Search results for: scientific models
8268 Leveraging Unannotated Data to Improve Question Answering for French Contract Analysis
Authors: Touila Ahmed, Elie Louis, Hamza Gharbi
Abstract:
State of the art question answering models have recently shown impressive performance especially in a zero-shot setting. This approach is particularly useful when confronted with a highly diverse domain such as the legal field, in which it is increasingly difficult to have a dataset covering every notion and concept. In this work, we propose a flexible generative question answering approach to contract analysis as well as a weakly supervised procedure to leverage unannotated data and boost our models’ performance in general, and their zero-shot performance in particular.Keywords: question answering, contract analysis, zero-shot, natural language processing, generative models, self-supervision
Procedia PDF Downloads 1948267 Dow Polyols near Infrared Chemometric Model Reduction Based on Clustering: Reducing Thirty Global Hydroxyl Number (OH) Models to Less Than Five
Authors: Wendy Flory, Kazi Czarnecki, Matthijs Mercy, Mark Joswiak, Mary Beth Seasholtz
Abstract:
Polyurethane Materials are present in a wide range of industrial segments such as Furniture, Building and Construction, Composites, Automotive, Electronics, and more. Dow is one of the leaders for the manufacture of the two main raw materials, Isocyanates and Polyols used to produce polyurethane products. Dow is also a key player for the manufacture of Polyurethane Systems/Formulations designed for targeted applications. In 1990, the first analytical chemometric models were developed and deployed for use in the Dow QC labs of the polyols business for the quantification of OH, water, cloud point, and viscosity. Over the years many models have been added; there are now over 140 models for quantification and hundreds for product identification, too many to be reasonable for support. There are 29 global models alone for the quantification of OH across > 70 products at many sites. An attempt was made to consolidate these into a single model. While the consolidated model proved good statistics across the entire range of OH, several products had a bias by ASTM E1655 with individual product validation. This project summary will show the strategy for global model updates for OH, to reduce the number of models for quantification from over 140 to 5 or less using chemometric methods. In order to gain an understanding of the best product groupings, we identify clusters by reducing spectra to a few dimensions via Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). Results from these cluster analyses and a separate validation set allowed dow to reduce the number of models for predicting OH from 29 to 3 without loss of accuracy.Keywords: hydroxyl, global model, model maintenance, near infrared, polyol
Procedia PDF Downloads 1358266 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 1338265 Text Similarity in Vector Space Models: A Comparative Study
Authors: Omid Shahmirzadi, Adam Lugowski, Kenneth Younge
Abstract:
Automatic measurement of semantic text similarity is an important task in natural language processing. In this paper, we evaluate the performance of different vector space models to perform this task. We address the real-world problem of modeling patent-to-patent similarity and compare TFIDF (and related extensions), topic models (e.g., latent semantic indexing), and neural models (e.g., paragraph vectors). Contrary to expectations, the added computational cost of text embedding methods is justified only when: 1) the target text is condensed; and 2) the similarity comparison is trivial. Otherwise, TFIDF performs surprisingly well in other cases: in particular for longer and more technical texts or for making finer-grained distinctions between nearest neighbors. Unexpectedly, extensions to the TFIDF method, such as adding noun phrases or calculating term weights incrementally, were not helpful in our context.Keywords: big data, patent, text embedding, text similarity, vector space model
Procedia PDF Downloads 1758264 Geographic Information System for District Level Energy Performance Simulations
Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck
Abstract:
The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.Keywords: CityGML, EnergyADE, energy performance simulation, GIS
Procedia PDF Downloads 1688263 Your Second Step on Research Method: Applied Linguistic Perspective
Authors: Sadeq Al Yaari, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari
Abstract:
Aims: To summarize and critically review involved articles for the purpose of investigating the research ethics in them. It also tests the hypothesis, identifying causal relationship, association between variables and differences between/ among groups of participants Design: This is quasi experimental study wherein scientific models were included. It starts from the ideas before the researchers draw the questions, formulate the hypothesis and seek for the solutions. Hypothesis was brief and to the point. A data collection form was constructed. The researchers made use of speculative, presumptive, stipulated and conclusive propositions. Data are statistically analyzed and visualized and are treated objectively in light of the characteristics of a good research. Outcomes: Results and discussion are relevant to the statement of the problem and research objectives. Principles of ethical research were met where the researchers ensured high ethical standards. Variables’ types are scientifically analyzed.Keywords: research, method, analysis, speech, text
