Search results for: high selectivity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19920

Search results for: high selectivity

19560 Alternative Mathematical form for Determining the Effectiveness of High-LET Radiations at Lower Doses Region

Authors: Abubaker A. Yousif, Muhamad S. Yasir

Abstract:

The Effectiveness of lower doses of high-LET radiations is not accurately determined by using energy-based physical parameters such as absorbed dose and radio-sensitivity parameters. Therefore, an attempt has been carried out in this research to propose alternative parameter that capable to quantify the effectiveness of these high LET radiations at lower doses regions. The linear energy transfer and mean free path are employed to achieve this objective. A new mathematical form of the effectiveness of high-LET radiations at lower doses region has been formulated. Based on this parameter, the optimized effectiveness of high-LET radiations occurs when the energy of charged particles is deposited at spacing of 2 nm for primary ionization.

Keywords: effectiveness, low dose, radiation mean free path, linear energy transfer

Procedia PDF Downloads 453
19559 Hydrothermal Synthesis of Carbon Sphere/Nickel Cobalt Sulfide Core/Shell Microstructure and Its Electrochemical Performance

Authors: Charmaine Lamiel, Van Hoa Nguyen, Marjorie Baynosa, Jae-Jin Shim

Abstract:

Electrochemical supercapacitors have attracted considerable attention because of their high potential as an efficient energy storage system. The combination of carbon-based material and transition metal oxides/sulfides are studied because they have long and improved cycle life as well as high energy and power densities. In this study, a hierarchical mesoporous carbon sphere/nickel cobalt sulfide (CS/Ni-Co-S) core/shell structure was synthesized using a facile hydrothermal method without any further sulfurization or post-heat treatment. The CS/Ni-Co-S core/shell microstructures exhibited a high capacitance of 724 F g−1 at 2 A g−1 in a 6 M KOH electrolyte. After 2000 charge-discharge cycles, it retained 86.1% of its original capacitance, with high Coulombic efficiency of 97.9%. The electrode exhibited a high energy density of 58.0 Wh kg−1 at an energy density of 1440 W kg−1, and high power density of 7200 W kg−1 at an energy density of 34.2 Wh kg−1. The successful synthesis was considered to be simple and cost-effective which supports the viability of this composite as an alternative activated material for high performance supercapacitors.

Keywords: carbon sphere, electrochemical, hydrothermal, nickel cobalt sulfide, supercapacitor

Procedia PDF Downloads 298
19558 Selective Oxidation of Ammonia to Nitrogen over Nickel Oxide-hydroxide /Graphite Prepared with an Electro Deposition Method

Authors: Marzieh Joda, Narges Fallah, Neda Afsham

Abstract:

Graphite-supported two different of morphology α and β -Ni (OH)₂ electrodes were prepared by electrochemical deposition at appropriate potentials with regard to Ni (II)/Ni (III) redox couple under alkaline and acidic conditions, respectively, for selective oxidation of ammonia to nitrogen in the direct electro-oxidation process. Cyclic voltammetry (CV) of the electrolyte containing NH₃ indicated mediation of electron transfer by Ni (OH)₂ and the electrode surface was analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectrometer (RS), and X-ray photoelectron spectroscopy (XPS). Results of surface characterization indicated the presence of α polymorphs which is the stable phase of Ni (OH)₂ /Graphite. Cyclic voltammograms gave information on the nature of electron transfer between nitrogen species and working electrode and revealed that the potential has depended on both nature ammonia oxidation and that of concentration. The mechanism of selective ammonia conversion to nitrogen and byproducts, namely NO₂- and NO₃- was established by Cyclic voltammograms and current efficiency. The removal efficiency and selective conversion of ammonia (0.1 M KNO₃ + 0.01 M Ni(NO₃)₂, pH 11, 250°C) on Nickel Oxide-hydroxide /Graphite was determined based on potential controlled experiments.

Keywords: Electro deposition, Nickel oxide-hydroxide, Nitrogen selectivity, Ammonia oxidation

Procedia PDF Downloads 212
19557 Biocellulose as Platform for the Development of Multifunctional Materials

Authors: Junkal Gutierrez, Hernane S. Barud, Sidney J. L. Ribeiro, Agnieszka Tercjak

Abstract:

Nowadays the interest on green nanocomposites and on the development of more environmental friendly products has been increased. Bacterial cellulose has been recently investigated as an attractive environmentally friendly material for the preparation of low-cost nanocomposites. The formation of cellulose by laboratory bacterial cultures is an interesting and attractive biomimetic access to obtain pure cellulose with excellent properties. Additionally, properties as molar mass, molar mass distribution, and the supramolecular structure could be control using different bacterial strain, culture mediums and conditions, including the incorporation of different additives. This kind of cellulose is a natural nanomaterial, and therefore, it has a high surface-to-volume ratio which is highly advantageous in composites production. Such property combined with good biocompatibility, high tensile strength, and high crystallinity makes bacterial cellulose a potential material for applications in different fields. The aim of this investigation work was the fabrication of novel hybrid inorganic-organic composites based on bacterial cellulose, cultivated in our laboratory, as a template. This kind of biohybrid nanocomposites gathers together excellent properties of bacterial cellulose with the ones displayed by typical inorganic nanoparticles like optical, magnetic and electrical properties, luminescence, ionic conductivity and selectivity, as well as chemical or biochemical activity. In addition, the functionalization of cellulose with inorganic materials opens new pathways for the fabrication of novel multifunctional hybrid materials with promising properties for a wide range of applications namely electronic paper, flexible displays, solar cells, sensors, among others. In this work, different pathways for fabrication of multifunctional biohybrid nanopapers with tunable properties based on BC modified with amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (EPE) block copolymer, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and functionalized iron oxide nanoparticles will be presented. In situ (biosynthesized) and ex situ (at post-production level) approaches were successfully used to modify BC membranes. Bacterial cellulose based biocomposites modified with different EPE block copolymer contents were developed by in situ technique. Thus, BC growth conditions were manipulated to fabricate EPE/BC nanocomposite during the biosynthesis. Additionally, hybrid inorganic/organic nanocomposites based on BC membranes and inorganic nanoparticles were designed via ex-situ method, by immersion of never-dried BC membranes into different nanoparticle solutions. On the one hand, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and on the other hand superparamagnetic iron oxide nanoparticles (SPION), Fe2O3-PEO solution. The morphology of designed novel bionanocomposites hybrid materials was investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In order to characterized obtained materials from the point of view of future applications different techniques were employed. On the one hand, optical properties were analyzed by UV-vis spectroscopy and spectrofluorimetry and on the other hand electrical properties were studied at nano and macroscale using electric force microscopy (EFM), tunneling atomic force microscopy (TUNA) and Keithley semiconductor analyzer, respectively. Magnetic properties were measured by means of magnetic force microscopy (MFM). Additionally, mechanical properties were also analyzed.

Keywords: bacterial cellulose, block copolymer, advanced characterization techniques, nanoparticles

Procedia PDF Downloads 227
19556 Numerical Model of Crude Glycerol Autothermal Reforming to Hydrogen-Rich Syngas

Authors: A. Odoom, A. Salama, H. Ibrahim

Abstract:

Hydrogen is a clean source of energy for power production and transportation. The main source of hydrogen in this research is biodiesel. Glycerol also called glycerine is a by-product of biodiesel production by transesterification of vegetable oils and methanol. This is a reliable and environmentally-friendly source of hydrogen production than fossil fuels. A typical composition of crude glycerol comprises of glycerol, water, organic and inorganic salts, soap, methanol and small amounts of glycerides. Crude glycerol has limited industrial application due to its low purity thus, the usage of crude glycerol can significantly enhance the sustainability and production of biodiesel. Reforming techniques is an approach for hydrogen production mainly Steam Reforming (SR), Autothermal Reforming (ATR) and Partial Oxidation Reforming (POR). SR produces high hydrogen conversions and yield but is highly endothermic whereas POR is exothermic. On the downside, PO yields lower hydrogen as well as large amount of side reactions. ATR which is a fusion of partial oxidation reforming and steam reforming is thermally neutral because net reactor heat duty is zero. It has relatively high hydrogen yield, selectivity as well as limits coke formation. The complex chemical processes that take place during the production phases makes it relatively difficult to construct a reliable and robust numerical model. Numerical model is a tool to mimic reality and provide insight into the influence of the parameters. In this work, we introduce a finite volume numerical study for an 'in-house' lab-scale experiment of ATR. Previous numerical studies on this process have considered either using Comsol or nodal finite difference analysis. Since Comsol is a commercial package which is not readily available everywhere and lab-scale experiment can be considered well mixed in the radial direction. One spatial dimension suffices to capture the essential feature of ATR, in this work, we consider developing our own numerical approach using MATLAB. A continuum fixed bed reactor is modelled using MATLAB with both pseudo homogeneous and heterogeneous models. The drawback of nodal finite difference formulation is that it is not locally conservative which means that materials and momenta can be generated inside the domain as an artifact of the discretization. Control volume, on the other hand, is locally conservative and suites very well problems where materials are generated and consumed inside the domain. In this work, species mass balance, Darcy’s equation and energy equations are solved using operator splitting technique. Therefore, diffusion-like terms are discretized implicitly while advection-like terms are discretized explicitly. An upwind scheme is adapted for the advection term to ensure accuracy and positivity. Comparisons with the experimental data show very good agreements which build confidence in our modeling approach. The models obtained were validated and optimized for better results.

Keywords: autothermal reforming, crude glycerol, hydrogen, numerical model

Procedia PDF Downloads 134
19555 Spectrophotometric Detection of Histidine Using Enzyme Reaction and Examination of Reaction Conditions

Authors: Akimitsu Kugimiya, Kouhei Iwato, Toru Saito, Jiro Kohda, Yasuhisa Nakano, Yu Takano

Abstract:

The measurement of amino acid content is reported to be useful for the diagnosis of several types of diseases, including lung cancer, gastric cancer, colorectal cancer, breast cancer, prostate cancer, and diabetes. The conventional detection methods for amino acid are high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS), but they have several drawbacks as the equipment is cumbersome and the techniques are costly in terms of time and costs. In contrast, biosensors and biosensing methods provide more rapid and facile detection strategies that use simple equipment. The authors have reported a novel approach for the detection of each amino acid that involved the use of aminoacyl-tRNA synthetase (aaRS) as a molecular recognition element because aaRS is expected to a selective binding ability for corresponding amino acid. The consecutive enzymatic reactions used in this study are as follows: aaRS binds to its cognate amino acid and releases inorganic pyrophosphate. Hydrogen peroxide (H₂O₂) was produced by the enzyme reactions of inorganic pyrophosphatase and pyruvate oxidase. The Trinder’s reagent was added into the reaction mixture, and the absorbance change at 556 nm was measured using a microplate reader. In this study, an amino acid-sensing method using histidyl-tRNA synthetase (HisRS; histidine-specific aaRS) as molecular recognition element in combination with the Trinder’s reagent spectrophotometric method was developed. The quantitative performance and selectivity of the method were evaluated, and the optimal enzyme reaction and detection conditions were determined. The authors developed a simple and rapid method for detecting histidine with a combination of enzymatic reaction and spectrophotometric detection. In this study, HisRS was used to detect histidine, and the reaction and detection conditions were optimized for quantitation of these amino acids in the ranges of 1–100 µM histidine. The detection limits are sufficient to analyze these amino acids in biological fluids. This work was partly supported by Hiroshima City University Grant for Special Academic Research (General Studies).

Keywords: amino acid, aminoacyl-tRNA synthetase, biosensing, enzyme reaction

Procedia PDF Downloads 279
19554 Comparison between Ultra-High-Performance Concrete and Ultra-High-Performance-Glass Concrete

Authors: N. A. Soliman, A. F. Omran, A. Tagnit-Hamou

Abstract:

The finely ground waste glass has successfully used by the authors to develop and patent an ecological ultra-high-performance concrete (UHPC), which was named as ultra-high-performance-glass concrete (UHPGC). After the successful development in laboratory, the current research presents a comparison between traditional UHPC and UHPGC produced using large-scale pilot plant mixer, in terms of rheology, mechanical, and durability properties. The rheology of the UHPGCs was improved due to the non-absorptive nature of the glass particles. The mechanical performance of UHPGC was comparable and very close to the traditional UHPC due to the pozzolan reactivity of the amorphous waste glass. The UHPGC has also shown excellent durability: negligible permeability (chloride-ion ≈ 20 Coulombs from the RCPT test), high abrasion resistance (volume loss index less than 1.3), and almost no freeze-thaw deterioration even after 1000 freeze-thaw cycles. The enhancement in the strength and rigidity of the UHPGC mixture can be referred to the inclusions of the glass particles that have very high strength and elastic modulus.

Keywords: ground glass pozzolan, large-scale production, sustainability, ultra-high performance glass concrete

Procedia PDF Downloads 153
19553 A CFD Analysis of Flow through a High-Pressure Natural Gas Pipeline with an Undeformed and Deformed Orifice Plate

Authors: R. Kiš, M. Malcho, M. Janovcová

Abstract:

This work aims to present a numerical analysis of the natural gas which flows through a high-pressure pipeline and an orifice plate, through the use of CFD methods. The paper contains CFD calculations for the flow of natural gas in a pipe with different geometry used for the orifice plates. One of them has a standard geometry and a shape without any deformation and the other is deformed by the action of the pressure differential. It shows the behaviour of natural gas in a pipeline using the velocity profiles and pressure fields of the gas in both models with their differences. The entire research is based on the elimination of any inaccuracy which should appear in the flow of the natural gas measured in the high-pressure pipelines of the gas industry and which is currently not given in the relevant standard.

Keywords: orifice plate, high-pressure pipeline, natural gas, CFD analysis

Procedia PDF Downloads 374
19552 Cardiometabolic Risk Factors Responses to Supplemental High Intensity Exercise in Middle School Children

Authors: R. M. Chandler, A. J. Stringer

Abstract:

In adults, short bursts of high-intensity exercise (intensities between 80-95% of maximum heart rates) increase cardiovascular and metabolic function without the time investment of traditional aerobic training. Similar improvements in various health indices are also becoming increasingly evident in children in countries other than the United States. In the United States, physical education programs have become shorter in length and fewer in frequency. With this in the background, it is imperative that health and physical educators delivered well-organized and focused fitness programs that can be tolerated across many different somatotypes. Perhaps the least effective lag-time in a US physical education (PE) class is the first 10 minutes, a time during which children warm up. Replacing a traditional PE warmup with a 10 min high-intensity excise protocol is a time-efficient method to impact health, leaving as much time for other PE material such as skill development, motor behavior development as possible. This supplemented 10 min high-intensity exercise increases cardiovascular function as well as induces favorable body composition changes in as little as six weeks with further enhancement throughout a semester of activity. The supplemental high-intensity exercise did not detract from the PE lesson outcomes.

Keywords: cardiovascular fitness, high intensity interval training, high intensity exercise, pediatric

Procedia PDF Downloads 132
19551 An Approach of High Scalable Production Capacity by Adaption of the Concept 'Everything as a Service'

Authors: Johannes Atug, Stefan Braunreuther, Gunther Reinhart

Abstract:

Volatile markets, as well as increasing global competition in manufacturing, lead to a high demand of flexible and agile production systems. These advanced production systems in turn conduct to high capital expenditure along with high investment risks. Developments in production regarding digitalization and cyber-physical systems result to a merger of informational- and operational technology. The approach of this paper is to benefit from this merger and present a framework of a production network with scalable production capacity and low capital expenditure by adaptation of the IT concept 'everything as a service' into the production environment.

