Search results for: multi
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4099

Search results for: multi

3739 Parametric Optimization of Electric Discharge Machining Process Using Taguchi's Method and Grey Relation Analysis

Authors: Pushpendra S. Bharti

Abstract:

Process yield of electric discharge machining (EDM) is directly related to optimal combination(s) of process parameters. Optimization of process parameters of EDM is a multi-objective optimization problem owing to the contradictory behavior of performance measures. This paper employs Grey Relation Analysis (GRA) method as a multi-objective optimization technique for the optimal selection of process parameters combination. In GRA, multi-response optimization is converted into optimization of a single response grey relation grade which ultimately gives the optimal combination of process parameters. Experiments were carried out on die-sinking EDM by taking D2 steel as work piece and copper as electrode material. Taguchi's orthogonal array L36 was used for the design of experiments. On the experimental values, GRA was employed for the parametric optimization. A significant improvement has been observed and reported in the process yield by taking the parametric combination(s) obtained through GRA.

Keywords: electric discharge machining, grey relation analysis, material removal rate, optimization

Procedia PDF Downloads 409
3738 Multi-Objective Production Planning Problem: A Case Study of Certain and Uncertain Environment

Authors: Ahteshamul Haq, Srikant Gupta, Murshid Kamal, Irfan Ali

Abstract:

This case study designs and builds a multi-objective production planning model for a hardware firm with certain & uncertain data. During the time of interaction with the manager of the firm, they indicate some of the parameters may be vague. This vagueness in the formulated model is handled by the concept of fuzzy set theory. Triangular & Trapezoidal fuzzy numbers are used to represent the uncertainty in the collected data. The fuzzy nature is de-fuzzified into the crisp form using well-known defuzzification method via graded mean integration representation method. The proposed model attempts to maximize the production of the firm, profit related to the manufactured items & minimize the carrying inventory costs in both certain & uncertain environment. The recommended optimal plan is determined via fuzzy programming approach, and the formulated models are solved by using optimizing software LINGO 16.0 for getting the optimal production plan. The proposed model yields an efficient compromise solution with the overall satisfaction of decision maker.

Keywords: production planning problem, multi-objective optimization, fuzzy programming, fuzzy sets

Procedia PDF Downloads 213
3737 A Thermo-mechanical Finite Element Model to Predict Thermal Cycles and Residual Stresses in Directed Energy Deposition Technology

Authors: Edison A. Bonifaz

Abstract:

In this work, a numerical procedure is proposed to design dense multi-material structures using the Directed Energy Deposition (DED) process. A thermo-mechanical finite element model to predict thermal cycles and residual stresses is presented. A numerical layer build-up procedure coupled with a moving heat flux was constructed to minimize strains and residual stresses that result in the multi-layer deposition of an AISI 316 austenitic steel on an AISI 304 austenitic steel substrate. To simulate the DED process, the automated interface of the ABAQUS AM module was used to define element activation and heat input event data as a function of time and position. Of this manner, the construction of ABAQUS user-defined subroutines was not necessary. Thermal cycles and thermally induced stresses created during the multi-layer deposition metal AM pool crystallization were predicted and validated. Results were analyzed in three independent metal layers of three different experiments. The one-way heat and material deposition toolpath used in the analysis was created with a MatLab path script. An optimal combination of feedstock and heat input printing parameters suitable for fabricating multi-material dense structures in the directed energy deposition metal AM process was established. At constant power, it can be concluded that the lower the heat input, the lower the peak temperatures and residual stresses. It means that from a design point of view, the one-way heat and material deposition processing toolpath with the higher welding speed should be selected.

Keywords: event series, thermal cycles, residual stresses, multi-pass welding, abaqus am modeler

Procedia PDF Downloads 69
3736 A Fuzzy Multi-Criteria Model for Sustainable Development of Community-Based Tourism through the Homestay Program in Malaysia

Authors: Azizah Ismail, Zainab Khalifah, Abbas Mardani

Abstract:

Sustainable community-based tourism through homestay programme is a growing niche market that has impacted destinations in many countries including Malaysia. With demand predicted to continue increasing, the importance of the homestay product will grow in the tourism industry. This research examines the sustainability criteria for homestay programme in Malaysia covering economic, socio-cultural and environmental dimensions. This research applied a two-stage methodology for data analysis. Specifically, the researcher implements a hybrid method which combines two multi-criteria decision making approaches. In the first stage of the methodology, the Decision Making Trial and Evaluation Laboratory (DEMATEL) technique is applied. Then, Analytical Network Process (ANP) is employed for the achievement of the objective of the current research. After factors identification and problem formulation, DEMATEL is used to detect complex relationships and to build a Network Relation Map (NRM). Then ANP is used to prioritize and find the weights of the criteria and sub-criteria of the decision model. The research verifies the framework of multi-criteria for sustainable community-based tourism from the perspective of stakeholders. The result also provides a different perspective on the importance of sustainable criteria from the view of multi-stakeholders. Practically, this research gives the framework model and helps stakeholders to improve and innovate the homestay programme and also promote community-based tourism.

Keywords: community-based tourism, homestay programme, sustainable tourism criteria, sustainable tourism development

Procedia PDF Downloads 130
3735 Multi-dimensional Approach to Resilience and Support in Advanced School-based Mental Health Service Delivery (MARS-SMHSD) Framework Development for Low-Resource Areas

Authors: Wan You Ning

Abstract:

Addressing the rising prevalence of mental health issues among youths, the Multi-dimensional Approach to Resilience and Support in Advanced School-based Mental Health Service Delivery (MARS-ASMHSD) framework proposes the implementation of advanced mental health services in low-resource areas to further instil mental health resilience among students in a school-based setting. Recognizing the unsustainability of direct service delivery due to rapidly growing demands and costs, the MARS-ASMHSD framework endorses the deinstitutionalization of mental healthcare and explores a tiered, multi-dimensional approach in mental healthcare provision, establishing advanced school-based mental health service delivery. The framework is developed based on sustainable and credible evidence-based practices and modifications of existing mental health service deliveries in Asia, including Singapore, Thailand, Malaysia, Japan, and Taiwan. Dissemination of the framework model for implementation will enable a more progressive and advanced school-based mental health service delivery in low-resource areas. Through the evaluation of the mental health landscape and the role of stakeholders in the respective countries, the paper concludes with a multi-dimensional framework model for implementation in low-resource areas. A mixed-method independent research study is conducted to facilitate the framework's development.

Keywords: mental health, youths, school-based services, framework development

Procedia PDF Downloads 46
3734 The Need for Multi-Edge Strategies and Solutions

Authors: Hugh Taylor

Abstract:

Industry analysts project that edge computing will be generating tens of billions in revenue in coming years. It’s not clear, however, if this will actually happen, and who, if anyone, will make it happen. Edge computing is seen as a critical success factor in industries ranging from telecom, enterprise IT and co-location. However, will any of these industries actually step up to make edge computing into a viable technology business? This paper looks at why the edge seems to be in a chasm, on the edge of realization, so to speak, but failing to coalesce into a coherent technology category like the cloud—and how the segment’s divergent industry players can come together to build a viable business at the edge.

Keywords: edge computing, multi-edge strategies, edge data centers, edge cloud

Procedia PDF Downloads 105
3733 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis

Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu

Abstract:

Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.

Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing

Procedia PDF Downloads 138
3732 A Novel Guided Search Based Multi-Objective Evolutionary Algorithm

Authors: A. Baviskar, C. Sandeep, K. Shankar

Abstract:

Solving Multi-objective Optimization Problems requires faster convergence and better spread. Though existing Evolutionary Algorithms (EA's) are able to achieve this, the computation effort can further be reduced by hybridizing them with innovative strategies. This study is focuses on converging to the pareto front faster while adapting the advantages of Strength Pareto Evolutionary Algorithm-II (SPEA-II) for a better spread. Two different approaches based on optimizing the objective functions independently are implemented. In the first method, the decision variables corresponding to the optima of individual objective functions are strategically used to guide the search towards the pareto front. In the second method, boundary points of the pareto front are calculated and their decision variables are seeded to the initial population. Both the methods are applied to different constrained and unconstrained multi-objective test functions. It is observed that proposed guided search based algorithm gives better convergence and diversity than several well-known existing algorithms (such as NSGA-II and SPEA-II) in considerably less number of iterations.