Procedia PDF Downloads 438262 Neuropedagogy as a Scientific Discipline: Interdisciplinary Description of the Theoretical Basis for the Development of a Research Field
Authors: M. Chojak
Abstract:
Recently, more and more scientific disciplines refer to research in the field of neurobiology. Interdisciplinary research procedures are created using modern methods of brain imaging. Neither did the pedagogues start looking for neuronal conditions for various processes. The publications began to show concepts such as ‘neuropedagogy’, ‘neuroeducation’, ‘neurodidactics’, ‘brain-friendly education’. They were and are still used interchangeably. In the offer of training for teachers, the topics of multiple intelligences or educational kinesiology began to be more and more popular. These and other ideas have been actively introduced into the curricula. To our best knowledge, the literature on the subject lacks articles organizing the new nomenclature and indicating the methodological framework for research that would confirm the effectiveness of the above-mentioned innovations. The author of this article tries to find the place for neuropedagogy in the system of sciences, define its subject of research, methodological framework and basic concepts. This is necessary to plan studies that will verify the so-called neuromyths.Keywords: brain, education, neuropedagogy, research
Procedia PDF Downloads 1738261 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity
Authors: Shaan Khosla, Jon Krohn
Abstract:
In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.Keywords: AI, machine learning, NLP, recruiting
Procedia PDF Downloads 848260 Bridging the Gap between Different Interfaces for Business Process Modeling
Authors: Katalina Grigorova, Kaloyan Mironov
Abstract:
The paper focuses on the benefits of business process modeling. Although this discipline is developing for many years, there is still necessity of creating new opportunities to meet the ever-increasing users’ needs. Because one of these needs is related to the conversion of business process models from one standard to another, the authors have developed a converter between BPMN and EPC standards using workflow patterns as intermediate tool. Nowadays there are too many systems for business process modeling. The variety of output formats is almost the same as the systems themselves. This diversity additionally hampers the conversion of the models. The presented study is aimed at discussing problems due to differences in the output formats of various modeling environments.Keywords: business process modeling, business process modeling standards, workflow patterns, converting models
Procedia PDF Downloads 5868259 The Trumping of Science: Exploratory Study into Discrepancy between Politician and Scientist Sources in American Covid-19 News Coverage
Authors: Wafa Unus
Abstract:
Science journalism has been vanishing from America’s national newspapers for decades. Reportage on scientific topics is limited to only a handful of newspapers and of those, few employ dedicated science journalists to cover stories that require this specialized expertise. News organizations' lack of readiness to convey complex scientific concepts to a mass populace becomes particularly problematic when events like the Covid-19 pandemic occur. The lack of coverage of Covid-19 prior to its onset in the United States, suggests something more troubling - that the deprioritization of reporting on hard science as an educational tool in favor of political frames of coverage, places dangerous blinders on the American public. This research looks at the disparity between voices of health and science experts in news articles and the voices of political figures, in order to better understand the approach of American newspapers in conveying expert opinion on Covid-19. A content analysis of 300 articles on Covid-19 by major newspapers in the United States between January 1st, 2020 and April 30th, 2020 illuminates this investigation. The Boston Globe, the New York Times, and the Los Angeles Times are included in the content analysis. Initial findings reveal a significant disparity in the number of articles that mention Anthony Fauci, the director of the National Institute Allergy and Infectious Disease, and the number that make reference to political figures. Covid-related articles in the New York Times that focused on health topics (as opposed to economic or social issues) contained the voices of 54 different politicians who were mentioned a total of 608 times. Only five members of the scientific community were mentioned