Search results for: panel data method
38197 Experimental Investigation on Activated Carbon Based Cryosorption Pump
Authors: K. B. Vinay, K. G. Vismay, S. Kasturirengan, G. A. Vivek
Abstract:
Cryosorption pumps are considered to be safe, quiet and ultra-high vacuum production pumps which have their application from Semiconductor industries to ITER [International Thermonuclear Experimental Reactor] units. The principle of physisorption of gases over highly porous materials like activated charcoal at cryogenic temperatures (below -1500°C) is involved in determining the pumping speed of gases like Helium, Hydrogen, Argon and Nitrogen. This paper aims at providing detailed overview of development of Cryosorption pump which is the modern ultra-high vacuum pump and characterization of different activated charcoal materials that optimizes the performance of the pump. Different grades of charcoal were tested in order to determine the pumping speed of the pump and were compared with commercially available Varian cryopanel. The results for bare panel, bare panel with adhesive, cryopanel with pellets, and cryopanel with granules were obtained and compared. The comparison showed that cryopanel adhered with small granules gave better pumping speeds than large sized pellets.Keywords: adhesive, cryopanel, granules, pellets
Procedia PDF Downloads 42538196 Linkage Disequilibrium and Haplotype Blocks Study from Two High-Density Panels and a Combined Panel in Nelore Beef Cattle
Authors: Priscila A. Bernardes, Marcos E. Buzanskas, Luciana C. A. Regitano, Ricardo V. Ventura, Danisio P. Munari
Abstract:
Genotype imputation has been used to reduce genomic selections costs. In order to increase haplotype detection accuracy in methods that considers the linkage disequilibrium, another approach could be used, such as combined genotype data from different panels. Therefore, this study aimed to evaluate the linkage disequilibrium and haplotype blocks in two high-density panels before and after the imputation to a combined panel in Nelore beef cattle. A total of 814 animals were genotyped with the Illumina BovineHD BeadChip (IHD), wherein 93 animals (23 bulls and 70 progenies) were also genotyped with the Affymetrix Axion Genome-Wide BOS 1 Array Plate (AHD). After the quality control, 809 IHD animals (509,107 SNPs) and 93 AHD (427,875 SNPs) remained for analyses. The combined genotype panel (CP) was constructed by merging both panels after quality control, resulting in 880,336 SNPs. Imputation analysis was conducted using software FImpute v.2.2b. The reference (CP) and target (IHD) populations consisted of 23 bulls and 786 animals, respectively. The linkage disequilibrium and haplotype blocks studies were carried out for IHD, AHD, and imputed CP. Two linkage disequilibrium measures were considered; the correlation coefficient between alleles from two loci (r²) and the |D’|. Both measures were calculated using the software PLINK. The haplotypes' blocks were estimated using the software Haploview. The r² measurement presented different decay when compared to |D’|, wherein AHD and IHD had almost the same decay. For r², even with possible overestimation by the sample size for AHD (93 animals), the IHD presented higher values when compared to AHD for shorter distances, but with the increase of distance, both panels presented similar values. The r² measurement is influenced by the minor allele frequency of the pair of SNPs, which can cause the observed difference comparing the r² decay and |D’| decay. As a sum of the combinations between Illumina and Affymetrix panels, the CP presented a decay equivalent to a mean of these combinations. The estimated haplotype blocks detected for IHD, AHD, and CP were 84,529, 63,967, and 140,336, respectively. The IHD were composed by haplotype blocks with mean of 137.70 ± 219.05kb, the AHD with mean of 102.10kb ± 155.47, and the CP with mean of 107.10kb ± 169.14. The majority of the haplotype blocks of these three panels were composed by less than 10 SNPs, with only 3,882 (IHD), 193 (AHD) and 8,462 (CP) haplotype blocks composed by 10 SNPs or more. There was an increase in the number of chromosomes covered with long haplotypes when CP was used as well as an increase in haplotype coverage for short chromosomes (23-29), which can contribute for studies that explore haplotype blocks. In general, using CP could be an alternative to increase density and number of haplotype blocks, increasing the probability to obtain a marker close to a quantitative trait loci of interest.Keywords: Bos taurus indicus, decay, genotype imputation, single nucleotide polymorphism
Procedia PDF Downloads 28038195 Analyzing the Climate Change Impact and Farmer's Adaptability Strategies in Khyber Pakhtunkhwa, Pakistan
Authors: Khuram Nawaz Sadozai, Sonia
Abstract:
The agriculture sector is deemed more vulnerable to climate change as its variation can directly affect the crop’s productivity, but farmers’ adaptation strategies play a vital role in climate change-agriculture relationship. Therefore, this research has been undertaken to assess the Climate Change impact on wheat productivity and farmers’ adaptability strategies in Khyber Pakhtunkhwa province, Pakistan. The panel dataset was analyzed to gauge the impact of changing climate variables (i.e., temperature, rainfall, and humidity) on wheat productivity from 1985 to 2015. Amid the study period, the fixed effect estimates confirmed an inverse relationship of temperature and rainfall on the wheat yield. The impact of temperature is observed to be detrimental as compared to the rainfall, causing 0.07 units reduction in the production of wheat with 1C upsurge in temperature. On the flip side, humidity revealed a positive association with the wheat productivity by confirming that high humidity could be beneficial to the production of the crop over time. Thus, this study ensures significant nexus between agricultural production and climatic parameters. However, the farming community in the underlying study area has limited knowledge about the adaptation strategies to lessen the detrimental impact of changing climate on crop yield. It is recommended that farmers should be well equipped with training and advanced agricultural management practices under the realm of climate change. Moreover, innovative technologies pertinent to the agriculture system should be encouraged to handle the challenges arising due to variations in climate factors.Keywords: climate change, fixed effect model, panel data, wheat productivity