Keywords: digital manufacturing system, everything as a service, reconfigurable production, value network

Procedia PDF Downloads 339
19550 High Performance Concrete Using “BAUT” (Metal Aggregates) the Gateway to New Concrete Technology for Mega Structures

Authors: Arjun, Gautam, Sanjeev Naval

Abstract:

Concrete technology has been changing rapidly and constantly since its discovery. Concrete is the most widely used man-made construction material, versatility of making concrete is the 2nd largest consumed material on earth. In this paper an effort has been made to use metal aggregates in concrete has been discussed, the metal aggregates has been named as “BAUT” which had outstandingly qualities to resist shear, tension and compression forces. In this paper, COARSE BAUT AGGREGATES (C.B.A.) 10mm & 20mm and FINE BAUT AGGREGATES (F.B.A.) 3mm were divided and used for making high performance concrete (H.P.C). This “BAUT” had cutting edge technology through draft and design by the use of Auto CAD, ANSYS software can be used effectively In this research paper we study high performance concrete (H.P.C) with “BAUT” and consider the grade of M65 and finally we achieved the result of 90-95 Mpa (high compressive strength) for mega structures and irregular structures where center of gravity (CG) is not balanced. High Performance BAUT Concrete is the extraordinary qualities like long-term performance, no sorptivity by BAUT AGGREGATES, better rheological, mechanical and durability proportion that conventional concrete. This high strength BAUT concrete using “BAUT” is applied in the construction of mega structure like skyscrapers, dam, marine/offshore structures, nuclear power plants, bridges, blats and impact resistance structures. High Performance BAUT Concrete which is a controlled concrete possesses invariable high strength, reasonable workability and negligibly permeability as compare to conventional concrete by the mix of Super Plasticizers (SMF), silica fume and fly ash.

Keywords: BAUT, High Strength Concrete, High Performance Concrete, Fine BAUT Aggregate, Coarse BAUT Aggregate, metal aggregates, cutting edge technology

Procedia PDF Downloads 496
19549 A Ferutinin Analogue with Enhanced Potency and Selectivity against Estrogen Receptor Positive Breast Cancer Cells in vitro

Authors: Remi Safi, Aline Hamade, Najat Bteich, Jamal El Saghir, Mona Diab Assaf, Marwan El-Sabban, Fadia Najjar

Abstract:

Estrogen is considered a risk factor for breast cancer since it promotes breast-cell proliferation. The jaesckeanadiol-3-p-hydroxyphenylpropanoate, a hemi-synthetic analogue of the natural phytoestrogen ferutinin (jaesckeanadiol-p-hydroxybenzoate), is designed to be devoid of estrogenic activity. This analogue induces a cytotoxic effect 30 times higher than that of ferutinin towards MCF-7 breast cancer cell line. We compared these two compounds with respect to their effect on proliferation, cell cycle distribution and cancer stem-like cells in the MCF-7 cell line. Treatment with ferutinin (30 μM) and its analogue (1 μM) produced a significant accumulation of cells at the pre G0/G1 cell cycle phase and triggered apoptosis. Importantly, this compound retains its anti-proliferative activity against breast cancer stem/progenitor cells that are naturally insensitive to ferutinin at the same dose. These results position ferutinin analogue as an effective compound inhibiting the proliferation of estrogen-dependent breast cancer cells and consistently targeting their stem-like cells.

Keywords: ferutinin, hemi-synthetic analogue, breast cancer, estrogen, stem/progenitor cells

Procedia PDF Downloads 180
19548 Residential High-Rises and Meaningful Places: Missing Actions in the Isle of Dogs Regeneration

Authors: Elena Kalcheva, Ahmad Taki, Yuri Hadi

Abstract:

Urban regeneration often includes residential high-rises as a way of optimum use of land. However, high-rises are in many cases connected to placelessness, this is not due to some intrinsic characteristic of the typology, but more to a failure to provide meaningful places in connection to them. The reason to study the Isle of the Dogs regeneration is the successful process that led to vibrant area with strong identity and social sustainability. Therefore, the purpose of this research is to identify the gaps into the sound strategy for the development of the area and in its implementation which will make the place more sustainable. The paper addresses four research questions: are the residential high-rises supporting a proper physical form; is there deployed properly scaled mix of land uses and functions in connection with residential high-rises; are there possible quality activities in quality places near the residential high-rises; and is there a strong sense of place created with the residential high-rise buildings and their surroundings. The methodology relies on observational survey of the researched area together with structured questions, to evaluate the external qualities of the residential high-rises and their surroundings. Visual information can help identify the mistakes and the omissions of the provided project examples. It can provide insight on how can be improved imageability, legibility and human scale. In this connection, the paper argues that although the quality of the architecture of the high-rises is superb, there is a failure to create meaningful, high quality public realm in connection with them. As such, it does not function as well as the designers intended to do: the functional quality of the public realm is quite low. The implications of the study suggest that actions need to take place in order to improve and foster further regeneration of the area.