a total of 24 times (out of 674 articles). In the Boston Globe, 36 different politicians were mentioned a total of 147 times, and only two members of the scientific community, one being Anthony Fauci, were mentioned a total of nine times (out of 423 articles). In the Los Angeles Times, 52 different politicians were mentioned a total of 600 times, and only six members of the scientific community were included and were mentioned a total of 82 times with Fauci being mentioned 48 times (out of 851 articles). Results provide a better understanding of the frames in which American journalists in Covid hotspots conveyed information of expert analysis on Covid-19 during one of the most pressing news events of the century. Ultimately, the objective of this study is to utilize the exploratory data to evaluate the nature, extent and impact of Covid-19 reporting in the context of trustworthiness and scientific expertise. Secondarily, this data will illuminate the degree to which Covid-19 reporting focused on politics over science.Keywords: science reporting, science journalism, covid, misinformation, news
Procedia PDF Downloads 2168258 Analysis of Cardiac Health Using Chaotic Theory
Authors: Chandra Mukherjee
Abstract:
The prevalent knowledge of the biological systems is based on the standard scientific perception of natural equilibrium, determination and predictability. Recently, a rethinking of concepts was presented and a new scientific perspective emerged that involves complexity theory with deterministic chaos theory, nonlinear dynamics and theory of fractals. The unpredictability of the chaotic processes probably would change our understanding of diseases and their management. The mathematical definition of chaos is defined by deterministic behavior with irregular patterns that obey mathematical equations which are critically dependent on initial conditions. The chaos theory is the branch of sciences with an interest in nonlinear dynamics, fractals, bifurcations, periodic oscillations and complexity. Recently, the biomedical interest for this scientific field made these mathematical concepts available to medical researchers and practitioners. Any biological network system is considered to have a nominal state, which is recognized as a homeostatic state. In reality, the different physiological systems are not under normal conditions in a stable state of homeostatic balance, but they are in a dynamically stable state with a chaotic behavior and complexity. Biological systems like heart rhythm and brain electrical activity are dynamical systems that can be classified as chaotic systems with sensitive dependence on initial conditions. In biological systems, the state of a disease is characterized by a loss of the complexity and chaotic behavior, and by the presence of pathological periodicity and regulatory behavior. The failure or the collapse of nonlinear dynamics is an indication of disease rather than a characteristic of health.Keywords: HRV, HRVI, LF, HF, DII
Procedia PDF Downloads 4258257 Hybrid Project Management Model Based on Lean and Agile Approach
Authors: Fatima-Zahra Eddoug, Jamal Benhra, Rajaa Benabbou
Abstract:
Several project management models exist in the literature and the most used ones are the hybrids for their multiple advantages. Our objective in this paper is to analyze the existing models, which are based on the Lean and Agile approaches and to propose a novel framework with the convenient tools that will allow efficient management of a general project. To create the desired framework, we were based essentially on 7 existing models. Only the Scrum tool among the agile tools was identified by several authors to be appropriate for project management. In contrast, multiple lean tools were proposed in different phases of the project.Keywords: agility, hybrid project management, lean, scrum
Procedia PDF Downloads 1388256 Multiple Linear Regression for Rapid Estimation of Subsurface Resistivity from Apparent Resistivity Measurements
Authors: Sabiu Bala Muhammad, Rosli Saad
Abstract:
Multiple linear regression (MLR) models for fast estimation of true subsurface resistivity from apparent resistivity field measurements are developed and assessed in this study. The parameters investigated were apparent resistivity (ρₐ), horizontal location (X) and depth (Z) of measurement as the independent variables; and true resistivity (ρₜ) as the dependent variable. To achieve linearity in both resistivity variables, datasets were first transformed into logarithmic domain following diagnostic checks of normality of the dependent variable and heteroscedasticity to ensure accurate models. Four MLR models were developed based on hierarchical combination of the independent variables. The generated MLR coefficients were applied to another data set to estimate ρₜ values for validation. Contours of the estimated ρₜ values were plotted and compared to the observed data plots at the colour scale and blanking for visual assessment. The accuracy of the models was assessed using coefficient of determination (R²), standard error (SE) and weighted mean absolute percentage error (wMAPE). It is concluded that the MLR models can estimate ρₜ for with high level of accuracy.Keywords: apparent resistivity, depth, horizontal location, multiple linear regression, true resistivity
