Search results for: neural progentor cells
4567 Instant Fire Risk Assessment Using Artifical Neural Networks
Authors: Tolga Barisik, Ali Fuat Guneri, K. Dastan
Abstract:
Major industrial facilities have a high potential for fire risk. In particular, the indices used for the detection of hidden fire are used very effectively in order to prevent the fire from becoming dangerous in the initial stage. These indices provide the opportunity to prevent or intervene early by determining the stage of the fire, the potential for hazard, and the type of the combustion agent with the percentage values of the ambient air components. In this system, artificial neural network will be modeled with the input data determined using the Levenberg-Marquardt algorithm, which is a multi-layer sensor (CAA) (teacher-learning) type, before modeling the modeling methods in the literature. The actual values produced by the indices will be compared with the outputs produced by the network. Using the neural network and the curves to be created from the resulting values, the feasibility of performance determination will be investigated.Keywords: artifical neural networks, fire, Graham Index, levenberg-marquardt algoritm, oxygen decrease percentage index, risk assessment, Trickett Index
Procedia PDF Downloads 1374566 Large Neural Networks Learning From Scratch With Very Few Data and Without Explicit Regularization
Authors: Christoph Linse, Thomas Martinetz
Abstract:
Recent findings have shown that Neural Networks generalize also in over-parametrized regimes with zero training error. This is surprising, since it is completely against traditional machine learning wisdom. In our empirical study we fortify these findings in the domain of fine-grained image classification. We show that very large Convolutional Neural Networks with millions of weights do learn with only a handful of training samples and without image augmentation, explicit regularization or pretraining. We train the architectures ResNet018, ResNet101 and VGG19 on subsets of the difficult benchmark datasets Caltech101, CUB_200_2011, FGVCAircraft, Flowers102 and StanfordCars with 100 classes and more, perform a comprehensive comparative study and draw implications for the practical application of CNNs. Finally, we show that VGG19 with 140 million weights learns to distinguish airplanes and motorbikes with up to 95% accuracy using only 20 training samples per class.Keywords: convolutional neural networks, fine-grained image classification, generalization, image recognition, over-parameterized, small data sets
Procedia PDF Downloads 884565 Typical Emulsions as Probiotic Food Carrier: Effect of Cells Position on Its Viability
Authors: Mengfan Li, Filip Van Bockstaele, Wenyong Lou, Frank Devlighere
Abstract:
The development of probiotics-encapsulated emulsions that maintain the viability of probiotics during processing, storage and human gastrointestinal (GI) tract environment receives great scientific and commercial interest. In this study, typical W/O and O/W emulsions with and without oil gelation were used to encapsulate L. plantarum. The effects of emulsion types on the viability of L. plantarum during storage and GI tract were investigated. Besides, the position of L. plantarum in emulsion system and its number of viable cells when threating by adverse environment was correlated in order to figure out which type of emulsion is more suitable as food carrier for probiotics encapsulation and protection. As a result, probiotics tend to migrate from oil to water phase due to the natural hydrophilicity; however, it’s harmful for cells viability when surrounding by water for a long time. Oil gelation in emulsions is one of the promising strategies for inhibiting the cells mobility and decreasing the contact with adverse factors (e.g., water, exogenous enzymes and gastric acid), thus enhancing the number of viable cells that enough to exert its beneficial effects in host.Keywords: emulsion, gelation, encapsulation, probiotics
Procedia PDF Downloads 1094564 The Stability and Performances of Terminalia Catappa L. Dye-Sensitized Solar Cell
Authors: A. O. Boyo, A. T. Akinwunmi
Abstract:
The effect of extracting solvent and adjustment of pHs on the stability of Terminalia catappa L. dye-sensitized solar cell was investigated. We introduced ZnO as an alternative to TiO2 in the dye sensitized solar cells (DSSCs) due to its band gap similar to TiO2, higher electron mobility, and flexible procedures of preparations. Dye-sensitized solar cells (DSSCs) based on Terminalia catappa L. was extracted in water (A), ethanol (B) and the mixture of ethanol and water in the ratio 1:1by volume (C). The best performance Solar cells sensitized was from extracts A and achieved up to Jsc 1.51 mAcm−2, Voc 0.75V, FF 0.88 and η 0.63%. We notice that as pHs decreases there is the increase in DSSC efficiency. There is Long period stability in efficiency of the cells prepared using A than in C and a fair stability in efficiency of B cell. The results obtained with extracts B and C confirmed that Ethanol with water could not be considered as a suitable solvent for the extraction of natural dye.Keywords: zinc oxide, dye-sensitized solar cell, terminalia catappa L., TiO2
Procedia PDF Downloads 4024563 Inflammatory Changes in Postmenopausal Women including Th17 and Treg
Authors: Ae Ra Han, Seoung Eun Huh, Ji Yeon Kim, Joanne Kwak-Kim, Sung Ki Lee
Abstract:
Objective: Prevalence of osteoporosis, cardiovascular disorders, and Alzheimer's disease rapidly increase after menopause. Immune activation and inflammation are suggested as an important pathogenesis of these serious diseases. Several pro-inflammatory cytokines are increased in women with surgical or natural menopause. However, the little is known about IL-17 producing T cells and Foxp3+ regulatory T (Treg) cells in post-menopause. Methods: A total of 34 postmenopausal women, who had no active cardiovascular, endocrine and infectious disorders were recruited as study group and healthy premenopausal women participated as controls. Peripheral blood mononuclear cells were isolated. Immuno-morphologic (CD3, CD4, CD8, CD19, CD56/CD16), intracellular cytokine (TNF-alpha, IFN-gamma, IL-10, IL-17), and Treg cell (Foxp3) studies were carried out using flow cytometry. The proportion of peripheral lymphocytes, including IL-17 producing and Foxp3+ Treg cells immune cell in each group were statistically analyzed. Results: The proportion of NK cells was significantly increased in menopausal women as compared to that of controls (P=.005). The ratios of TNF-alpha/IL-10 producing CD3+CD4+ T cells were increased in postmenopausal women. CD3+IL-17+ T cell level was higher in postmenopausal women and CD4+ Foxp3+ Treg cells was lower than that of controls. The ratios of CD3+IL-17+ T cell to CD3+Foxp3+ and to CD4+Foxp3+ Treg cells were significantly increased in postmenopausal women (P=.001). Conclusions: We found enhanced innate immunity and Th1- and Th17-mediated adaptive immunity in postmenopausal women. This may explain increasing prevalence of chronic inflammatory diseases after menopause. Further studies are needed to elucidate what factors contribute to this inflammatory shift in the postmenopause.Keywords: inflammation, immune cell, menopause, Th17, regulatory T cell
Procedia PDF Downloads 3234562 Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network
Authors: Masoud Safarishaal
Abstract:
Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location.Keywords: single pole-to-pole fault, Tehran railway, ICA, PSO, artificial neural network
Procedia PDF Downloads 1234561 Acoustic Radiation Pressure Detaches Myoblast from Culture Substrate by Assistance of Serum-Free Medium
Authors: Yuta Kurashina, Chikahiro Imashiro, Kiyoshi Ohnuma, Kenjiro Takemura
Abstract:
Research objectives and goals: To realize clinical applications of regenerative medicine, a mass cell culture is highly required. In a conventional cell culture, trypsinization was employed for cell detachment. However, trypsinization causes proliferation decrease due to injury of cell membrane. In order to detach cells using an enzyme-free method, therefore, this study proposes a novel cell detachment method capable of detaching adherent cells using acoustic radiation pressure exposed to the dish by the assistance of serum-free medium with ITS liquid medium supplement. Methods used In order to generate acoustic radiation pressure, a piezoelectric ceramic plate was glued on a glass plate to configure an ultrasonic transducer. The glass plate and a chamber wall compose a chamber in which a culture dish is placed in glycerol. Glycerol transmits acoustic radiation pressure to adhered cells on the culture dish. To excite a resonance vibration of transducer, AC signal with 29-31 kHz (swept) and 150, 300, and 450 V was input to the transducer for 5 min. As a pretreatment to reduce cell adhesivity, serum-free medium with ITS liquid medium supplement was spread to the culture dish before exposed to acoustic radiation pressure. To evaluate the proposed cell detachment method, C2C12 myoblast cells (8.0 × 104 cells) were cultured on a ø35 culture dish for 48 hr, and then the medium was replaced with the serum-free medium with ITS liquid medium supplement for 24 hr. We replaced the medium with phosphate buffered saline and incubated cells for 10 min. After that, cells were exposed to the acoustic radiation pressure for 5 min. We also collected cells by using trypsinization as control. Cells collected by the proposed method and trypsinization were respectively reseeded in ø60 culture dishes and cultured for 24 hr. Then, the number of proliferated cells was counted. Results achieved: By a phase contrast microscope imaging, shrink of lamellipodia was observed before exposed to acoustic radiation pressure, and no cells remained on the culture dish after the exposed of acoustic radiation pressure. This result suggests that serum-free medium with ITS liquid inhibits adhesivity of cells and acoustic radiation pressure detaches cells from the dish. Moreover, the number of proliferated cells 24 hr after collected by the proposed method with 150 and 300 V is the same or more than that by trypsinization, i.e., cells were proliferated 15% higher with the proposed method using acoustic radiation pressure than with the traditional cell collecting method of trypsinization. These results proved that cells were able to be collected by using the appropriate exposure of acoustic radiation pressure. Conclusions: This study proposed a cell detachment method using acoustic radiation pressure by the assistance of serum-free medium. The proposed method provides an enzyme-free cell detachment method so that it may be used in future clinical applications instead of trypsinization.Keywords: acoustic radiation pressure, cell detachment, enzyme free, ultrasonic transducer
Procedia PDF Downloads 2544560 Maximum Efficiency of the Photovoltaic Cells Using a Genetic Algorithm
Authors: Latifa Sabri, Mohammed Benzirar, Mimoun Zazoui
Abstract:
The installation of photovoltaic systems is one of future sources to generate electricity without emitting pollutants. The photovoltaic cells used in these systems have demonstrated enormous efficiencies and advantages. Several researches have discussed the maximum efficiency of these technologies, but only a few experiences have succeeded to right weather conditions to get these results. In this paper, two types of cells were selected: crystalline and amorphous silicon. Using the method of genetic algorithm, the results show that for an ambient temperature of 25°C and direct irradiation of 625 W/m², the efficiency of crystalline silicon is 12% and 5% for amorphous silicon.Keywords: PV, maximum efficiency, solar cell, genetic algorithm
Procedia PDF Downloads 4244559 An Approach to Building a Recommendation Engine for Travel Applications Using Genetic Algorithms and Neural Networks
Authors: Adrian Ionita, Ana-Maria Ghimes
Abstract:
The lack of features, design and the lack of promoting an integrated booking application are some of the reasons why most online travel platforms only offer automation of old booking processes, being limited to the integration of a smaller number of services without addressing the user experience. This paper represents a practical study on how to improve travel applications creating user-profiles through data-mining based on neural networks and genetic algorithms. Choices made by users and their ‘friends’ in the ‘social’ network context can be considered input data for a recommendation engine. The purpose of using these algorithms and this design is to improve user experience and to deliver more features to the users. The paper aims to highlight a broader range of improvements that could be applied to travel applications in terms of design and service integration, while the main scientific approach remains the technical implementation of the neural network solution. The motivation of the technologies used is also related to the initiative of some online booking providers that have made the fact that they use some ‘neural network’ related designs public. These companies use similar Big-Data technologies to provide recommendations for hotels, restaurants, and cinemas with a neural network based recommendation engine for building a user ‘DNA profile’. This implementation of the ‘profile’ a collection of neural networks trained from previous user choices, can improve the usability and design of any type of application.Keywords: artificial intelligence, big data, cloud computing, DNA profile, genetic algorithms, machine learning, neural networks, optimization, recommendation system, user profiling