Keywords: high-rises, isle of the dogs, public realm, regeneration

Procedia PDF Downloads 270
19547 Nanoparticle Supported, Magnetically Separable Metalloporphyrin as an Efficient Retrievable Heterogeneous Nanocatalyst in Oxidation Reactions

Authors: Anahita Mortazavi Manesh, Mojtaba Bagherzadeh

Abstract:

Metalloporphyrins are well known to mimic the activity of monooxygenase enzymes. In this regard, metalloporphyrin complexes have been largely employed as valuable biomimetic catalysts, owing to the critical roles they play in oxygen transfer processes in catalytic oxidation reactions. Investigating in this area is based on different strategies to design selective, stable and high turnover catalytic systems. Immobilization of expensive metalloporphyrin catalysts onto supports appears to be a good way to improve their stability, selectivity and the catalytic performance because of the support environment and other advantages with respect to recovery, reuse. In other words, supporting metalloporphyrins provides a physical separation of active sites, thus minimizing catalyst self-destruction and dimerization of unhindered metalloporphyrins. Furthermore, heterogeneous catalytic oxidations have become an important target since their process are used in industry, helping to minimize the problems of industrial waste treatment. Hence, the immobilization of these biomimetic catalysts is much desired. An attractive approach is the preparation of the heterogeneous catalyst involves immobilization of complexes on silica coated magnetic nano-particles. Fe3O4@SiO2 magnetic nanoparticles have been studied extensively due to their superparamagnetism property, large surface area to volume ratio and easy functionalization. Using heterogenized homogeneous catalysts is an attractive option to facile separation of catalyst, simplified product work-up and continuity of catalytic system. Homogeneous catalysts immobilized on magnetic nanoparticles (MNPs) surface occupy a unique position due to combining the advantages of both homogeneous and heterogeneous catalysts. In addition, superparamagnetic nature of MNPs enable very simple separation of the immobilized catalysts from the reaction mixture using an external magnet. In the present work, an efficient heterogeneous catalyst was prepared by immobilizing manganese porphyrin on functionalized magnetic nanoparticles through the amino propyl linkage. The prepared catalyst was characterized by elemental analysis, FT-IR spectroscopy, X-ray powder diffraction, atomic absorption spectroscopy, UV-Vis spectroscopy, and scanning electron microscopy. Application of immobilized metalloporphyrin in the oxidation of various organic substrates was explored using Gas chromatographic (GC) analyses. The results showed that the supported Mn-porphyrin catalyst (Fe3O4@SiO2-NH2@MnPor) is an efficient and reusable catalyst in oxidation reactions. Our catalytic system exhibits high catalytic activity in terms of turnover number (TON) and reaction conditions. Leaching and recycling experiments revealed that nanocatalyst can be recovered several times without loss of activity and magnetic properties. The most important advantage of this heterogenized catalytic system is the simplicity of the catalyst separation in which the catalyst can be separated from the reaction mixture by applying a magnet. Furthermore, the separation and reuse of the magnetic Fe3O4 nanoparticles were very effective and economical.

Keywords: Fe3O4 nanoparticle, immobilized metalloporphyrin, magnetically separable nanocatalyst, oxidation reactions

Procedia PDF Downloads 295
19546 Histological Evaluation of the Neuroprotective Roles of Trans Cinnamaldehyde against High Fat Diet and Streptozotozin Induced Neurodegeneration in Wistar Rats

Authors: Samson Ehindero, Oluwole Akinola

Abstract:

Substantial evidence has shown an association between type 2 diabetes (T2D) and cognitive decline, Trans Cinnamaldehyde (TCA) has been shown to have many potent pharmacological properties. In this present study, we are currently investigating the effects of TCA on type II diabetes-induced neurodegeneration. Neurodegeneration was induced in forty (40) adult wistar rats using high fat diet (HFD) for 4 months followed by low dose of streptozotocin (STZ) (40 mg/kg, i.p.) administration. TCA was administered orally for 30 days at the doses of 40mg/kg and 60mg/kg body weight. Animals were randomized and divided into following groups; A- control group, B- diabetic group, C- TCA (high dose), D- diabetic + TCA (high dose), E- diabetic + TCA (high dose) with high fat diet, F- TCA Low dose, G- diabetic + TCA (low dose) and H- diabetic + TCA (low dose) with high fat diet. Animals were subjected to behavioral tests followed by histological studies of the hippocampus. Demented rats showed impaired behavior in Y- Maze test compared to treated and control groups. Trans Cinnamaldehyde restores the histo architecture of the hippocampus of demented rats. This present study demonstrates that treatment with trans- cinnamaldehyde improves behavioral deficits, restores cellular histo architecture in rat models of neurodegeneration.

Keywords: neurodegeneration, trans cinnamaldehyde, high fat diet, streptozotocin

Procedia PDF Downloads 178
19545 New Series Input Parallel Output LLC DC/DC Converter with the Input Voltage Balancing Capacitor for the Electric System of Electric Vehicles

Authors: Kang Hyun Yi

Abstract:

This paper presents a new parallel output LLC DC/DC converter for electric vehicle. The electric vehicle has two batteries. One is a high voltage battery for the powertrain of the vehicle and the other is a low voltage battery for the vehicle electric system. The low voltage is charged from the high voltage battery and the high voltage input and the high current output DC/DC converter is needed. Therefore, the new LLC converter with the input voltage compensation is proposed for the high voltage input and the low voltage output DC/DC converter. The proposed circuit has two LLC converters with the series input voltage from the battery for the powertrain and the parallel output low battery voltage for the vehicle electric system because the battery voltage for the powertrain and the electric power for the vehicle become high. Also, the input series voltage compensation capacitor is used for balancing the input current in the two LLC converters. The proposed converter has an equal electric stress of the semiconductor parts and the reactive components, high efficiency and good heat dissipation.