Keywords: boundary points, evolutionary algorithms (EA's), guided search, strength pareto evolutionary algorithm-II (SPEA-II)

Procedia PDF Downloads 277
3731 Experimentally Validated Analytical Model for Thermal Analysis of Multi-Stage Depressed Collector

Authors: Vishant Gahlaut, A Mercy Latha, Sanjay Kumar Ghosh

Abstract:

Multi-stage depressed collectors (MDC) are used as an efficiency enhancement technique in traveling wave tubes the high-energy electron beam, after its interaction with the RF signal, gets velocity sorted and collected at various depressed electrodes of the MDC. The ultimate goal is to identify an optimum thermal management scheme (cooling mechanism) that could extract the heat efficiently from the electrodes. Careful thermal analysis, incorporating the cooling mechanism is required to ensure that the maximum temperature does not exceed the safe limits. A simple analytical model for quick prediction of the thermal has been developed. The model has been developed for the worst-case un-modulated DC condition, where all the thermal power is dissipated in the last electrode (typically, fourth electrode in the case of the four-stage depressed collector). It considers the thermal contact resistances at various braze joints accounting for the practical non-uniformities. Analytical results obtained from the model have been validated with simulated and experimental results.

Keywords: multi-stage depressed collector, TWTs, thermal contact resistance, thermal management

Procedia PDF Downloads 224
3730 Numerical Investigation of Material Behavior During Non-Equal Channel Multi Angular Extrusion

Authors: Mohamed S. El-Asfoury, Ahmed Abdel-Moneim, Mohamed N. A. Nasr

Abstract:

The current study uses finite element modeling to investigate and analyze a modified form of the from the conventional equal channel multi-angular pressing (ECMAP), using non-equal channels, on the workpiece material plastic deformation. The modified process non-equal channel multi-angular extrusion (NECMAE) is modeled using two-dimensional plane strain finite element model built using the commercial software ABAQUS. The workpiece material used is pure aluminum. The model was first validated by comparing its results to analytical solutions for single-pass equal channel angular extrusion (ECAP), as well as previously published data. After that, the model was used to examine the effects of different % of reductions of the area (for the second stage) on material plastic deformation, corner gap, and required the load. Three levels of reduction in the area were modeled; 10%, 30%, and 50%, and compared to single-pass and double-pass ECAP. Cases with a higher reduction in the area were found to have smaller corner gaps, higher and much uniform plastic deformation, as well as higher required loads. The current results are mainly attributed to the back pressure effects exerted by the second stage, as well as strain hardening effects experienced during the first stage.

Keywords: non-equal channel angular extrusion, multi-pass, sever plastic deformation, back pressure, Finite Element Modelling (FEM)

Procedia PDF Downloads 422
3729 A Multi-Release Software Reliability Growth Models Incorporating Imperfect Debugging and Change-Point under the Simulated Testing Environment and Software Release Time

Authors: Sujit Kumar Pradhan, Anil Kumar, Vijay Kumar

Abstract:

The testing process of the software during the software development time is a crucial step as it makes the software more efficient and dependable. To estimate software’s reliability through the mean value function, many software reliability growth models (SRGMs) were developed under the assumption that operating and testing environments are the same. Practically, it is not true because when the software works in a natural field environment, the reliability of the software differs. This article discussed an SRGM comprising change-point and imperfect debugging in a simulated testing environment. Later on, we extended it in a multi-release direction. Initially, the software was released to the market with few features. According to the market’s demand, the software company upgraded the current version by adding new features as time passed. Therefore, we have proposed a generalized multi-release SRGM where change-point and imperfect debugging concepts have been addressed in a simulated testing environment. The failure-increasing rate concept has been adopted to determine the change point for each software release. Based on nine goodness-of-fit criteria, the proposed model is validated on two real datasets. The results demonstrate that the proposed model fits the datasets better. We have also discussed the optimal release time of the software through a cost model by assuming that the testing and debugging costs are time-dependent.