Procedia PDF Downloads 2768255 The Effect of Contemporary Islamic Thought Liberalization to the Development of Science
Authors: Ibrahim Malik, Vita Fathimah Silondae, Askoning
Abstract:
The liberalization of Islamic thought is not only an impact on the views of Muslim community regarding worldview, but has touched the stage reconstruction of contemporary science. It can be seen from the emergence of Western and Eastern intellectual movements that try to reconstruct contemporary science arguing that scientific culture is not currently able to deliver audiences to change the order of the better society. Such Islamic thought liberalization has a huge influence on the multi-dimensional crisis in various sectors such as the economic, culture, politic, ecology, and other sectors. Therefore, this paper examines the effects of the liberalization of contemporary Islamic thought towards on the development of modern science. The method used in this paper is based on textual study of Al-Qur'an, Hadith (prophetic tradition), and the history of contemporary Islamic thought and comparing it with the reality of the development of science today. So, the influence of Islamic thought liberalization has created a crisis and stagnation of the development of scientific disciplines can be found.Keywords: liberalization, science, Islam, development of science
Procedia PDF Downloads 4288254 Evaluation of Newly Synthesized Steroid Derivatives Using In silico Molecular Descriptors and Chemometric Techniques
Authors: Milica Ž. Karadžić, Lidija R. Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Z. Kovačević, Anamarija I. Mandić, Katarina Penov-Gaši, Andrea R. Nikolić, Aleksandar M. Oklješa
Abstract:
This study considered selection of the in silico molecular descriptors and the models for newly synthesized steroid derivatives description and their characterization using chemometric techniques. Multiple linear regression (MLR) models were established and gave the best molecular descriptors for quantitative structure-retention relationship (QSRR) modeling of the retention of the investigated molecules. MLR models were without multicollinearity among the selected molecular descriptors according to the variance inflation factor (VIF) values. Used molecular descriptors were ranked using generalized pair correlation method (GPCM). In this method, the significant difference between independent variables can be noticed regardless almost equal correlation between dependent variable. Generated MLR models were statistically and cross-validated and the best models were kept. Models were ranked using sum of ranking differences (SRD) method. According to this method, the most consistent QSRR model can be found and similarity or dissimilarity between the models could be noticed. In this study, SRD was performed using average values of experimentally observed data as a golden standard. Chemometric analysis was conducted in order to characterize newly synthesized steroid derivatives for further investigation regarding their potential biological activity and further synthesis. This article is based upon work from COST Action (CM1105), supported by COST (European Cooperation in Science and Technology).Keywords: generalized pair correlation method, molecular descriptors, regression analysis, steroids, sum of ranking differences
Procedia PDF Downloads 3478253 Estimating Lost Digital Video Frames Using Unidirectional and Bidirectional Estimation Based on Autoregressive Time Model
Authors: Navid Daryasafar, Nima Farshidfar
Abstract:
In this article, we make attempt to hide error in video with an emphasis on the time-wise use of autoregressive (AR) models. To resolve this problem, we assume that all information in one or more video frames is lost. Then, lost frames are estimated using analogous Pixels time information in successive frames. Accordingly, after presenting autoregressive models and how they are applied to estimate lost frames, two general methods are presented for using these models. The first method which is the same standard method of autoregressive models estimates lost frame in unidirectional form. Usually, in such condition, previous frames information is used for estimating lost frame. Yet, in the second method, information from the previous and next frames is used for estimating the lost frame. As a result, this method is known as bidirectional estimation. Then, carrying out a series of tests, performance of each method is assessed in different modes. And, results are compared.Keywords: error steganography, unidirectional estimation, bidirectional estimation, AR linear estimation
Procedia PDF Downloads 5408252 Impact of Information and Communication Technology on Achievement of Technical Students and Perspective Teachers: A Study of Haryana State
Authors: Anu Malhotra, Rahul Malhotra
Abstract:
This review paper is focused on achievement ability analysis of perspective teachers and students of technical education of Haryana. It is well known that women have higher verbal achievement, while men have higher achievement in non-verbal and scientific achievement. Chi-square analyses were performed to evaluate the effect of information and communication technology tools on the scientific, verbal and non-verbal achievement of the controlled and uncontrolled group of 204 students of Haryana. The computed value of expected count, which is more than 5, shows that there is a significant improvement in achievement ability of students of the controlled group when compared to the uncontrolled group. The research analyzes that the Information and communication technology tools play an important role in enhancing student’s achievement.Keywords: achievement, ICT, perspective teacher, verbal achievement
Procedia PDF Downloads 1778251 Validating Condition-Based Maintenance Algorithms through Simulation
Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile
Abstract:
Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning
Procedia PDF Downloads 1268250 Learning Predictive Models for Efficient Energy Management of Exhibition Hall
Authors: Jeongmin Kim, Eunju Lee, Kwang Ryel Ryu
Abstract:
This paper addresses the problem of predictive control for energy management of large-scaled exhibition halls, where a lot of energy is consumed to maintain internal atmosphere under certain required conditions. Predictive control achieves better energy efficiency by optimizing the operation of air-conditioning facilities with not only the current but also some future status taken into account. In this paper, we propose to use predictive models learned from past sensor data of hall environment, for use in optimizing the operating plan for the air-conditioning facilities by simulating future environmental change. We have implemented an emulator of an exhibition hall by using EnergyPlus, a widely used building energy emulation tool, to collect data for learning environment-change models. Experimental results show that the learned models predict future change highly accurately on a short-term basis.Keywords: predictive control, energy management, machine learning, optimization
Procedia PDF Downloads 2748249 Empirical Roughness Progression Models of Heavy Duty Rural Pavements
Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed
Abstract:
Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.Keywords: roughness progression, empirical model, pavement performance, heavy duty pavement
Procedia PDF Downloads 1688248 Sea-Spray Calculations Using the MESO-NH Model
Authors: Alix Limoges, William Bruch, Christophe Yohia, Jacques Piazzola
Abstract:
A number of questions arise concerning the long-term impact of the contribution of marine aerosol fluxes generated at the air-sea interface on the occurrence of intense events (storms, floods, etc.) in the coastal environment. To this end, knowledge is needed on sea-spray emission rates and the atmospheric dynamics of the corresponding particles. Our aim is to implement the mesoscale model MESO-NH on the study area using an accurate sea-spray source function to estimate heat fluxes and impact on the precipitations. Based on an original and complete sea-spray source function, which covers a large size spectrum since taking into consideration the sea-spray produced by both bubble bursting and surface tearing process, we propose a comparison between model simulations and experimental data obtained during an oceanic scientific cruise on board the navy ship Atalante. The results show the relevance of the sea-spray flux calculations as well as their impact on the heat fluxes and AOD.Keywords: atmospheric models, sea-spray source, sea-spray dynamics, aerosols
Procedia PDF Downloads 1498247 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks
Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios
Abstract:
To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand
Procedia PDF Downloads 1428246 Wind Power Forecast Error Simulation Model
Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus
Abstract:
One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.Keywords: wind power, uncertainty, stochastic process, Monte Carlo simulation
Procedia PDF Downloads 4838245 Exploration of Barriers and Challenges to Innovation Process for SMEs: Possibilities to Promote Cooperation Between Scientific and Business Institutions to Address it
Authors: Indre Brazauskaite, Vilte Auruskeviciene
Abstract:
Significance of the study is outlined through current strategic management challenges faced by SMEs. First, innovation is recognized as competitive advantage in the market, having ever changing market conditions. It is of constant interest from both practitioners and academics to capture and capitalize on business opportunities or mitigate the foreseen risks. Secondly, it is recognized that integrated system is needed for proper implementation of innovation process, especially during the period of business incubation, associated with relatively high risks of new product failure. Finally, ability to successful commercialize innovations leads to tangible business results that allow to grow organizations further. This is particularly relevant to SMEs due to limited structures, resources, or capabilities. Cooperation between scientific and business institutions could be a tool of mutual interest to observe, address, and further develop innovations during the incubation period, which is the most demanding and challenging during the innovation process. Material aims to address the following problematics: i) indicate the major barriers and challenges in innovation process that SMEs are facing, ii) outline the possibilities for these barriers and challenges to be addressed by cooperation between scientific and business institutions. Basis for this research is stage-by-stage integrated innovation management process which presents existing challenges and needed aid in operational decision making. The stage-by-stage innovation management process exploration highlights relevant research opportunities that have high practical relevance in the field. It is expected to reveal the possibility for business incubation programs that could combine interest from both – practices and academia. Methodology. Scientific meta-analysis of to-date scientific literature that explores innovation process. Research model is built on the combination of stage-gate model and lean six sigma approach. It outlines the following steps: i) pre-incubation (discovery and screening), ii) incubation (scoping, planning, development, and testing), and iii) post-incubation (launch and commercialization) periods. Empirical quantitative research is conducted to address barriers and challenges related to innovation process among SMEs that limits innovations from successful launch and commercialization and allows to identify potential areas for cooperation between scientific and business institutions. Research sample, high level decision makers representing trading SMEs, are approached with structured survey based on the research model to investigate the challenges associated with each of the innovation management step. Expected findings. First, the current business challenges in the innovation process are revealed. It will outline strengths and weaknesses of innovation management practices and systems across SMEs. Secondly, it will present material for relevant business case investigation for scholars to serve as future research directions. It will contribute to a better understanding of quality innovation management systems. Third, it will contribute to the understanding the need for business incubation systems for mutual contribution from practices and academia. It can increase relevance and adaptation of business research.Keywords: cooperation between scientific and business institutions, innovation barriers and challenges, innovation measure, innovation process, SMEs
Procedia PDF Downloads 1508244 Numerical Modeling for Water Engineering and Obstacle Theory
Authors: Mounir Adal, Baalal Azeddine, Afifi Moulay Larbi
Abstract:
Numerical analysis is a branch of mathematics devoted to the development of iterative matrix calculation techniques. We are searching for operations optimization as objective to calculate and solve systems of equations of order n with time and energy saving for computers that are conducted to calculate and analyze big data by solving matrix equations. Furthermore, this scientific discipline is producing results with a margin of error of approximation called rates. Thus, the results obtained from the numerical analysis techniques that are held on computer software such as MATLAB or Simulink offers a preliminary diagnosis of the situation of the environment or space targets. By this we can offer technical procedures needed for engineering or scientific studies exploitable by engineers for water.Keywords: numerical analysis methods, obstacles solving, engineering, simulation, numerical modeling, iteration, computer, MATLAB, water, underground, velocity
Procedia PDF Downloads 4628243 The Fake News Impact on the Public Policy Cycle: A Systemic Analysis through Documentary Survey
Authors: Aron Miranda Burgos, Ergon Cugler de Moraes Silva
Abstract:
In the present article, it is observed that the constant advancement of issues related to misinformation impacts the guarantee of the public policy cycle. Thus, it is found that the dissemination of false information has a direct influence on each of the component stages of this cycle. Therefore, in order to maintain scientific and theoretical credibility in the qualitative analysis process, it was necessary to logically interpose the concepts of firehosing of falsehood, fake news, public policy cycle, as well as using the epistemological and pragmatic mechanism at the intersection of such academic concepts, such as the scientific method. It was found, through the analysis of official documents and public notes, how the multiple theoretical perspectives evidence the commitment of the provision and elaboration of public policies, verifying the way in which the fake news impact each part of the process in this atmosphere.Keywords: firehosing of falsehood, governance, misinformation, post-truth