Procedia PDF Downloads 12338194 Energy Efficient Assessment of Energy Internet Based on Data-Driven Fuzzy Integrated Cloud Evaluation Algorithm
Authors: Chuanbo Xu, Xinying Li, Gejirifu De, Yunna Wu
Abstract:
Energy Internet (EI) is a new form that deeply integrates the Internet and the entire energy process from production to consumption. The assessment of energy efficient performance is of vital importance for the long-term sustainable development of EI project. Although the newly proposed fuzzy integrated cloud evaluation algorithm considers the randomness of uncertainty, it relies too much on the experience and knowledge of experts. Fortunately, the enrichment of EI data has enabled the utilization of data-driven methods. Therefore, the main purpose of this work is to assess the energy efficient of park-level EI by using a combination of a data-driven method with the fuzzy integrated cloud evaluation algorithm. Firstly, the indicators for the energy efficient are identified through literature review. Secondly, the artificial neural network (ANN)-based data-driven method is employed to cluster the values of indicators. Thirdly, the energy efficient of EI project is calculated through the fuzzy integrated cloud evaluation algorithm. Finally, the applicability of the proposed method is demonstrated by a case study.Keywords: energy efficient, energy internet, data-driven, fuzzy integrated evaluation, cloud model
Procedia PDF Downloads 20238193 Study of Natural Convection Heat Transfer of Plate-Fin Heat Sink
Authors: Han-Taw Chen, Tzu-Hsiang Lin, Chung-Hou Lai
Abstract:
This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a rectangular closed enclosure. The inverse method with the finite difference method and the experimental temperature data is applied to determine the approximate heat transfer coefficient. Later, based on the obtained results, the zero-equation turbulence model is used to obtain the heat transfer and fluid flow characteristics between two fins. To validate the accuracy of the results obtained, the comparison of the heat transfer coefficient is made. The obtained temperature at selected measurement locations of the fin is also compared with experimental data. The effect of the height of the rectangular enclosure on the obtained results is discussed.Keywords: inverse method, fluent, heat transfer characteristics, plate-fin heat sink
Procedia PDF Downloads 38938192 A Simple Model for Solar Panel Efficiency
Authors: Stefano M. Spagocci
Abstract:
The efficiency of photovoltaic panels can be calculated with such software packages as RETScreen that allow design engineers to take financial as well as technical considerations into account. RETScreen is interfaced with meteorological databases, so that efficiency calculations can be realistically carried out. The author has recently contributed to the development of solar modules with accumulation capability and an embedded water purifier, aimed at off-grid users such as users in developing countries. The software packages examined do not allow to take ancillary equipment into account, hence the decision to implement a technical and financial model of the system. The author realized that, rather than re-implementing the quite sophisticated model of RETScreen - a mathematical description of which is anyway not publicly available - it was possible to drastically simplify it, including the meteorological factors which, in RETScreen, are presented in a numerical form. The day-by-day efficiency of a photovoltaic solar panel was parametrized by the product of factors expressing, respectively, daytime duration, solar right ascension motion, solar declination motion, cloudiness, temperature. For the sun-motion-dependent factors, positional astronomy formulae, simplified by the author, were employed. Meteorology-dependent factors were fitted by simple trigonometric functions, employing numerical data supplied by RETScreen. The accuracy of our model was tested by comparing it to the predictions of RETScreen; the accuracy obtained was 11%. In conclusion, our study resulted in a model that can be easily implemented in a spreadsheet - thus being easily manageable by non-specialist personnel - or in more sophisticated software packages. The model was used in a number of design exercises, concerning photovoltaic solar panels and ancillary equipment like the above-mentioned water purifier.Keywords: clean energy, energy engineering, mathematical modelling, photovoltaic panels, solar energy
Procedia PDF Downloads 6838191 Technological Innovations and African Export Performances
Authors: Lukman Oyelami
Abstract:
Studies have identified trade as a veritable tool for inclusive economic growth and poverty reduction in developing countries. However, contrary to the overwhelming pieces of evidence of the Asian tiger as a success story of beneficial trade, many African countries still experience poverty unabatedly despite active engagement in trade. Consequently, this study seeks to investigate the contributory effect of technological innovation on total export performance and specifically manufacturing exports of African countries. This is with a view to exploring manufacturing exports as a viable option for diversification. To achieve the empirical investigation this study, require Systems Generalized Method of Moments (sys-GMM) estimation technique was adopted based on the econometric realities inherent in the data utilized. However, the static technique of panel estimation of the Fixed Effects (FE) model was utilized for baseline analysis and robustness check. The conclusion from this study is that innovation generally impacts export performance of African countries positively, however, manufacturing export shows more sensitivity to innovation than total export. And, this provides a clear pathway for export diversification for many African countries that run a resource-based economy.Keywords: innovation, export, GMM, Africa