Keywords: software reliability growth models, non-homogeneous Poisson process, multi-release software, mean value function, change-point, environmental factors

Procedia PDF Downloads 74
3728 Multi-Criteria Optimization of High-Temperature Reversed Starter-Generator

Authors: Flur R. Ismagilov, Irek Kh. Khayrullin, Vyacheslav E. Vavilov, Ruslan D. Karimov, Anton S. Gorbunov, Danis R. Farrakhov

Abstract:

The paper presents another structural scheme of high-temperature starter-generator with external rotor to be installed on High Pressure Shaft (HPS) of aircraft engines (AE) to implement More Electrical Engine concept. The basic materials to make this starter-generator (SG) were selected and justified. Multi-criteria optimization of the developed structural scheme was performed using a genetic algorithm and Pareto method. The optimum (in Pareto terms) active length and thickness of permanent magnets of SG were selected as a result of the optimization. Using the dimensions obtained, allowed to reduce the weight of the designed SG by 10 kg relative to a base option at constant thermal loads. Multidisciplinary computer simulation was performed on the basis of the optimum geometric dimensions, which proved performance efficiency of the design. We further plan to make a full-scale sample of SG of HPS and publish the results of its experimental research.

Keywords: high-temperature starter-generator, more electrical engine, multi-criteria optimization, permanent magnet

Procedia PDF Downloads 367
3727 Performance Analysis and Multi-Objective Optimization of a Kalina Cycle for Low-Temperature Applications

Authors: Sadegh Sadeghi, Negar Shabani

Abstract:

From a thermal point of view, zeotropic mixtures are likely to be more efficient than azeotropic fluids in low-temperature thermodynamic cycles due to their suitable boiling characteristics. In this study, performance of a low-temperature Kalina cycle with R717/water working fluid used in different existing power plants is mathematically investigated. To analyze the behavior of the cycle, mass conservation, energy conservation, and exergy balance equations are presented. With regard to the similarity in molar mass of R717 (17.03 gr/mol) and water (18.01 gr/mol), there is no need to alter the size of Kalina system components such as turbine and pump. To optimize the cycle energy and exergy efficiencies simultaneously, a constrained multi-objective optimization is carried out applying an Artificial Bee Colony algorithm. The main motivation behind using this algorithm lies on its robustness, reliability, remarkable precision and high–speed convergence rate in dealing with complicated constrained multi-objective problems. Convergence rates of the algorithm for calculating the optimal energy and exergy efficiencies are presented. Subsequently, due to the importance of exergy concept in Kalina cycles, exergy destructions occurring in the components are computed. Finally, the impacts of pressure, temperature, mass fraction and mass flow rate on the energy and exergy efficiencies are elaborately studied.

Keywords: artificial bee colony algorithm, binary zeotropic mixture, constrained multi-objective optimization, energy efficiency, exergy efficiency, Kalina cycle

Procedia PDF Downloads 153
3726 The Prediction of Sound Absorbing Coefficient for Multi-Layer Non-Woven

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park

Abstract:

Automotive interior material consisting of several material layers has the sound-absorbing function. It is difficult to predict sound absorbing coefficient because of several material layers. So, many experimental tunings are required to achieve the target of sound absorption. Therefore, while the car interior materials are developed, so much time and money is spent. In this study, we present a method to predict the sound absorbing performance of the material with multi-layer using physical properties of each material. The properties are predicted by Foam-X software using the sound absorption coefficient data measured by impedance tube. Then, we will compare and analyze the predicted sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If the method is used instead of experimental tuning in the development of car interior material, the time and money can be saved, and then, the development effort can be reduced because it can be optimized by simulation.

Keywords: multi-layer nonwoven, sound absorption coefficient, scaled reverberation chamber, impedance tubes

Procedia PDF Downloads 376
3725 A Multi-agent System Framework for Stakeholder Analysis of Local Energy Systems

Authors: Mengqiu Deng, Xiao Peng, Yang Zhao

Abstract:

The development of local energy systems requires the collective involvement of different actors from various levels of society. However, the stakeholder analysis of local energy systems still has been under-developed. This paper proposes an multi-agent system (MAS) framework to facilitate the development of stakeholder analysis of local energy systems. The framework takes into account the most influencing stakeholders, including prosumers/consumers, system operators, energy companies and government bodies. Different stakeholders are modeled based on agent architectures for example the belief-desire-intention (BDI) to better reflect their motivations and interests in participating in local energy systems. The agent models of different stakeholders are then integrated in one model of the whole energy system. An illustrative case study is provided to elaborate how to develop a quantitative agent model for different stakeholders, as well as to demonstrate the practicability of the proposed framework. The findings from the case study indicate that the suggested framework and agent model can serve as analytical instruments for enhancing the government’s policy-making process by offering a systematic view of stakeholder interconnections in local energy systems.