Keywords: electric vehicle, LLC DC/DC converter, input voltage balancing, parallel output

Procedia PDF Downloads 1045
19544 Development of Ferrous-Aluminum Alloys from Recyclable Material by High Energy Milling

Authors: Arnold S. Freitas Neto, Rodrigo E. Coelho, Erick S. Mendonça

Abstract:

This study aimed to obtain an alloy of Iron and Aluminum in the proportion of 50% of atomicity for each constituent. Alloys were obtained by processing recycled aluminum and chips of 1200 series carbon steel in a high-energy mill. For the experiment, raw materials were processed thorough high energy milling before mixing the substances. Subsequently, the mixture of 1200 series carbon steel and Aluminum powder was carried out a milling process. Thereafter, hot compression was performed in a closed die in order to obtain the samples. The pieces underwent heat treatments, sintering and aging. Lastly, the composition and the mechanical properties of their hardness were analyzed. In this paper, results are compared with previous studies, which used iron powder of high purity instead of Carbon steel in the composition.

Keywords: Fe-Al alloys, high energy milling, metallography characterization, powder metallurgy

Procedia PDF Downloads 304
19543 Methyltrioctylammonium Chloride as a Separation Solvent for Binary Mixtures: Evaluation Based on Experimental Activity Coefficients

Authors: B. Kabane, G. G. Redhi

Abstract:

An ammonium based ionic liquid (methyltrioctylammonium chloride) [N8 8 8 1] [Cl] was investigated as an extraction potential solvent for volatile organic solvents (in this regard, solutes), which includes alkenes, alkanes, ketones, alkynes, aromatic hydrocarbons, tetrahydrofuran (THF), alcohols, thiophene, water and acetonitrile based on the experimental activity coefficients at infinite THF measurements were conducted by the use of gas-liquid chromatography at four different temperatures (313.15 to 343.15) K. Experimental data of activity coefficients obtained across the examined temperatures were used in order to calculate the physicochemical properties at infinite dilution such as partial molar excess enthalpy, Gibbs free energy and entropy term. Capacity and selectivity data for selected petrochemical extraction problems (heptane/thiophene, heptane/benzene, cyclohaxane/cyclohexene, hexane/toluene, hexane/hexene) were computed from activity coefficients data and compared to the literature values with other ionic liquids. Evaluation of activity coefficients at infinite dilution expands the knowledge and provides a good understanding related to the interactions between the ionic liquid and the investigated compounds.

Keywords: separation, activity coefficients, methyltrioctylammonium chloride, ionic liquid, capacity

Procedia PDF Downloads 139
19542 Study of the Toxic Activity of the Entomopathogenic Fungus Beauveria bassiana on the Wistar Rat Rattus norvegicus

Authors: F. Haddadj, S. Hamdi, A. Milla, S. Zenia, A. Smai, H. Saadi, F. Marniche, B. Doumandji-Mitiche

Abstract:

The use of a biopesticide based on a microorganism scale requires particular care including safety against the useful auxiliary fauna and mammals among other human beings. Due to its persistence in soil and its apparent human and animal safety, Beauveria bassiana is a cryptogram used for controlling pests organizations, particularly in the locust where its effectiveness has been proven. This fungus is also called for greater respect for biotic communities and the environment. Indeed, biopesticides have several environmental benefits: biodegradability, their activity and selectivity decrease unintended non-target species effects, decreased resistance to some of them. It is in this sense that we contribute by presenting our work on the safety of B. bassiana against mammals. For this we conducted a toxicological study of this fungus strain on Wistar rats Rattus norvegicus, first its effect on weight gain. In a second time were performed histological target organ is the liver. After 20 days of treatment, the results of the toxicological studies have shown that B. bassiana caused no change in the physiological state of rats or weight gain, behavior and diet. On cuts in liver histology revealed no disturbance on the organ.

Keywords: B. bassiana, entomopathogenic fungus, histology, Rattus norvegicus

Procedia PDF Downloads 235
19541 Research on Aerodynamic Brake Device for High-Speed Train

Authors: S. Yun, M. Kwak

Abstract:

This study is about an aerodynamic brake device for a high-speed train. In order to apply an aerodynamic brake device, an influence of the aerodynamic brake device on a high-speed train was studied aerodynamically, acoustically and dynamically. Wind tunnel test was conducted to predict an effect of braking distance reduction with a scale model of 1/30. Aerodynamic drag increases by 244% with a brake panel of a 90 degree angle. Braking distance for an emergency state was predicted to decrease by 13%.

Keywords: aerodynamic brake, braking distance, drag coefficient, high-speed train, wind-tunnel test

Procedia PDF Downloads 314
19540 Immobilization of Cobalt Ions on F-Multi-Wall Carbon Nanotubes-Chitosan Thin Film: Preparation and Application for Paracetamol Detection

Authors: Shamima Akhter, Samira Bagheri, M. Shalauddin, Wan Jefrey Basirun

Abstract:

In the present study, a nanocomposite of f-MWCNTs-Chitosan was prepared by the immobilization of Co(II) transition metal through self-assembly method and used for the simultaneous voltammetric determination of paracetamol (PA). The composite material was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-Ray analysis (EDX). The electroactivity of cobalt immobilized f-MWCNTs with excellent adsorptive polymer chitosan was assessed during the electro-oxidation of paracetamol. The resulting GCE modified f-MWCNTs/CTS-Co showed electrocatalytic activity towards the oxidation of PA. The electrochemical performances were investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) methods. Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range for paracetamol solution in the range of 0.1 to 400µmol L⁻¹ with a detection limit of 0.01 µmol L⁻¹. The proposed sensor exhibited significant selectivity for the paracetamol detection. The proposed method was successfully applied for the determination of paracetamol in commercial tablets and human serum sample.