Procedia PDF Downloads 22038190 Consumption Insurance against the Chronic Illness: Evidence from Thailand
Authors: Yuthapoom Thanakijborisut
Abstract:
This paper studies consumption insurance against the chronic illness in Thailand. The study estimates the impact of household consumption in the chronic illness on consumption growth. Chronic illness is the health care costs of a person or a household’s decision in treatment for the long term; the causes and effects of the household’s ability for smooth consumption. The chronic illnesses are measured in health status when at least one member within the household faces the chronic illness. The data used is from the Household Social Economic Panel Survey conducted during 2007 and 2012. The survey collected data from approximately 6,000 households from every province, both inside and outside municipal areas in Thailand. The study estimates the change in household consumption by using an ordinary least squares (OLS) regression model. The result shows that the members within the household facing the chronic illness would reduce the consumption by around 4%. This case indicates that consumption insurance in Thailand is quite sufficient against chronic illness.Keywords: consumption insurance, chronic illness, health care, Thailand
Procedia PDF Downloads 23838189 Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems
Authors: Ramdan B. A. Koad, Ahmed F. Zobaa
Abstract:
Since the output characteristics of Photovoltaic (PV) system depends on the ambient temperature, solar radiation and load impedance, its maximum Power Point (MPP) is not constant. Under each condition PV module has a point at which it can produce its MPP. Therefore, a Maximum Power Point Tracking (MPPT) method is needed to uphold the PV panel operating at its MPP. This paper presents comparative study between the conventional MPPT methods used in (PV) system: Perturb and Observe (P&O), Incremental Conductance (IncCond), and Particle Swarm Optimization (PSO) algorithm for (MPPT) of (PV) system. To evaluate the study, the proposed PSO MPPT is implemented on a DC-DC converter and has been compared with P&O and INcond methods in terms of their tracking speed, accuracy and performance by using the Matlab tool Simulink. The simulation result shows that the proposed algorithm is simple, and is superior to the P&O and IncCond methods.Keywords: photovoltaic systems, maximum power point tracking, perturb and observe method, incremental conductance, methods and practical swarm optimization algorithm
Procedia PDF Downloads 35838188 An Engaged Approach to Developing Tools for Measuring Caregiver Knowledge and Caregiver Engagement in Juvenile Type 1 Diabetes
Authors: V. Howard, R. Maguire, S. Corrigan
Abstract:
Background: Type 1 Diabetes (T1D) is a chronic autoimmune disease, typically diagnosed in childhood. T1D puts an enormous strain on families; controlling blood-glucose in children is difficult and the consequences of poor control for patient health are significant. Successful illness management and better health outcomes can be dependent on quality of caregiving. On diagnosis, parent-caregivers face a steep learning curve as T1D care requires a significant level of knowledge to inform complex decision making throughout the day. The majority of illness management is carried out in the home setting, independent of clinical health providers. Parent-caregivers vary in their level of knowledge and their level of engagement in applying this knowledge in the practice of illness management. Enabling researchers to quantify these aspects of the caregiver experience is key to identifying targets for psychosocial support interventions, which are desirable for reducing stress and anxiety in this highly burdened cohort, and supporting better health outcomes in children. Currently, there are limited tools available that are designed to capture this information. Where tools do exist, they are not comprehensive and do not adequately capture the lived experience. Objectives: Development of quantitative tools, informed by lived experience, to enable researchers gather data on parent-caregiver knowledge and engagement, which accurately represents the experience/cohort and enables exploration of questions that are of real-world value to the cohort themselves. Methods: This research employed an engaged approach to address the problem of quantifying two key aspects of caregiver diabetes management: Knowledge and engagement. The research process was multi-staged and iterative. Stage 1: Working from a constructivist standpoint, literature was reviewed to identify relevant questionnaires, scales and single-item measures of T1D caregiver knowledge and engagement, and harvest candidate questionnaire items. Stage 2: Aggregated findings from the review were circulated among a PPI (patient and public involvement) expert panel of caregivers (n=6), for discussion and feedback. Stage 3: In collaboration with the expert panel, data were interpreted through the lens of lived experience to create a long-list of candidate items for novel questionnaires. Items were categorized as either ‘knowledge’ or ‘engagement’. Stage 4: A Delphi-method process (iterative surveys) was used to prioritize question items and