Keywords: multi-agent system, BDI agent, local energy systems, stakeholders

Procedia PDF Downloads 87
3724 Performance Demonstration of Extendable NSPO Space-Borne GPS Receiver

Authors: Hung-Yuan Chang, Wen-Lung Chiang, Kuo-Liang Wu, Chen-Tsung Lin

Abstract:

National Space Organization (NSPO) has completed in 2014 the development of a space-borne GPS receiver, including design, manufacture, comprehensive functional test, environmental qualification test and so on. The main performance of this receiver include 8-meter positioning accuracy, 0.05 m/sec speed-accuracy, the longest 90 seconds of cold start time, and up to 15g high dynamic scenario. The receiver will be integrated in the autonomous FORMOSAT-7 NSPO-Built satellite scheduled to be launched in 2019 to execute pre-defined scientific missions. The flight model of this receiver manufactured in early 2015 will pass comprehensive functional tests and environmental acceptance tests, etc., which are expected to be completed by the end of 2015. The space-borne GPS receiver is a pure software design in which all GPS baseband signal processing are executed by a digital signal processor (DSP), currently only 50% of its throughput being used. In response to the booming global navigation satellite systems, NSPO will gradually expand this receiver to become a multi-mode, multi-band, high-precision navigation receiver, and even a science payload, such as the reflectometry receiver of a global navigation satellite system. The fundamental purpose of this extension study is to port some software algorithms such as signal acquisition and correlation, reused code and large amount of computation load to the FPGA whose processor is responsible for operational control, navigation solution, and orbit propagation and so on. Due to the development and evolution of the FPGA is pretty fast, the new system architecture upgraded via an FPGA should be able to achieve the goal of being a multi-mode, multi-band high-precision navigation receiver, or scientific receiver. Finally, the results of tests show that the new system architecture not only retains the original overall performance, but also sets aside more resources available for future expansion possibility. This paper will explain the detailed DSP/FPGA architecture, development, test results, and the goals of next development stage of this receiver.

Keywords: space-borne, GPS receiver, DSP, FPGA, multi-mode multi-band

Procedia PDF Downloads 369
3723 Data Clustering Algorithm Based on Multi-Objective Periodic Bacterial Foraging Optimization with Two Learning Archives

Authors: Chen Guo, Heng Tang, Ben Niu

Abstract:

Clustering splits objects into different groups based on similarity, making the objects have higher similarity in the same group and lower similarity in different groups. Thus, clustering can be treated as an optimization problem to maximize the intra-cluster similarity or inter-cluster dissimilarity. In real-world applications, the datasets often have some complex characteristics: sparse, overlap, high dimensionality, etc. When facing these datasets, simultaneously optimizing two or more objectives can obtain better clustering results than optimizing one objective. However, except for the objectives weighting methods, traditional clustering approaches have difficulty in solving multi-objective data clustering problems. Due to this, evolutionary multi-objective optimization algorithms are investigated by researchers to optimize multiple clustering objectives. In this paper, the Data Clustering algorithm based on Multi-objective Periodic Bacterial Foraging Optimization with two Learning Archives (DC-MPBFOLA) is proposed. Specifically, first, to reduce the high computing complexity of the original BFO, periodic BFO is employed as the basic algorithmic framework. Then transfer the periodic BFO into a multi-objective type. Second, two learning strategies are proposed based on the two learning archives to guide the bacterial swarm to move in a better direction. On the one hand, the global best is selected from the global learning archive according to the convergence index and diversity index. On the other hand, the personal best is selected from the personal learning archive according to the sum of weighted objectives. According to the aforementioned learning strategies, a chemotaxis operation is designed. Third, an elite learning strategy is designed to provide fresh power to the objects in two learning archives. When the objects in these two archives do not change for two consecutive times, randomly initializing one dimension of objects can prevent the proposed algorithm from falling into local optima. Fourth, to validate the performance of the proposed algorithm, DC-MPBFOLA is compared with four state-of-art evolutionary multi-objective optimization algorithms and one classical clustering algorithm on evaluation indexes of datasets. To further verify the effectiveness and feasibility of designed strategies in DC-MPBFOLA, variants of DC-MPBFOLA are also proposed. Experimental results demonstrate that DC-MPBFOLA outperforms its competitors regarding all evaluation indexes and clustering partitions. These results also indicate that the designed strategies positively influence the performance improvement of the original BFO.