Procedia PDF Downloads 1398242 A Comparative Study of Regional Climate Models and Global Coupled Models over Uttarakhand
Authors: Sudip Kumar Kundu, Charu Singh
Abstract:
As a great physiographic divide, the Himalayas affecting a large system of water and air circulation which helps to determine the climatic condition in the Indian subcontinent to the south and mid-Asian highlands to the north. It creates obstacles by defending chill continental air from north side into India in winter and also defends rain-bearing southwesterly monsoon to give up maximum precipitation in that area in monsoon season. Nowadays extreme weather conditions such as heavy precipitation, cloudburst, flash flood, landslide and extreme avalanches are the regular happening incidents in the region of North Western Himalayan (NWH). The present study has been planned to investigate the suitable model(s) to find out the rainfall pattern over that region. For this investigation, selected models from Coordinated Regional Climate Downscaling Experiment (CORDEX) and Coupled Model Intercomparison Project Phase 5 (CMIP5) has been utilized in a consistent framework for the period of 1976 to 2000 (historical). The ability of these driving models from CORDEX domain and CMIP5 has been examined according to their capability of the spatial distribution as well as time series plot of rainfall over NWH in the rainy season and compared with the ground-based Indian Meteorological Department (IMD) gridded rainfall data set. It is noted from the analysis that the models like MIROC5 and MPI-ESM-LR from the both CORDEX and CMIP5 provide the best spatial distribution of rainfall over NWH region. But the driving models from CORDEX underestimates the daily rainfall amount as compared to CMIP5 driving models as it is unable to capture daily rainfall data properly when it has been plotted for time series (TS) individually for the state of Uttarakhand (UK) and Himachal Pradesh (HP). So finally it can be said that the driving models from CMIP5 are better than CORDEX domain models to investigate the rainfall pattern over NWH region.Keywords: global warming, rainfall, CMIP5, CORDEX, NWH
Procedia PDF Downloads 1698241 Development of Student Invention Competences and Skills in Polytechnic University
Authors: D. S. Denchuk, O. M. Zamyatina, M. G. Minin, M. A. Soloviev, K. V. Bogrova
Abstract:
The article considers invention activity in Russia and worldwide, its modern state, and the impact of innovative engineering activity on the national economy of the considered countries. It also analyses the historical premises of modern engineer-ing invention. The authors explore the development of engineering invention at an engineer-ing university, the creation of particular environment for scientific and technical creativity of students on the example of Elite engineering education program at Tomsk Polytechnic University, Russia. It is revealed that for the successful de-velopment of engineering invention in a higher education institution it is neces-sary to apply a learning model that develops the creative potential of a student, which is, in its turn, inseparably connected with the ability to generate new ideas in engineering. Such academic environment can become a basis for revealing stu-dents' creativity.Keywords: engineering invention, scientific and technical creativity, students, project-based approach
Procedia PDF Downloads 3918240 The Influence of Modern Islamic Thought Liberalization to the Improvement of Science
Authors: Muhammad Ilham Agus Salim
Abstract:
The liberalization of Islamic thought is not only an impact on the views of Muslim community regarding worldview, but has touched the stage reconstruction of contemporary general science. It can be seen from the emergence of Western and Eastern intellectual movements that try to reconstruct contemporary science arguing that scientific culture is not currently able to deliver audiences to change the order of the better society. Such Islamic thought liberalization has a huge influence on the multidimensional crisis in various sectors such as the economic, culture, politic, ecology, and other sectors. Therefore, this paper examines the effects of the liberalization of contemporary Islamic thought towards on the development of modern science. The method used in this paper is based on textual study of Al -Qur'an, Hadith (prophetic tradition), and the history of contemporary Islamic thought and comparing it with the reality of the development of science today. So the influence of Islamic thought liberalization has created a crisis and stagnation of the development of scientific disciplines can be found.Keywords: liberalization, science, Islam, al-Qur’an textual studies
Procedia PDF Downloads 3988239 Predicting Options Prices Using Machine Learning
Authors: Krishang Surapaneni
Abstract:
The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%Keywords: finance, linear regression model, machine learning model, neural network, stock price
Procedia PDF Downloads 75