Procedia PDF Downloads 1634558 Using Machine Learning to Classify Different Body Parts and Determine Healthiness
Authors: Zachary Pan
Abstract:
Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.Keywords: body part, healthcare, machine learning, neural networks
Procedia PDF Downloads 1034557 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System
Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid
Abstract:
Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.Keywords: artificial neural network, bending angle, fuzzy logic, laser forming
Procedia PDF Downloads 5974556 Charge Carrier Mobility Dependent Open-Circuit Voltage in Organic and Hybrid Solar Cells
Authors: David Ompong, Jai Singh
Abstract:
A better understanding of the open-circuit voltage (Voc) related losses in organic solar cells (OSCs) is desirable in order to assess the photovoltaic performance of these devices. We have derived Voc as a function of charge carrier mobilities (μe and μh) for organic and hybrid solar cells by optimizing the drift-diffusion current density. The optimum Voc thus obtained depends on the energy difference between the highest occupied molecular orbital (HOMO) level and the quasi-Fermi level of holes of the donor material. We have found that the Voc depends on the ratio of the electron (μe) and hole (μh) mobilities and when μh > μe the Voc increases. The most important loss term in the Voc arises from the energetics of the donor and acceptor materials, which will be discussed in detail in this paper.Keywords: charge carrier mobility, open-circuit voltage, organic solar cells, quasi-fermi levels
Procedia PDF Downloads 4494555 Coumestrol Induced Apoptosis in Breast Cancer MCF-7 Cells via Redox Cycling of Copper and ROS Generation: Implications of Copper Chelation Strategy in Cancer Treatment
Authors: Atif Zafar Khan, Swarnendra Singh, Imrana Naseem
Abstract:
Breast cancer is one of the most frequent malignancies in women worldwide and a leading cause of cancer-related deaths among women. Therefore, there is a need to identify new chemotherapeutic strategies for cancer treatment. Unlike normal cells, cancer cells contain elevated copper levels which play an integral role in angiogenesis. Copper is an important metal ion associated with the chromatin DNA, particularly with guanine. Thus, targeting copper via copper-specific chelators in cancer cells can serve as effective anticancer strategy. Keeping in view these facts, we evaluated the anticancer activity and copper-dependent cytotoxic effect of coumestrol (phytoestrogen in soybean products) in breast cancer MCF-7 cells. Coumestrol inhibited proliferation and induced apoptosis in MCF-7 cells, which was prevented by copper chelator neocuproine and ROS scavengers. Coumestrol treatment induced ROS generation coupled to DNA fragmentation, up-regulation of p53/p21, cell cycle arrest at G1/S phase, mitochondrial membrane depolarization and caspases 9/3 activation. All these effects were suppressed by ROS scavengers and neocuproine. These results suggest that coumestrol targets elevated copper for redox cycling to generate ROS leading to DNA fragmentation. DNA damage leads to p53 up-regulation which directs the cell cycle arrest at G1/S phase and promotes caspase-dependent apoptosis of MCF-7 cells. In conclusion, coumestrol induces pro-oxidant cell death by chelating cellular copper to produce copper-coumestrol complexes that engages in redox cycling in breast cancer cells. Thus, targeting elevated copper levels might be a potential therapeutic strategy for selective cytotoxic action against malignant cells.Keywords: apoptosis, breast cancer, copper chelation, coumestrol, reactive oxygens species, redox cycling
Procedia PDF Downloads 2454554 Semiconductor Nanofilm Based Schottky-Barrier Solar Cells
Authors: Mariyappan Shanmugam, Bin Yu
Abstract:
Schottky-barrier solar cells are demonstrated employing 2D-layered MoS2 and WS2 semiconductor nanofilms as photo-active material candidates synthesized by chemical vapor deposition method. Large area MoS2 and WS2 nanofilms are stacked by layer transfer process to achieve thicker photo-active material studied by atomic force microscopy showing a thickness in the range of ~200 nm. Two major vibrational active modes associated with 2D-layered MoS2 and WS2 are studied by Raman spectroscopic technique to estimate the quality of the nanofilms. Schottky-barrier solar cells employed MoS2 and WS2 active materials exhibited photoconversion efficiency of 1.8 % and 1.7 % respectively. Fermi-level pinning at metal/semiconductor interface, electronic transport and possible recombination mechanisms are studied in the Schottky-barrier solar cells.Keywords: two-dimensional nanosheet, graphene, hexagonal boron nitride, solar cell, Schottky barrier