Keywords: nanomaterials, paracetamol, electrochemical technique, multi-wall carbon nanotube

Procedia PDF Downloads 198
19539 3D High-Precision Tunnel Gravity Exploration Method for Concealed High-Density Ore-Bodies: A Case Study on the Zhaotong Maoping Carbonate-Hosted Zn-Pb-(Ag-Ge) Deposit in Northeastern Yunnan, China

Authors: Han Run-Sheng, Li Wen-Yao, Wang Feng, Liu Fei, Qiu Wen-Long, Lei Li

Abstract:

Accurately positioning detection of concealed deposits or ore-bodies is one of the difficult problems in mineral exploration field. Theory calculation and exploration practices for tunnel gravity indicate that 3D high-precision Tunnel Gravity Exploration Method (TGEM) can find concealed high-density three-dimensional ore-bodies in the depth. The ore-finding breakthroughs at the depth of the Zhaotong Maoping carbonate-hosted Zn–Pb–(Ag–Ge) deposit in Northeastern Yunnan have proved that the exploration method in combination with MEAHFZ method is effective to detect concealed high-density ore-bodies. TGEM may overcome anomalous ambiguity of other geophysical methods for 3D positioning of concealed ore-bodies.

Keywords: 3D tunnel gravity exploration method, concealed high-density Ore-bodies, Zn–Pb–(Ag–Ge) deposit, Zaotong mapping, Northeastern Yunnan

Procedia PDF Downloads 319
19538 Evaluation of Applicability of High Strength Stirrup for Prestressed Concrete Members

Authors: J.-Y. Lee, H.-S. Lim, S.-E. Kim

Abstract:

Recently, the use of high-strength materials is increasing as the construction of large structures and high-rise structures increases. This paper presents an analysis of the shear behavior of prestressed concrete members with various types of materials by simulating a finite element (FE) analysis. The analytical results indicated that the shear strength and shear failure mode were strongly influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. Though the yield strength of shear reinforcement increased the shear strength of prestressed concrete members, there was a limit to the increase in strength because of the change of shear failure modes. According to the results of FE analysis on various parameters, the maximum yield strength of the steel stirrup that can be applied to prestressed concrete members was about 860 MPa.

Keywords: prestressed concrete members, high strength reinforcing bars, high strength concrete, shear behavior

Procedia PDF Downloads 294
19537 Synthesis of 2-Aminoisocoumarinoselenazoles via Transition Metal-Free Alkylation and Ru(II)-Catalyzed [4+2] Alkyne Annulation

Authors: Sunil Kumar, Sandip Dhole, Deepak Salunke, Chung-ming Sun

Abstract:

Heterocycles bearing nitrogen, oxygen, and selenium are present in innumerable biologically active compounds. For instance, coumarin containing dicoumarol acts as naturally occurring anticoagulant. 2-Acylamido selenazole works as Store-Operated Calcium (SOC) channel regulator. Therefore, due to biologically significance of selenazole and coumarin and our quest to develop efficient methodologies for the synthesis of complex heterocycles, the trisubstituted angular isocoumarinoselenazole synthesis was proposed and achieved by starting from nitrobenzoic acid derivative, available commercially. Synthetic procedure involves three steps: i) the construction of 2-aminobenzoselenazoles, ii) their regioselective N-alkylation at position-2 and iii) alkyne insertion via Ru catalyzed C-H activation. Transition metal free synthesis of benzoselenazoles was successfully brought about by the addition/elimination reaction via intramolecular C-Se bond formation. In the next step, N-alkylation of selenazole furnished two regioisomers. Both the isomers exhibited different reactivity towards [4+2] alkyne annulation reaction. The fusion of α-pyrone ring on the benzo[1,3-d]selenazole skeleton was achieved via Ru(II)-catalyzed C-H activation and alkyne insertion. As evident from mechanism, the selenazole 'N' plays an important role for the experiential selectivity.

Keywords: alkylation, alkyne insertion, coumarin, selenazole

Procedia PDF Downloads 117
19536 Corruption Exacerbation of Economies and Corona Virus

Authors: Loretta Baryeh

Abstract:

Unprecedented disruptions to world economies unfolded consequently to the pandemic that hit the globe in 2020. The severe sickness with no cure at the time led to record deaths, and this affected everyday life for most people, stifling production, hospitality, entertainment, and most sectors of the economy. This paper was an extension of Baryeh 2021, that studied the pandemic effect on economic growth and if that was exacerbated by corruption. It was found that there was a positively high significant correlation between countries that reported high cases of the virus and countries that reported more deaths due to the virus. Furthermore, it was shown that countries with high COVID-19 cases were highly corrupt. Additionally, there was a negative association between high COVID-19 cases and economic development.