Keywords: data clustering, multi-objective optimization, bacterial foraging optimization, learning archives

Procedia PDF Downloads 139
3722 Effect of Multi-Stage Fractured Patterns on Production Improvement of Horizontal Wells

Authors: Armin Shirbazo, Mohammad Vahab, Hamed Lamei Ramandi, Jalal Fahimpour

Abstract:

One of the most effective ways for increasing production in wells that are faced with problems such as pressure depletion and low rate is hydraulic fracturing. Hydraulic fracturing is creating a high permeable path through the reservoir and simulated area around the wellbore. This is very important for low permeability reservoirs, which their production is uneconomical. In this study, the influence of the fracturing pattern in multi-stage fractured horizontal wells is analyzed for a tight, heavy oil reservoir to explore the impact of fracturing patterns on improving oil recovery. The horizontal well has five transverse fractures with the same fracture length, width, height, and conductivity properties. The fracture patterns are divided into four distinct shapes: uniform shape, diamond shape, U shape, and W shape. The results show that different fracturing patterns produce various cumulative production after ten years, and the best pattern can be selected based on the most cumulative production. The result also illustrates that optimum design in fracturing can boost the production up to 3% through the permeability distribution around the wellbore and reservoir.

Keywords: multi-stage fracturing, horizontal well, fracture patterns, fracture length, number of stages

Procedia PDF Downloads 222
3721 Simulation of the Evacuation of Ships Carrying Dangerous Goods from Tsunami

Authors: Yoshinori Matsuura, Saori Iwanaga

Abstract:

The Great East Japan Earthquake occurred at 14:46 on Friday, March 11, 2011. It was the most powerful known earthquake to have hit Japan. The earthquake triggered extremely destructive tsunami waves of up to 40.5 meters in height. We focus on the ship’s evacuation from tsunami. Then we analyze about ships evacuation from tsunami using multi-agent simulation and we want to prepare for a coming earthquake. We developed a simulation model of ships that set sail from the port in order to evacuate from the tsunami considering the ship carrying dangerous goods.

Keywords: Ship’s evacuation, multi-agent simulation, tsunami

Procedia PDF Downloads 452
3720 Multi-Sensor Image Fusion for Visible and Infrared Thermal Images

Authors: Amit Kumar Happy

Abstract:

This paper is motivated by the importance of multi-sensor image fusion with a specific focus on infrared (IR) and visual image (VI) fusion for various applications, including military reconnaissance. Image fusion can be defined as the process of combining two or more source images into a single composite image with extended information content that improves visual perception or feature extraction. These images can be from different modalities like visible camera & IR thermal imager. While visible images are captured by reflected radiations in the visible spectrum, the thermal images are formed from thermal radiation (infrared) that may be reflected or self-emitted. A digital color camera captures the visible source image, and a thermal infrared camera acquires the thermal source image. In this paper, some image fusion algorithms based upon multi-scale transform (MST) and region-based selection rule with consistency verification have been proposed and presented. This research includes the implementation of the proposed image fusion algorithm in MATLAB along with a comparative analysis to decide the optimum number of levels for MST and the coefficient fusion rule. The results are presented, and several commonly used evaluation metrics are used to assess the suggested method's validity. Experiments show that the proposed approach is capable of producing good fusion results. While deploying our image fusion algorithm approaches, we observe several challenges from the popular image fusion methods. While high computational cost and complex processing steps of image fusion algorithms provide accurate fused results, they also make it hard to become deployed in systems and applications that require a real-time operation, high flexibility, and low computation ability. So, the methods presented in this paper offer good results with minimum time complexity.

Keywords: image fusion, IR thermal imager, multi-sensor, multi-scale transform

Procedia PDF Downloads 115
3719 Multi-Objective Optimization of Intersections

Authors: Xiang Li, Jian-Qiao Sun

Abstract:

As the crucial component of city traffic network, intersections have significant impacts on urban traffic performance. Despite of the rapid development in transportation systems, increasing traffic volumes result in severe congestions especially at intersections in urban areas. Effective regulation of vehicle flows at intersections has always been an important issue in the traffic control system. This study presents a multi-objective optimization method at intersections with cellular automata to achieve better traffic performance. Vehicle conflicts and pedestrian interference are considered. Three categories of the traffic performance are studied including transportation efficiency, energy consumption and road safety. The left-turn signal type, signal timing and lane assignment are optimized for different traffic flows. The multi-objective optimization problem is solved with the cell mapping method. The optimization results show the conflicting nature of different traffic performance. The influence of different traffic variables on the intersection performance is investigated. It is observed that the proposed optimization method is effective in regulating the traffic at the intersection to meet multiple objectives. Transportation efficiency can be usually improved by the permissive left-turn signal, which sacrifices safety. Right-turn traffic suffers significantly when the right-turn lanes are shared with the through vehicles. The effect of vehicle flow on the intersection performance is significant. The display pattern of the optimization results can be changed remarkably by the traffic volume variation. Pedestrians have strong interference with the traffic system.

Keywords: cellular automata, intersection, multi-objective optimization, traffic system

Procedia PDF Downloads 580
3718 MIMO PID Controller of a Power Plant Boiler–Turbine Unit

Authors: N. Ben-Mahmoud, M. Elfandi, A. Shallof

Abstract:

This paper presents a methodology to design multivariable PID controllers for multi-input and multi-output systems. The proposed control strategy, which is centralized, combines of PID controllers. The proportional gains in the P controllers act as tuning parameters of (SISO) in order to modify the behavior of the loops almost independently. The design procedure consists of three steps: first, an ideal decoupler including integral action is determined. Second, the decoupler is approximated with PID controllers. Third, the proportional gains are tuned to achieve the specified performance. The proposed method is applied to representative processes.

Keywords: boiler turbine, MIMO, PID controller, control by decoupling, anti wind-up techniques

Procedia PDF Downloads 326
3717 A Comparison of Methods for Neural Network Aggregation

Authors: John Pomerat, Aviv Segev

Abstract:

Recently, deep learning has had many theoretical breakthroughs. For deep learning to be successful in the industry, however, there need to be practical algorithms capable of handling many real-world hiccups preventing the immediate application of a learning algorithm. Although AI promises to revolutionize the healthcare industry, getting access to patient data in order to train learning algorithms has not been easy. One proposed solution to this is data- sharing. In this paper, we propose an alternative protocol, based on multi-party computation, to train deep learning models while maintaining both the privacy and security of training data. We examine three methods of training neural networks in this way: Transfer learning, average ensemble learning, and series network learning. We compare these methods to the equivalent model obtained through data-sharing across two different experiments. Additionally, we address the security concerns of this protocol. While the motivating example is healthcare, our findings regarding multi-party computation of neural network training are purely theoretical and have use-cases outside the domain of healthcare.

Keywords: neural network aggregation, multi-party computation, transfer learning, average ensemble learning

Procedia PDF Downloads 162
3716 SiamMask++: More Accurate Object Tracking through Layer Wise Aggregation in Visual Object Tracking

Authors: Hyunbin Choi, Jihyeon Noh, Changwon Lim

Abstract:

In this paper, we propose SiamMask++, an architecture that performs layer-wise aggregation and depth-wise cross-correlation and introduce multi-RPN module and multi-MASK module to improve EAO (Expected Average Overlap), a representative performance evaluation metric for Visual Object Tracking (VOT) challenge. The proposed architecture, SiamMask++, has two versions, namely, bi_SiamMask++, which satisfies the real time (56fps) on systems equipped with GPUs (Titan XP), and rf_SiamMask++, which combines mask refinement modules for EAO improvements. Tests are performed on VOT2016, VOT2018 and VOT2019, the representative datasets of Visual Object Tracking tasks labeled as rotated bounding boxes. SiamMask++ perform better than SiamMask on all the three datasets tested. SiamMask++ is achieved performance of 62.6% accuracy, 26.2% robustness and 39.8% EAO, especially on the VOT2018 dataset. Compared to SiamMask, this is an improvement of 4.18%, 37.17%, 23.99%, respectively. In addition, we do an experimental in-depth analysis of how much the introduction of features and multi modules extracted from the backbone affects the performance of our model in the VOT task.