Procedia PDF Downloads 3304553 Modelling Vehicle Fuel Consumption Utilising Artificial Neural Networks
Authors: Aydin Azizi, Aburrahman Tanira
Abstract:
The main source of energy used in this modern age is fossil fuels. There is a myriad of problems that come with the use of fossil fuels, out of which the issues with the greatest impact are its scarcity and the cost it imposes on the planet. Fossil fuels are the only plausible option for many vital functions and processes; the most important of these is transportation. Thus, using this source of energy wisely and as efficiently as possible is a must. The aim of this work was to explore utilising mathematical modelling and artificial intelligence techniques to enhance fuel consumption in passenger cars by focusing on the speed at which cars are driven. An artificial neural network with an error less than 0.05 was developed to be applied practically as to predict the rate of fuel consumption in vehicles.Keywords: mathematical modeling, neural networks, fuel consumption, fossil fuel
Procedia PDF Downloads 4054552 Design an Intelligent Fire Detection System Based on Neural Network and Particle Swarm Optimization
Authors: Majid Arvan, Peyman Beygi, Sina Rokhsati
Abstract:
In-time detection of fire in buildings is of great importance. Employing intelligent methods in data processing in fire detection systems leads to a significant reduction of fire damage at lowest cost. In this paper, the raw data obtained from the fire detection sensor networks in buildings is processed by using intelligent methods based on neural networks and the likelihood of fire happening is predicted. In order to enhance the quality of system, the noise in the sensor data is reduced by analyzing wavelets and applying SVD technique. Meanwhile, the proposed neural network is trained using particle swarm optimization (PSO). In the simulation work, the data is collected from sensor network inside the room and applied to the proposed network. Then the outputs are compared with conventional MLP network. The simulation results represent the superiority of the proposed method over the conventional one.Keywords: intelligent fire detection, neural network, particle swarm optimization, fire sensor network
Procedia PDF Downloads 3804551 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases
Authors: Hao-Hsiang Ku, Ching-Ho Chi
Abstract:
Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.Keywords: Hadoop, NoSQL, ontology, back propagation neural network, high distributed file system
Procedia PDF Downloads 2624550 Neuroplasticity: A Fresh Begining for Life
Authors: Leila Maleki, Ezatollah Ahmadi
Abstract:
Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. On the other hand, complexities of daily life necessitates cognitive neuroplasticity in order to adapt to different circumstances. The present paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture.Keywords: neuroplasticity, cognitive plasticity, plasticity theories, plasticity mechanisms
Procedia PDF Downloads 4954549 Neuroplasticity: A Fresh Beginning for Life
Authors: Leila Maleki, Ezatollah Ahmadi
Abstract:
Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. On the other hand, complexities of daily life necessitates cognitive neuroplasticity in order to adapt to different circumstances. The. present paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture.Keywords: neuroplasticity, cognitive plasticity, plasticity theories, plasticity mechanisms
Procedia PDF Downloads 4524548 Mathematical Modelling of the Effect of Glucose on Pancreatic Alpha-Cell Activity
Authors: Karen K. Perez-Ramirez, Genevieve Dupont, Virginia Gonzalez-Velez
Abstract:
Pancreatic alpha-cells participate on glucose regulation together with beta cells. They release glucagon hormone when glucose level is low to stimulate gluconeogenesis from the liver. As other excitable cells, alpha cells generate Ca2+ and metabolic oscillations when they are stimulated. It is known that the glucose level can trigger or silence this activity although it is not clear how this occurs in normal and diabetic people. In this work, we propose an electric-metabolic mathematical model implemented in Matlab to study the effect of different glucose levels on the electrical response and Ca2+ oscillations of an alpha cell. Our results show that Ca2+ oscillations appear in opposite phase with metabolic oscillations in a window of glucose values. The model also predicts a direct relationship between the level of glucose and the intracellular adenine nucleotides showing a self-regulating pathway for the alpha cell.Keywords: Ca2+ oscillations, mathematical model, metabolic oscillations, pancreatic alpha cell