generate novel questions that further captured the lived experience. Stage 5: Both questionnaires were piloted to refine wording of text to increase accessibility and limit socially desirable responding. Stage 6: Tools were piloted using an online survey that was deployed using an online peer-support group for caregivers for Juveniles with T1D. Ongoing Research: 123 parent-caregivers completed the survey. Data analysis is ongoing to establish face and content validity qualitatively and through exploratory factor analysis. Reliability will be established using an alternative-form method and Cronbach’s alpha will assess internal consistency. Work will be completed by early 2024. Conclusion: These tools will enable researchers to gain deeper insights into caregiving practices among parents of juveniles with T1D. Development was driven by lived experience, illustrating the value of engaged research at all levels of the research process.Keywords: caregiving, engaged research, juvenile type 1 diabetes, quantified engagement and knowledge
Procedia PDF Downloads 5538187 Sampled-Data Model Predictive Tracking Control for Mobile Robot
Authors: Wookyong Kwon, Sangmoon Lee
Abstract:
In this paper, a sampled-data model predictive tracking control method is presented for mobile robots which is modeled as constrained continuous-time linear parameter varying (LPV) systems. The presented sampled-data predictive controller is designed by linear matrix inequality approach. Based on the input delay approach, a controller design condition is derived by constructing a new Lyapunov function. Finally, a numerical example is given to demonstrate the effectiveness of the presented method.Keywords: model predictive control, sampled-data control, linear parameter varying systems, LPV
Procedia PDF Downloads 30938186 Cleaning of Scientific References in Large Patent Databases Using Rule-Based Scoring and Clustering
Authors: Emiel Caron
Abstract:
Patent databases contain patent related data, organized in a relational data model, and are used to produce various patent statistics. These databases store raw data about scientific references cited by patents. For example, Patstat holds references to tens of millions of scientific journal publications and conference proceedings. These references might be used to connect patent databases with bibliographic databases, e.g. to study to the relation between science, technology, and innovation in various domains. Problematic in such studies is the low data quality of the references, i.e. they are often ambiguous, unstructured, and incomplete. Moreover, a complete bibliographic reference is stored in only one attribute. Therefore, a computerized cleaning and disambiguation method for large patent databases is developed in this work. The method uses rule-based scoring and clustering. The rules are based on bibliographic metadata, retrieved from the raw data by regular expressions, and are transparent and adaptable. The rules in combination with string similarity measures are used to detect pairs of records that are potential duplicates. Due to the scoring, different rules can be combined, to join scientific references, i.e. the rules reinforce each other. The scores are based on expert knowledge and initial method evaluation. After the scoring, pairs of scientific references that are above a certain threshold, are clustered by means of single-linkage clustering algorithm to form connected components. The method is designed to disambiguate all the scientific references in the Patstat database. The performance evaluation of the clustering method, on a large golden set with highly cited papers, shows on average a 99% precision and a 95% recall. The method is therefore accurate but careful, i.e. it weighs precision over recall. Consequently, separate clusters of high precision are sometimes formed, when there is not enough evidence for connecting scientific references, e.g. in the case of missing year and journal information for a reference. The clusters produced by the method can be used to directly link the Patstat database with bibliographic databases as the Web of Science or Scopus.Keywords: clustering, data cleaning, data disambiguation, data mining, patent analysis, scientometrics
Procedia PDF Downloads 19438185 3D Numerical Simulation of Undoweled and Uncracked Joints in Short Paneled Concrete Pavements
Authors: K. Sridhar Reddy, M. Amaranatha Reddy, Nilanjan Mitra
Abstract:
Short paneled concrete pavement (SPCP) with shorter panel size can be an alternative to the conventional jointed plain concrete pavements (JPCP) at the same cost as the asphalt pavements with all the advantages of concrete pavement with reduced thickness, less chance of mid-slab cracking and or dowel bar locking so common in JPCP. Cast-in-situ short concrete panels (short slabs) laid on a strong foundation consisting of a dry lean concrete base (DLC), and cement treated subbase (CTSB) will reduce the thickness of the concrete slab to the order of 180 mm to 220 mm, whereas JPCP was with 280 mm for the same traffic. During the construction of SPCP test sections on two Indian National Highways (NH), it was observed that the joints remain uncracked after a year of traffic. The undoweled and uncracked joints load transfer variability and joint behavior are of interest with anticipation on its long-term performance of the SPCP. To investigate the effects of undoweled and uncracked joints on short slabs, the present study was conducted. A multilayer linear elastic analysis using 3D finite element package for different panel sizes with different thicknesses resting on different types of solid elastic foundation with and without temperature gradient was developed. Surface deflections were obtained from 3D FE model and validated with measured field deflections from falling weight deflectometer (FWD) test. Stress analysis indicates that flexural stresses in short slabs are decreased with a decrease in panel size and increase in thickness. Detailed evaluation of stress analysis with the effects of curling behavior, the stiffness of the base layer and a variable degree of load transfer, is underway.Keywords: joint behavior, short slabs, uncracked joints, undoweled joints, 3D numerical simulation