Keywords: visual object tracking, video, deep learning, layer wise aggregation, Siamese network

Procedia PDF Downloads 158
3715 An Efficient Strategy for Relay Selection in Multi-Hop Communication

Authors: Jung-In Baik, Seung-Jun Yu, Young-Min Ko, Hyoung-Kyu Song

Abstract:

This paper proposes an efficient relaying algorithm to obtain diversity for improving the reliability of a signal. The algorithm achieves time or space diversity gain by multiple versions of the same signal through two routes. Relays are separated between a source and destination. The routes between the source and destination are set adaptive in order to deal with different channels and noises. The routes consist of one or more relays and the source transmits its signal to the destination through the routes. The signals from the relays are combined and detected at the destination. The proposed algorithm provides a better performance than the conventional algorithms in bit error rate (BER).

Keywords: multi-hop, OFDM, relay, relaying selection

Procedia PDF Downloads 445
3714 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions

Authors: Jian Li

Abstract:

The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.

Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase

Procedia PDF Downloads 86
3713 Multiscale Modelling of Citrus Black Spot Transmission Dynamics along the Pre-Harvest Supply Chain

Authors: Muleya Nqobile, Winston Garira

Abstract:

We presented a compartmental deterministic multi-scale model which encompass internal plant defensive mechanism and pathogen interaction, then we consider nesting the model into the epidemiological model. The objective was to improve our understanding of the transmission dynamics of within host and between host of Guignardia citricapa Kiely. The inflow of infected class was scaled down to individual level while the outflow was scaled up to average population level. Conceptual model and mathematical model were constructed to display a theoretical framework which can be used for predicting or identify disease pattern.

Keywords: epidemiological model, mathematical modelling, multi-scale modelling, immunological model

Procedia PDF Downloads 458
3712 Weighted G2 Multi-Degree Reduction of Bezier Curves

Authors: Salisu ibrahim, Abdalla Rababah

Abstract:

In this research, we use Weighted G2-Multi-degree reduction of Bezier curve of degree n to a Bezier curve of degree m, m < n. The degree reduction of Bezier curves is used to represent a given Bezier curve of n by a Bezier curve of degree m, m < n. Exact degree reduction is not possible, and degree reduction is approximate process in nature. We derive a weighted degree reducing method that is geometrically continuous at the end points. Different norms will be considered, several error minimizations will be given. The proposed methods produce error function that are less than the errors of existing methods.

Keywords: Bezier curves, multiple degree reduction, geometric continuity, error function

Procedia PDF Downloads 481
3711 Complex Technology of Virtual Reconstruction: The Case of Kazan Imperial University of XIX-Early XX Centuries

Authors: L. K. Karimova, K. I. Shariukova, A. A. Kirpichnikova, E. A. Razuvalova

Abstract:

This article deals with technology of virtual reconstruction of Kazan Imperial University of XIX - early XX centuries. The paper describes technologies of 3D-visualization of high-resolution models of objects of university space, creation of multi-agent system and connected with these objects organized database of historical sources, variants of use of technologies of immersion into the virtual environment.

Keywords: 3D-reconstruction, multi-agent system, database, university space, virtual reconstruction, virtual heritage

Procedia PDF Downloads 270
3710 A Multi-Agent Smart E-Market Design at Work for Shariah Compliant Islamic Banking

Authors: Wafa Ghonaim

Abstract:

Though quite fast on growth, Islamic financing at large, and its diverse instruments, is a controversial matter among scholars. This is evident from the ongoing debates on its Shariah compliance. Arguments, however, are inciting doubts and concerns among clients about its credibility, which is harming this lucrative sector. The work here investigates, particularly, some issues related to the Tawarruq instrument. The work examines the issues of linking Murabaha and Wakala contracts, the reselling of commodities to same traders, and the transfer of ownerships. The work affirms that a multi-agent smart electronic market design would facilitate Shariah compliance. The smart market exploits the rational decision-making capabilities of autonomous proxy agents that enable the clients, traders, brokers, and the bank buy and sell commodities, and manage transactions and cash flow. The smart electronic market design delivers desirable qualities that terminate the need for Wakala contracts and the reselling of commodities to the same traders. It also resolves the ownership transfer issues by allowing stakeholders to trade independently. The bank administers the smart electronic market and assures reliability of trades, transactions and cash flow. A multi-agent simulation is presented to validate the concept and processes. We anticipate that the multi-agent smart electronic market design would deliver Shariah compliance of personal financing to the aspiration of scholars, banks, traders and potential clients.

Keywords: Islamic finance, share'ah compliance, smart electronic markets design, multiagent systems

Procedia PDF Downloads 316