Keywords: COVID-19, corruption, economic, performance

Procedia PDF Downloads 100
19535 Research Activity in Computational Science Using High Performance Computing: Co-Authorship Network Analysis

Authors: Sul-Ah Ahn, Youngim Jung

Abstract:

The research activities of the computational scientists using high-performance computing are analyzed using bibliometric approaches. This study aims at providing computational scientists using high-performance computing and relevant policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of computational scientists using high-performance computing as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2006-2015. We extracted the author rank in the computational science field using high-performance computing by the number of papers published during ten years from 2006. Finally, we drew the co-authorship network for 50 top-authors and their coauthors and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed.

Keywords: co-authorship network analysis, computational science, high performance computing, research activity

Procedia PDF Downloads 312
19534 Fundamental Research Dissension between Hot and Cold Chamber High Pressure Die Casting

Authors: Sahil Kumar, Surinder Pal, Rahul Kapoor

Abstract:

This paper is focused on to define the basic difference between hot and cold chamber high pressure die casting process which is not fully defined in a research before paper which we have studied. The pressure die casting is basically defined into two types (1) Hot chamber Die Casting (2) Cold chamber Die Casting. Cold chamber die casting is used for casting alloys that require high pressure and have a high melting temperature, such as brass, aluminum, magnesium, copper based alloys and other high melting point nonferrous alloys. Hot chamber die casting is suitable for casting zinc, tin, lead, and low melting point alloys. In hot chamber die casting machine, the molten metal is an integral pan of the machine. It mainly consists of hot chamber and gooseneck type metal container made of cast iron. This machine is mainly used for low melting alloys and alloys of metals like zinc, lead etc. Metals and alloys having a high melting point and those which are having an affinity for iron cannot be cast by this machine, which could otherwise attack the shot sleeve and damage the machine.

Keywords: hot chamber die casting, cold chamber die casting, metals and alloys, casting technology

Procedia PDF Downloads 613
19533 Fabrication of Titanium Diboride-Based High Emissive Paint Coating Using Economical Dip Coating Method for High Temperature Applications

Authors: Atasi Dan, Kamanio Chattopadhyay, Bikramjit Basu

Abstract:

A cost-effective titanium diboride (TiB2) paint coating has been developed on stainless steel substrate using commercially available polyvinylpyrrolidone as a binder by convenient dip-coating technique. The emittance of the coating has been explored by tailoring various process parameters to obtain highest thermal radiation. The optimized coating has achieved a high thermal emittance of 0.85. In addition, the coating exhibited an excellent thermal stability while heat-treated at 500 °C in air. Along with the emittance, the structural and physical properties of the As-deposited and heat-treated coatings have been investigated systematically. The high temperature annealing has not affected the emittance, chemical composition and morphology of the coating significantly. Hence, the fabricated paint coating is expected to open up new possibilities for using it as a low-cost, thermally stable emitter in high temperature applications.

Keywords: titanium diboride, emittance, paint coating, thermal stability

Procedia PDF Downloads 282
19532 Seeking Safe Haven: An Analysis of Gold Performance during Periods of High Volatility

Authors: Gerald Abdesaken, Thomas O. Miller

Abstract:

This paper analyzes the performance of gold as a safe-haven investment. Assuming high market volatility as an impetus to seek a safe haven in gold, the return of gold relative to the stock market, as measured by the S&P 500, is tracked. Using the Chicago Board Options Exchange (CBOE) volatility index (VIX) as a measure of stock market volatility, various criteria are established for when an investor would seek a safe haven to avoid high levels of risk. The results show that in a vast majority of cases, the S&P 500 outperforms gold during these periods of high volatility and suggests investors who seek safe haven are underperforming the market.

Keywords: gold, portfolio management, safe haven, VIX

Procedia PDF Downloads 154
19531 Evaluation of Anti-Leishmanial Activity of Albaha Medicinal Plants against Leishmania amazonensis

Authors: Saeed S. Al-Sokari, Nasser A. Awadh Ali, Lianet Monzote

Abstract:

Leishmaniasis (CL) is endemic in at least 82 countries and considered to be a major public-health problem (1). The annual incidence of CL is 1–1.5 million cases of which 90% occur in only seven countries: Afghanistan, Algeria, Brazil, Iran, Peru, Saudi Arabia and Syria (2). In Saudi Arabia, the disease was first described in 1973 by Moursy and Shoura (3). Currently, CL is common in the human population in different localities, including the Eastern Province of Saudi Arabia and in particular the Al-Hassa Oasis that is a known endemic area for CL (4). Five methanolic extracts obtained from Achillea biebersteinii (flower leaf), Euphorbia antiquorm, Solanum incanum (leaf and fruit extracts), collected from Albaha region and selected from ethno-botanical data, were screened for their anti-leishmanial activity against Leishmania amazonensis (6). The cytotoxic activity against normal peritoneal macrophages from normal BALB/c mice was also determined (6). The five extracts had IC50 values ranging from < 12.5 to 37.8 µg/ml against promastigotes. Achillea biebersteinii flower, Euphorbia antiquorm, Solanum incanum leaf extracts showed anti-leishmanial activities with IC50 between < 12.5 - 26.9µg/mL and acceptable selectivity indices of 8 - 5.

Keywords: plant extracts, Albaha, Leishmania amazonensis, Medicinal

Procedia PDF Downloads 336