Procedia PDF Downloads 18138184 The Assessment of the Comparative Efficiency of Reforms through the Integral Index of Transformation
Authors: Samson Davoyan, Ashot Davoyan, Ani Khachatryan
Abstract:
The indexes (Global Competitiveness Index, Economic Freedom Index, Human Development Index, etc.) developed by different international and non-government organizations in time and space express the quantitative and qualitative features of different fields of various reforms implemented in different countries. The main objective of our research is to develop new methodology that we will use to create integral index based on many indexes and that will include many areas of reforms. To achieve our aim we have used econometric methods (regression model for panel data method). The basis of our methodology is the development of the new integral index based on quantitative assessment of the change of two main parameters: the score of the countries by different indexes and the change of the ranks of countries for following two periods of time. As a result of the usage of methods for analyzes we have defined the indexes that are used to create the new integral index and the scales for each of them. Analyzing quantitatively and qualitatively analysis through the integral index for more than 100 countries for 2009-2014, we have defined comparative efficiency that helps to conclude in which directions countries have implemented reforms more effectively compared to others and in which direction reforms have implemented less efficiently.Keywords: development, rank, reforms, comparative, index, economic, corruption, social, program
Procedia PDF Downloads 32638183 Sorghum Resilience and Sustainability under Limiting and Non-limiting Conditions of Water and Nitrogen
Authors: Muhammad Tanveer Altaf, Mehmet Bedir, Waqas Liaqat, Gönül Cömertpay, Volkan Çatalkaya, Celaluddin Barutçular, Nergiz Çoban, Ibrahim Cerit, Muhammad Azhar Nadeem, Tolga Karaköy, Faheem Shehzad Baloch
Abstract:
Food production needs to be almost double by 2050 in order to feed around 9 billion people around the Globe. Plant production mostly relies on fertilizers, which also have one of the main roles in environmental pollution. In addition to this, climatic conditions are unpredictable, and the earth is expected to face severe drought conditions in the future. Therefore, water and fertilizers, especially nitrogen are considered as main constraints for future food security. To face these challenges, developing integrative approaches for germplasm characterization and selecting the resilient genotypes performing under limiting conditions is very crucial for effective breeding to meet the food requirement under climatic change scenarios. This study is part of the European Research Area Network (ERANET) project for the characterization of the diversity panel of 172 sorghum accessions and six hybrids as control cultivars under limiting (+N/-H2O, -N/+H2O) and non-limiting conditions (+N+H2O). This study was planned to characterize the sorghum diversity in relation to resource Use Efficiency (RUE), with special attention on harnessing the interaction between genotype and environment (GxE) from a physiological and agronomic perspective. Experiments were conducted at Adana, a Mediterranean climate, with augmented design, and data on various agronomic and physiological parameters were recorded. Plentiful diversity was observed in the sorghum diversity panel and significant variations were seen among the limiting water and nitrogen conditions in comparison with the control experiment. Potential genotypes with the best performance are identified under limiting conditions. Whole genome resequencing was performed for whole germplasm under investigation for diversity analysis. GWAS analysis will be performed using genotypic and phenotypic data and linked markers will be identified. The results of this study will show the adaptation and improvement of sorghum under climate change conditions for future food security.Keywords: germplasm, sorghum, drought, nitrogen, resources use efficiency, sequencing
Procedia PDF Downloads 7738182 Harmonic Data Preparation for Clustering and Classification
Authors: Ali Asheibi
Abstract:
The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.Keywords: data mining, harmonic data, clustering, classification
Procedia PDF Downloads 24838181 Thermal Buckling Response of Cylindrical Panels with Higher Order Shear Deformation Theory—a Case Study with Angle-Ply Laminations
Authors: Humayun R. H. Kabir
Abstract:
An analytical solution before used for static and free-vibration response has been extended for thermal buckling response on cylindrical panel with anti-symmetric laminations. The partial differential equations that govern kinematic behavior of shells produce five coupled differential equations. The basic displacement and rotational unknowns are similar to first order shear deformation theory---three displacement in spatial space, and two rotations about in-plane axes. No drilling degree of freedom is considered. Boundary conditions are considered as complete hinge in all edges so that the panel respond on thermal inductions. Two sets of double Fourier series are considered in the analytical solution process. The sets are selected that satisfy mixed type of natural boundary conditions. Numerical results are presented for the first 10 eigenvalues, and first 10 mode shapes for Ux, Uy, and Uz components. The numerical results are compared with a finite element based solution.Keywords: higher order shear deformation, composite, thermal buckling, angle-ply laminations
