of the important families with significant pharmacological activities, of which many species has been used traditionally for the treatment of various ailments. Breynia retusa belongs to the family Euphorbiaceae is used to cure ailments like body pain, skin inflammation, hyperglycaemia, diarrhoea, dysentery and toothache. Flowers and young leaves of B. retusa are cooked and eaten, roots are used for meningitis. The juice of the stem is used in conjunctivtis and leaves as poultice to hasten suppuration. Based on the strong evidences of traditional uses of Breynia retusa, the present study was focused on neutraceuticals evaluation of the species with special reference to oxidative stress and diabetes. Both leaves and stem of B. retusa were extracted with different solvents and analyzed for radical scavenging ability wherein ABTS.+ (8396.95±1529.01 µM TEAC/g extract), phosphomolybdenum (17.34±0.08 g AAE/100 g extract) and FRAP (6075.66±414.28 µM Fe (II) E/mg extract) assays showed good radical scavenging activity in stem. Furthermore, leaf extracts showed good radical inhibition in DPPH (2.4 µg/mL), metal ion (27.44±0.09 mg EDTAE/g extract) scavenging methods. The α-amylase and α-glucosidase inhibitors are currently used for diabetic treatment as oral hypoglycemic agents. The inhibitory effects of the B. retusa leaf and stem ethyl acetate extracts showed good inhibition on α-amylase (96.25% and 95.69 respectively) and α-glucosidase (54.50% and 50.87% respectively) enzymes compared to standard acarbose. The proximate composition analysis of B. retusa leaves contains higher amount of total carbohydrates (14.08 g Glucose equivalents/100 g sample), ash (19.04 %) and crude fibre (0.52 %). The examination of mineral profile explored that the leaves was rich in calcium (1891 ppm), sulphur (1406 ppm), copper (2600 ppm) and magnesium (778 ppm). Leaves sample revealed very minimal amount of anti-nutrient contents like trypsin (14.08±0.03 TIU/mg protein) and tannin (0.011±0.001 mg TAE/g sample). The low anti nutritional factors may not pose any serious nutritional problems when these leaves are consumed. In conclusion, it is very clear that dietary compounds from B. retusa are suitable and promising for the development of safe food products and natural additives. Based on the studies, it may be concluded that nutritional composition, antioxidant and anti-diabetic activities this species can be used as future therapeutic medicine.Keywords: Breynia retusa, nutraceuticals, antioxidant, anti diabetic
Procedia PDF Downloads 331643 Chronic Toxicity of Halofenozide on a Larvivorous Fish, Gambusia affinis: Acetylcholinesterase, Glutathione S-transferase Activities and Glutathione
Authors: Chouahda Salima, Soltani Noureddine
Abstract:
The present study is a part of biological control against mosquitoes. It aims to assess the impact of a selective insect growth regulator: halofenozide in mosquitofish: Gambusia affinis. Acetylcholinesterase (AChE), glutathione S-transferase (GST) and glutathione (GSH) used in assessing of environmental stress were measured in juveniles and adults males and females. The response of these biomarkers reveals an inhibition of AChE specific activity, an induction of GST activity, and decrease of GSH rates in juveniles in the end of experiment and during chronic treatment adult males and females. The effect of these biomarkers is more pronounced in females compared to males and juveniles. These different biomarkers have a similar profile for the duration of exposure.Keywords: biomarkers, chronic toxicity, insecticide, halofenozide, Gambusia affinis, pollution
Procedia PDF Downloads 341642 Effect of Hydrocolloid Coatings and Bene Kernel Oil Acrylamide Formation during Potato Deep Frying
Authors: Razieh Niazmand, Dina Sadat Mousavian, Parvin Sharayei
Abstract:
This study investigated the effect of carboxymethyl cellulose (CMC), tragacanth, and saalab hydrocolloids in two concentrations (0.3%, 0.7%) and different frying media, refined canola oil (RCO), RCO + 1% bene kernel oil (BKO), and RCO + 1 mg/l unsaponifiable matter (USM) of BKO on acrylamide formation in fried potato slices. The hydrocolloid coatings significantly reduced acrylamide formation in potatoes fried in all oils. Increasing the hydrocolloid concentration from 0.3% to 0.7% produced no effective inhibition of acrylamide. The 0.7 % CMC solution was identified as the most promising inhibitor of acrylamide formation in RCO oil, with a 62.9% reduction in acrylamide content. The addition of BKO or USM to RCO led to a noticeable reduction in the acrylamide level in fried potato slices. The findings suggest that a 0.7% CMC solution and RCO+USM are promising inhibitors of acrylamide formation in fried potato products.Keywords: CMC, frying, potato, saalab, tracaganth
Procedia PDF Downloads 288641 Design and Development of Small Peptides as Anti-inflammatory Agents
Authors: Palwinder Singh
Abstract:
Beyond the conventional mode of working with anti-inflammatory agents through enzyme inhibition, herein, an alternate substrate of cyclooxygenase-2 was developed. Proline centered pentapeptide iso-conformational to arachidonic acid exhibited appreciable selectivity for COX-2 overcoming acetic acid and formalin induced pain in rats to almost 80% and was treated as a substrate by the enzyme. Remarkably, COX-2 metabolized the pentapeptide into small fragments consisting mainly of di- and tri-peptides that ensured the safe breakdown of the peptide under in-vivo conditions. The kinetic parameter Kcat/Km for COX-2 mediated metabolism of peptide 6.3 x 105 M-1 s-1 was quite similar to 9.5 x 105 M-1 s-1 for arachidonic acid. Evidenced by the dynamic molecular studies and the use of Y385F COX-2, it was observed that the breakage of the pentapeptide has probably taken place through H-bond activation of the peptide bond by the side chains of Y385 and S530.Keywords: small peptides, anti-inflammatory agents, cyclooxygenase-2, unnatural substrates
Procedia PDF Downloads 70640 Antimicrobial Activity of Some Alimentary and Medicinal Plants
Authors: Akrpoum Souad, Lalaoui Korrichi
Abstract:
Vicia faba L.,Vaccinium macrocarpon, Punica granatum, Lavandula officinalis, Artemisia absinthium, Linum capitatum and Camellia sinensis were frequently used in our alimentation. In this study, we have tested the antimicrobial activity of their ethanolic and methanolic extracts on some pathogen bacteria, then their ability to in vivo inhibit the growth of Strepcoccus pneumonia. The phytochemical screening has given the composition of the most active extracts. According to the obtained results, the ethanolic extract of Lavendula. officinalis and A absinthium has shown an inhibition of all the tested strains of becteria3. The ethanolic extract of L. officinalis has given the highest activity against S. pneumoniae, followed by the methanolic extract of C. sinensis 1, 2 and P. granatum. The phytochemical screening showed that the most active extracts contained mainly naturels compounds.Keywords: plants, extracts, antimicrobial activity, streptococcus pneumoniae, phytochemical screening
Procedia PDF Downloads 517639 Quantitative Structure Activity Relationship Model for Predicting the Aromatase Inhibition Activity of 1,2,3-Triazole Derivatives
Authors: M. Ouassaf, S. Belaidi
Abstract:
Aromatase is an estrogen biosynthetic enzyme belonging to the cytochrome P450 family, which catalyzes the limiting step in the conversion of androgens to estrogens. As it is relevant for the promotion of tumor cell growth. A set of thirty 1,2,3-triazole derivatives was used in the quantitative structure activity relationship (QSAR) study using regression multiple linear (MLR), We divided the data into two training and testing groups. The results showed a good predictive ability of the MLR model, the models were statistically robust internally (R² = 0.982) and the predictability of the model was tested by several parameters. including external criteria (R²pred = 0.851, CCC = 0.946). The knowledge gained in this study should provide relevant information that contributes to the origins of aromatase inhibitory activity and, therefore, facilitates our ongoing quest for aromatase inhibitors with robust properties.Keywords: aromatase inhibitors, QSAR, MLR, 1, 2, 3-triazole
Procedia PDF Downloads 115