Procedia PDF Downloads 1784547 Evaluation of Important Transcription Factors and Kinases in Regulating the Signaling Pathways of Cancer Stem Cells With Low and High Proliferation Rate Derived From Colorectal Cancer
Authors: Mohammad Hossein Habibi, Atena Sadat Hosseini
Abstract:
Colorectal cancer is the third leading cause of cancer-related death in the world. Colorectal cancer screening, early detection, and treatment programs could benefit from the most up-to-date information on the disease's burden, given the present worldwide trend of increasing colorectal cancer incidence. Tumor recurrence and resistance are exacerbated by the presence of chemotherapy-resistant cancer stem cells that can generate rapidly proliferating tumor cells. In addition, tumor cells can evolve chemoresistance through adaptation mechanisms. In this work, we used in silico analysis to select suitable GEO datasets. In this study, we compared slow-growing cancer stem cells with high-growth colorectal cancer-derived cancer stem cells. We then evaluated the signal pathways, transcription factors, and kinases associated with these two types of cancer stem cells. A total of 980 upregulated genes and 870 downregulated genes were clustered. MAPK signaling pathway, AGE-RAGE signaling pathway in diabetic complications, Fc gamma R-mediated phagocytosis, and Steroid biosynthesis signaling pathways were observed in upregulated genes. Also, caffeine metabolism, amino sugar and nucleotide sugar metabolism, TNF signaling pathway, and cytosolic DNA-sensing pathway were involved in downregulated genes. In the next step, we evaluated the best transcription factors and kinases in two types of cancer stem cells. In this regard, NR2F2, ZEB2, HEY1, and HDGF as transcription factors and PRDM5, SMAD, CBP, and KDM2B as critical kinases in upregulated genes. On the other hand, IRF1, SPDEF, NCOA1, and STAT1 transcription factors and CTNNB1 and CDH7 kinases were regulated low expression genes. Using bioinformatics analysis in the present study, we conducted an in-depth study of colorectal cancer stem cells at low and high growth rates so that we could take further steps to detect and even target these cells. Naturally, more additional tests are needed in this direction.Keywords: colorectal cancer, bioinformatics analysis, transcription factor, kinases, cancer stem cells
Procedia PDF Downloads 1264546 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge
Authors: T. Alghamdi, G. Alaghband
Abstract:
In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.Keywords: Convolution Neural Network, Edges, Face Recognition , Support Vector Machine.
Procedia PDF Downloads 1534545 Artificial Neural Networks Face to Sudden Load Change for Shunt Active Power Filter
Authors: Dehini Rachid, Ferdi Brahim
Abstract:
The shunt active power filter (SAPF) is not destined only to improve the power factor, but also to compensate the unwanted harmonic currents produced by nonlinear loads. This paper presents a SAPF with identification and control method based on artificial neural network (ANN). To identify harmonics, many techniques are used, among them the conventional p-q theory and the relatively recent one the artificial neural network method. It is difficult to get satisfied identification and control characteristics by using a normal (ANN) due to the nonlinearity of the system (SAPF + fast nonlinear load variations). This work is an attempt to undertake a systematic study of the problem to equip the (SAPF) with the harmonics identification and DC link voltage control method based on (ANN). The latter has been applied to the (SAPF) with fast nonlinear load variations. The results of computer simulations and experiments are given, which can confirm the feasibility of the proposed active power filter.Keywords: artificial neural networks (ANN), p-q theory, harmonics, total harmonic distortion
Procedia PDF Downloads 3864544 Estimation of Soil Erosion and Sediment Yield for ONG River Using GIS
Authors: Sanjay Kumar Behera, Kanhu Charan Patra
Abstract:
A GIS-based method has been applied for the determination of soil erosion and sediment yield in a small watershed in Ong River basin, Odisha, India. The method involves spatial disintegration of the catchment into homogenous grid cells to capture the catchment heterogeneity. The gross soil erosion in each cell was calculated using Universal Soil Loss Equation (USLE) by carefully determining its various parameters. The concept of sediment delivery ratio is used to route surface erosion from each of the discretized cells to the catchment outlet. The process of sediment delivery from grid cells to the catchment outlet is represented by the topographical characteristics of the cells. The effect of DEM resolution on sediment yield is analyzed using two different resolutions of DEM. The spatial discretization of the catchment and derivation of the physical parameters related to erosion in the cell are performed through GIS techniques.Keywords: DEM, GIS, sediment delivery ratio, sediment yield, soil erosion
Procedia PDF Downloads 4494543 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping
Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa
Abstract:
The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.Keywords: neural network computing, continuous functions generating the input-output mapping, decreasing the training time, machines with big memories
Procedia PDF Downloads 2834542 Photoimpedance Spectroscopy Analysis of Planar and Nano-Textured Thin-Film Silicon Solar Cells
Authors: P. Kumar, D. Eisenhauer, M. M. K. Yousef, Q. Shi, A. S. G. Khalil, M. R. Saber, C. Becker, T. Pullerits, K. J. Karki
Abstract:
In impedance spectroscopy (IS) the response of a photo-active device is analysed as a function of ac bias. It is widely applied in a broad class of material systems and devices. It gives access to fundamental mechanisms of operation of solar cells. We have implemented a method of IS where we modulate the light instead of the bias. This scheme allows us to analyze not only carrier dynamics but also impedance of device locally. Here, using this scheme, we have measured the frequency-dependent photocurrent response of the thin-film planar and nano-textured Si solar cells using this method. Photocurrent response is measured in range of 50 Hz to 50 kHz. Bode and Nyquist plots are used to determine characteristic lifetime of both the cells. Interestingly, the carrier lifetime of both planar and nano-textured solar cells depend on back and front contact positions. This is due to either heterogeneity of device or contacts are not optimized. The estimated average lifetime is found to be shorter for the nano-textured cell, which could be due to the influence of the textured interface on the carrier relaxation dynamics.Keywords: carrier lifetime, impedance, nano-textured, photocurrent
Procedia PDF Downloads 2334541 Neural Network Based Approach of Software Maintenance Prediction for Laboratory Information System
Authors: Vuk M. Popovic, Dunja D. Popovic
Abstract:
Software maintenance phase is started once a software project has been developed and delivered. After that, any modification to it corresponds to maintenance. Software maintenance involves modifications to keep a software project usable in a changed or a changing environment, to correct discovered faults, and modifications, and to improve performance or maintainability. Software maintenance and management of software maintenance are recognized as two most important and most expensive processes in a life of a software product. This research is basing the prediction of maintenance, on risks and time evaluation, and using them as data sets for working with neural networks. The aim of this paper is to provide support to project maintenance managers. They will be able to pass the issues planned for the next software-service-patch to the experts, for risk and working time evaluation, and afterward to put all data to neural networks in order to get software maintenance prediction. This process will lead to the more accurate prediction of the working hours needed for the software-service-patch, which will eventually lead to better planning of budget for the software maintenance projects.Keywords: laboratory information system, maintenance engineering, neural networks, software maintenance, software maintenance costs
Procedia PDF Downloads 3584540 Oxidative Damage to Lipids, Proteins, and DNA during Differentiation of Mesenchymal Stem Cells Derived from Umbilical Cord into Biologically Active Hepatocytes
Authors: Abdolamir Allameh, Shahnaz Esmaeili, Mina Allameh, Safoura Khajeniazi
Abstract:
Stem cells with therapeutic applications can be isolated from human placenta/umblical cord blood (UCB) as well as the cord tissue (UC). Stem cells in culture are vulnerable to oxidative stress, particularly when subjected to differentiation process. The aim of this study was to examine the chnages in the rate of oxidation that occurs to cellular macromolecules during hepatic differentiation of mononuclear cells (MSCs). In addition, the impact of the hepatic differentiation process of MSC on cellular and biological activity of the cells will be undertaken. For this purpose, first mononuclear cells (MNCs) were isolated from human UCB which was obtained from a healthy full-term infant. The cells were cultured at a density of 3×10⁵ cells/cm² in DMEM- low-glucose culture media supplemented with 20% FBS, 2 mM L-glutamine, 100 μg/ml streptomycin and 100 U/ml penicillin. Cell cultures were then incubated at 37°C in a humidified 5% CO₂ incubator. After removing non-adherent cells by replacing culture medium, fibroblast-like adherent cells were resuspended in 0.25% trypsin-EDTA and plated in 25 cm² flasks (1×10⁴/ml). Characterization of the MSCs was routinely done by observing their morphology and growth curve. MSCs were subjected to a 2-step hepatocyte differentiation protocol in presence of hepatocyte growth factor (HGF), dexamethazone (DEX) and oncostatin M (OSM). The hepatocyte-like cells derived from MSCs were checked every week for 3 weeks for changes in lipid peroxidation, protein carbonyl formation and DNA oxidation i.e., 8-hydroxy-2'-deoxyguanosine (8-OH-dG) assay. During the 3-week differentiation process of MSCs to hepatocyte-like cells we found that expression liver-specific markers such as albumin, was associated with increased levels of lipid peroxidation and protein carbonyl formation. Whereas, undifferentiated MSCs has relatively low levels of lipid peroxidation products. There was a significant increase ( p < 0.05) in lipid peroxidation products in hepatocytes on days 7, 14, and 21 of differentiation. Likewise, the level of protein carbonyls in the cells was elevated during the differentiation. The level of protein carbonyls measured in hepatocyte-like cells obtained 3 weeks after differentiation induction was estimated to be ~6 fold higher compared to cells recovered on day 7 of differentiation. On the contrary, there was a small but significant decrease in DNA damage marker (8-OH-dG) in hepatocytes recovered 3 weeks after differentiation onset. The level of 8-OHdG which was in consistent with formation of reactive oxygen species (ROS). In conclusion, this data suggest that despite the elevation in oxidation of lipid and protein molecules during hepatocyte development, the cells were normal in terms of DNA integrity, morphology, and biologically activity.Keywords: adult stem cells, DNA integrity, free radicals, hepatic differentiation
Procedia PDF Downloads 1504539 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors
Authors: Anwar Jarndal
Abstract:
In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.Keywords: GaN HEMT, computer-aided design and modeling, neural networks, genetic optimization
Procedia PDF Downloads 3824538 A Novel Co-Culture System for the Cementoblastic Differentiation of SHED
Authors: Manal Farea, Adam Husein, Ahmad S. Halim, Zurairah Berahim, Nurul A. Abdullah, Khairani I. Mokhtar, Kasmawati Mokhtar
Abstract:
Endodontic furcal perforation remains both an endodontic and a periodontal problem. Regeneration of cementum is very essential for the perforation repair. The aim of this study was to investigate the role of Hertwig's epithelial root sheath (HERS) cells on the cementogenic differentiation of stem cells derived from human exfoliated deciduous teeth (SHED) in the presence of chitosan scaffold-TGFβ1. HERS cells were isolated and characterized then co-cultured with SHED with/without chitosan scaffold-TGFβ1. SHED proliferation was assessed by PrestoBlue. Alkaline phosphatase activity, mineralization behaviour and gene/protein expression of cemento/osteoblast phenotype of SHED were evaluated. Results of the present study showed that HERS cells in association with chitosan-TGFβ1 enhanced proliferation and cemento/osteogenic differentiation of SHED. Our novel co-culture system confirmed the potential effect of HERS cells to stimulate the differentiation of SHED along the cementoblastic lineage which was triggered in the presence of chitosan-TGFβ1. This approach possesses a novel therapeutic strategy for future endodontic perforation and periodontitis.Keywords: cementogenesis, co-culture system, HERS, SHED
Procedia PDF Downloads 542