Procedia PDF Downloads 37338180 Data Recording for Remote Monitoring of Autonomous Vehicles
Authors: Rong-Terng Juang
Abstract:
Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.Keywords: autonomous vehicle, data compression, remote monitoring, controller area networks (CAN), Lidar
Procedia PDF Downloads 16338179 Finite Volume Method in Loop Network in Hydraulic Transient
Authors: Hossain Samani, Mohammad Ehteram
Abstract:
In this paper, we consider finite volume method (FVM) in water hammer. We will simulate these techniques on a looped network with complex boundary conditions. After comparing methods, we see the FVM method as the best method. We compare the results of FVM with experimental data. Finite volume using staggered grid is applied for solving water hammer equations.Keywords: hydraulic transient, water hammer, interpolation, non-liner interpolation
Procedia PDF Downloads 34938178 Factors Influencing Capital Structure: Evidence from the Oil and Gas Industry of Pakistan
Authors: Muhammad Tahir, Mushtaq Muhammad
Abstract:
Capital structure is one of the key decisions taken by the financial managers. This study aims to investigate the factors influencing capital structure decision in Oil and Gas industry of Pakistan using secondary data from published annual reports of listed Oil and Gas Companies of Pakistan. This study covers the time-period from 2008-2014. Capital structure can be affected by profitability, firm size, growth opportunities, dividend payout, liquidity, business risk, and ownership structure. Panel data technique with Ordinary least square (OLS) regression model has been used to find the impact of set of explanatory variables on the capital structure using the Stata. OLS regression results suggest that dividend payout, firm size and government ownership have the most significant impact on financial leverage. Dividend payout and government ownership are found to have significant negative association with financial leverage however firm size indicated positive relationship with financial leverage. Other variables having significant link with financial leverage includes growth opportunities, liquidity and business risk. Results reveal significant positive association between growth opportunities and financial leverage whereas liquidity and business risk are negatively correlated with financial leverage. Profitability and managerial ownership exhibited insignificant relationship with financial leverage. This study contributes to existing Managerial Finance literature with certain managerial implications. Academically, this research study describes the factors affecting capital structure decision of Oil and Gas Companies in Pakistan and adds latest empirical evidence to existing financial literature in Pakistan. Researchers have studies capital structure in Pakistan in general and industry at specific, nevertheless still there is limited literature on this issue. This study will be an attempt to fill this gap in the academic literature. This study has practical implication on both firm level and individual investor/ lenders level. Results of this study can be useful for investors/ lenders in making investment and lending decisions. Further, results of this study can be useful for financial managers to frame optimal capital structure keeping in consideration the factors that can affect capital structure decision as revealed by this study. These results will help financial managers to decide whether to issue stock or issue debt for future investment projects.Keywords: capital structure, multicollinearity, ordinary least square (OLS), panel data
Procedia PDF Downloads 29338177 A New Method to Reduce 5G Application Layer Payload Size
Authors: Gui Yang Wu, Bo Wang, Xin Wang
Abstract:
Nowadays, 5G service-based interface architecture uses text-based payload like JSON to transfer business data between network functions, which has obvious advantages as internet services but causes unnecessarily larger traffic. In this paper, a new 5G application payload size reduction method is presented to provides the mechanism to negotiate about new capability between network functions when network communication starts up and how 5G application data are reduced according to negotiated information with peer network function. Without losing the advantages of 5G text-based payload, this method demonstrates an excellent result on application payload size reduction and does not increase the usage quota of computing resource. Implementation of this method does not impact any standards or specifications and not change any encoding or decoding functionality too. In a real 5G network, this method will contribute to network efficiency and eventually save considerable computing resources.Keywords: 5G, JSON, payload size, service-based interface
Procedia PDF Downloads 18138176 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule
Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.Keywords: instance selection, data reduction, MapReduce, kNN
Procedia PDF Downloads 25338175 System Identification in Presence of Outliers
Authors: Chao Yu, Qing-Guo Wang, Dan Zhang
Abstract:
The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data.Keywords: outlier detection, system identification, matrix decomposition, low-rank matrix, sparsity, semidefinite programming, interior-point methods, denoising
Procedia PDF Downloads 30738174 Measuring Banking Risk
Authors: Mike Tsionas
Abstract:
The paper develops new indices of financial stability based on an explicit model of expected utility maximization by financial institutions subject to the classical technology restrictions of neoclassical production theory. The model can be estimated using standard econometric techniques, like GMM for dynamic panel data and latent factor analysis for the estimation of co-variance matrices. An explicit functional form for the utility function is not needed and we show how measures of risk aversion and prudence (downside risk aversion) can be derived and estimated from the model. The model is estimated using data for Eurozone countries and we focus particularly on (i) the use of the modeling approach as an “early warning mechanism”, (ii) the bank- and country-specific estimates of risk aversion and prudence (downside risk aversion), and (iii) the derivation of a generalized measure of risk that relies on loan-price uncertainty.Keywords: financial stability, banking, expected utility maximization, sub-prime crisis, financial crisis, eurozone, PIIGS
Procedia PDF Downloads 34938173 The Efficacy of Government Strategies to Control COVID 19: Evidence from 22 High Covid Fatality Rated Countries
Authors: Imalka Wasana Rathnayaka, Rasheda Khanam, Mohammad Mafizur Rahman
Abstract:
TheCOVID-19 pandemic has created unprecedented challenges to both the health and economic states in countries around the world. This study aims to evaluate the effectiveness of governments' decisions to mitigate the risks of COVID-19 through proposing policy directions to reduce its magnitude. The study is motivated by the ongoing coronavirus outbreaks and comprehensive policy responses taken by countries to mitigate the spread of COVID-19 and reduce death rates. This study contributes to filling the knowledge by exploiting the long-term efficacy of extensive plans of governments. This study employs a Panel autoregressive distributed lag (ARDL) framework. The panels incorporate both a significant number of variables and fortnightly observations from22 countries. The dependent variables adopted in this study are the fortnightly death rates and the rates of the spread of COVID-19. Mortality rate and the rate of infection data were computed based on the number of deaths and the number of new cases per 10000 people.The explanatory variables are fortnightly values of indexes taken to investigate the efficacy of government interventions to control COVID-19. Overall government response index, Stringency index, Containment and health index, and Economic support index were selected as explanatory variables. The study relies on the Oxford COVID-19 Government Measure Tracker (OxCGRT). According to the procedures of ARDL, the study employs (i) the unit root test to check stationarity, (ii) panel cointegration, and (iii) PMG and ARDL estimation techniques. The study shows that the COVID-19 pandemic forced immediate responses from policymakers across the world to mitigate the risks of COVID-19. Of the four types of government policy interventions: (i) Stringency and (ii) Economic Support have been most effective and reveal that facilitating Stringency and financial measures has resulted in a reduction in infection and fatality rates, while (iii) Government responses are positively associated with deaths but negatively with infected cases. Even though this positive relationship is unexpected to some extent in the long run, social distancing norms of the governments have been broken by the public in some countries, and population age demographics would be a possible reason for that result. (iv) Containment and healthcare improvements reduce death rates but increase the infection rates, although the effect has been lower (in absolute value). The model implies that implementation of containment health practices without association with tracing and individual-level quarantine does not work well. The policy implication based on containment health measures must be applied together with targeted, aggressive, and rapid containment to extensively reduce the number of people infected with COVID 19. Furthermore, the results demonstrate that economic support for income and debt relief has been the key to suppressing the rate of COVID-19 infections and fatality rates.Keywords: COVID-19, infection rate, deaths rate, government response, panel data
Procedia PDF Downloads 7638172 Onmanee Prajuabjinda, Pakakrong Thondeeying, Jipisute Chunthorng-Orn, Bhanuz Dechayont, Arunporn Itharat
Authors: Ekrem Erdem, Can Tansel Tugcu
Abstract:
Improved resource efficiency of production is a key requirement for sustainable growth, worldwide. In this regards, by considering the energy and tourism as the extra inputs to the classical Coub-Douglas production function, this study aims at investigating the efficiency changes in the North African countries. To this end, the study uses panel data for the period 1995-2010 and adopts the Malmquist index based on the data envelopment analysis. Results show that tourism increases technical and scale efficiencies, while it decreases technological and total factor productivity changes. On the other hand, when the production function is augmented by the energy input, technical efficiency change decreases, while the technological change, scale efficiency change and total factor productivity change increase. Thus, in order to satisfy the needs for sustainable growth, North African governments should take some measures for increasing the contribution that the tourism makes to economic growth and some others for efficient use of resources in the energy sector.Keywords: data envelopment analysis, economic efficiency, North African countries, sustainable growth
Procedia PDF Downloads 34338171 A Method of Detecting the Difference in Two States of Brain Using Statistical Analysis of EEG Raw Data
Authors: Digvijaysingh S. Bana, Kiran R. Trivedi
Abstract:
This paper introduces various methods for the alpha wave to detect the difference between two states of brain. One healthy subject participated in the experiment. EEG was measured on the forehead above the eye (FP1 Position) with reference and ground electrode are on the ear clip. The data samples are obtained in the form of EEG raw data. The time duration of reading is of one minute. Various test are being performed on the alpha band EEG raw data.The readings are performed in different time duration of the entire day. The statistical analysis is being carried out on the EEG sample data in the form of various tests.Keywords: electroencephalogram(EEG), biometrics, authentication, EEG raw data
Procedia PDF Downloads 46438170 Using Non-Negative Matrix Factorization Based on Satellite Imagery for the Collection of Agricultural Statistics
Authors: Benyelles Zakaria, Yousfi Djaafar, Karoui Moussa Sofiane
Abstract:
Agriculture is fundamental and remains an important objective in the Algerian economy, based on traditional techniques and structures, it generally has a purpose of consumption. Collection of agricultural statistics in Algeria is done using traditional methods, which consists of investigating the use of land through survey and field survey. These statistics suffer from problems such as poor data quality, the long delay between collection of their last final availability and high cost compared to their limited use. The objective of this work is to develop a processing chain for a reliable inventory of agricultural land by trying to develop and implement a new method of extracting information. Indeed, this methodology allowed us to combine data from remote sensing and field data to collect statistics on areas of different land. The contribution of remote sensing in the improvement of agricultural statistics, in terms of area, has been studied in the wilaya of Sidi Bel Abbes. It is in this context that we applied a method for extracting information from satellite images. This method is called the non-negative matrix factorization, which does not consider the pixel as a single entity, but will look for components the pixel itself. The results obtained by the application of the MNF were compared with field data and the results obtained by the method of maximum likelihood. We have seen a rapprochement between the most important results of the FMN and those of field data. We believe that this method of extracting information from satellite data leads to interesting results of different types of land uses.Keywords: blind source separation, hyper-spectral image, non-negative matrix factorization, remote sensing
Procedia PDF Downloads 42338169 Trend Analysis of Africa’s Entrepreneurial Framework Conditions
Authors: Sheng-Hung Chen, Grace Mmametena Mahlangu, Hui-Cheng Wang
Abstract:
This study aims to explore the trends of the Entrepreneurial Framework Conditions (EFCs) in the five African regions. The Global Entrepreneur Monitor (GEM) is the primary source of data. The data drawn were organized into a panel (2000-2021) and obtained from the National Expert Survey (NES) databases as harmonized by the (GEM). The Methodology used is descriptive and uses mainly charts and tables; this is in line with the approach used by the GEM. The GEM draws its data from the National Expert Survey (NES). The survey by the NES is administered to experts in each country. The GEM collects entrepreneurship data specific to each country. It provides information about entrepreneurial ecosystems and their impact on entrepreneurship. The secondary source is from the literature review. This study focuses on the following GEM indicators: Financing for Entrepreneurs, Government support and Policies, Taxes and Bureaucracy, Government programs, Basic School Entrepreneurial Education and Training, Post school Entrepreneurial Education and Training, R&D Transfer, Commercial And Professional Infrastructure, Internal Market Dynamics, Internal Market Openness, Physical and Service Infrastructure, and Cultural And Social Norms, based on GEM Report 2020/21. The limitation of the study is the lack of updated data from some countries. Countries have to fund their own regional studies; African countries do not regularly participate due to a lack of resources.Keywords: trend analysis, entrepreneurial framework conditions (EFCs), African region, government programs
Procedia PDF Downloads 7138168 Sensor Registration in Multi-Static Sonar Fusion Detection
Authors: Longxiang Guo, Haoyan Hao, Xueli Sheng, Hanjun Yu, Jingwei Yin
Abstract:
In order to prevent target splitting and ensure the accuracy of fusion, system error registration is an important step in multi-static sonar fusion detection system. To eliminate the inherent system errors including distance error and angle error of each sonar in detection, this paper uses offline estimation method for error registration. Suppose several sonars from different platforms work together to detect a target. The target position detected by each sonar is based on each sonar’s own reference coordinate system. Based on the two-dimensional stereo projection method, this paper uses real-time quality control (RTQC) method and least squares (LS) method to estimate sensor biases. The RTQC method takes the average value of each sonar’s data as the observation value and the LS method makes the least square processing of each sonar’s data to get the observation value. In the underwater acoustic environment, matlab simulation is carried out and the simulation results show that both algorithms can estimate the distance and angle error of sonar system. The performance of the two algorithms is also compared through the root mean square error and the influence of measurement noise on registration accuracy is explored by simulation. The system error convergence of RTQC method is rapid, but the distribution of targets has a serious impact on its performance. LS method can not be affected by target distribution, but the increase of random noise will slow down the convergence rate. LS method is an improvement of RTQC method, which is widely used in two-dimensional registration. The improved method can be used for underwater multi-target detection registration.Keywords: data fusion, multi-static sonar detection, offline estimation, sensor registration problem
Procedia PDF Downloads 169