Search results for: 3D tunnel gravity exploration method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19912

Search results for: 3D tunnel gravity exploration method

19912 3D High-Precision Tunnel Gravity Exploration Method for Concealed High-Density Ore-Bodies: A Case Study on the Zhaotong Maoping Carbonate-Hosted Zn-Pb-(Ag-Ge) Deposit in Northeastern Yunnan, China

Authors: Han Run-Sheng, Li Wen-Yao, Wang Feng, Liu Fei, Qiu Wen-Long, Lei Li

Abstract:

Accurately positioning detection of concealed deposits or ore-bodies is one of the difficult problems in mineral exploration field. Theory calculation and exploration practices for tunnel gravity indicate that 3D high-precision Tunnel Gravity Exploration Method (TGEM) can find concealed high-density three-dimensional ore-bodies in the depth. The ore-finding breakthroughs at the depth of the Zhaotong Maoping carbonate-hosted Zn–Pb–(Ag–Ge) deposit in Northeastern Yunnan have proved that the exploration method in combination with MEAHFZ method is effective to detect concealed high-density ore-bodies. TGEM may overcome anomalous ambiguity of other geophysical methods for 3D positioning of concealed ore-bodies.

Keywords: 3D tunnel gravity exploration method, concealed high-density Ore-bodies, Zn–Pb–(Ag–Ge) deposit, Zaotong mapping, Northeastern Yunnan

Procedia PDF Downloads 289
19911 Groundwater Seepage Estimation into Amirkabir Tunnel Using Analytical Methods and DEM and SGR Method

Authors: Hadi Farhadian, Homayoon Katibeh

Abstract:

In this paper, groundwater seepage into Amirkabir tunnel has been estimated using analytical and numerical methods for 14 different sections of the tunnel. Site Groundwater Rating (SGR) method also has been performed for qualitative and quantitative classification of the tunnel sections. The obtained results of above-mentioned methods were compared together. The study shows reasonable accordance with results of the all methods unless for two sections of tunnel. In these two sections there are some significant discrepancies between numerical and analytical results mainly originated from model geometry and high overburden. SGR and the analytical and numerical calculations, confirm the high concentration of seepage inflow in fault zones. Maximum seepage flow into tunnel has been estimated 0.425 lit/sec/m using analytical method and 0.628 lit/sec/m using numerical method occurred in crashed zone. Based on SGR method, six sections of 14 sections in Amirkabir tunnel axis are found to be in "No Risk" class that is supported by the analytical and numerical seepage value of less than 0.04 lit/sec/m.

Keywords: water Seepage, Amirkabir Tunnel, analytical method, DEM, SGR

Procedia PDF Downloads 443
19910 Prediction of the Heat Transfer Characteristics of Tunnel Concrete

Authors: Seung Cho Yang, Jae Sung Lee, Se Hee Park

Abstract:

This study suggests the analysis method to predict the damages of tunnel concrete caused by fires. The result obtained from the analyses of concrete temperatures at a fire in a tunnel using ABAQUS was compared with the test result. After the reliability of the analysis method was verified, the temperatures of a tunnel at a real fire and those of concrete during the fire were estimated to predict fire damages. The temperatures inside the tunnel were estimated by FDS, a CFD model. It was deduced that the fire performance of tunnel lining and the fire damages of the structure at an actual fire could be estimated by the analysis method.

Keywords: fire resistance, heat transfer, numerical analysis, tunnel fire

Procedia PDF Downloads 402
19909 Research of Applicable Ground Reinforcement Method in Double-Deck Tunnel Junction

Authors: SKhan Park, Seok Jin Lee, Jong Sun Kim, Jun Ho Lee, Bong Chan Kim

Abstract:

Because of the large economic losses caused by traffic congestion in metropolitan areas, various studies on the underground network design and construction techniques has been performed various studies in the developed countries. In Korea, it has performed a study to develop a versatile double-deck of deep tunnel model. This paper is an introduction to develop a ground reinforcement method to enable the safe tunnel construction in the weakened pillar section like as junction of tunnel. Applicable ground reinforcement method in the weakened section is proposed and it is expected to verify the method by the field application tests.

Keywords: double-deck tunnel, ground reinforcement, tunnel construction, weakened pillar section

Procedia PDF Downloads 368
19908 Gravity and Magnetic Survey, Modeling and Interpretation in the Blötberget Iron-Oxide Mining Area of Central Sweden

Authors: Ezra Yehuwalashet, Alireza Malehmir

Abstract:

Blötberget mining area in central Sweden, part of the Bergslagen mineral district, is well known for its various type of mineralization particularly iron-oxide deposits since the 1600. To shed lights on the knowledge of the host rock structures, depth extent and tonnage of the mineral deposits and support deep mineral exploration potential in the study area, new ground gravity and existing aeromagnetic data (from the Geological Survey of Sweden) were used for interpretations and modelling. A major boundary separating a gravity low from a gravity high in the southern part of the study area is noticeable and likely representing a fault boundary separating two different lithological units. Gravity data and modeling offers a possible new target area in the southeast of the known mineralization while suggesting an excess high-density region down to 800 m depth.

Keywords: gravity, magnetics, ore deposit, geophysics

Procedia PDF Downloads 28
19907 Application of the Electrical Resistivity Tomography and Tunnel Seismic Prediction 303 Methods for Detection Fracture Zones Ahead of Tunnel: A Case Study

Authors: Nima Dastanboo, Xiao-Qing Li, Hamed Gharibdoost

Abstract:

The purpose of this study is to investigate about the geological properties ahead of a tunnel face with using Electrical Resistivity Tomography ERT and Tunnel Seismic Prediction TSP303 methods. In deep tunnels with hydro-geological conditions, it is important to study the geological structures of the region before excavating tunnels. Otherwise, it would lead to unexpected accidents that impose serious damage to the project. For constructing Nosoud tunnel in west of Iran, the ERT and TSP303 methods are employed to predict the geological conditions dynamically during the excavation. In this paper, based on the engineering background of Nosoud tunnel, the important results of applying these methods are discussed. This work demonstrates seismic method and electrical tomography as two geophysical techniques that are able to detect a tunnel. The results of these two methods were being in agreement with each other but the results of TSP303 are more accurate and quality. In this case, the TSP 303 method was a useful tool for predicting unstable geological structures ahead of the tunnel face during excavation. Thus, using another geophysical method together with TSP303 could be helpful as a decision support in excavating, especially in complicated geological conditions.

Keywords: tunnel seismic prediction (TSP303), electrical resistivity tomography (ERT), seismic wave, velocity analysis, low-velocity zones

Procedia PDF Downloads 110
19906 Analytical Method for Seismic Analysis of Shaft-Tunnel Junction under Longitudinal Excitations

Authors: Jinghua Zhang

Abstract:

Shaft-tunnel junction is a typical case of the structural nonuniformity in underground structures. The shaft and the tunnel possess greatly different structural features. Even under uniform excitations, they tend to behave discrepantly. Studies on shaft-tunnel junctions are mainly performed numerically. Shaking table tests are also conducted. Although many numerical and experimental data are obtained, an analytical solution still has great merits of gaining more insights into the shaft-tunnel problem. This paper will try to remedy the situation. Since the seismic responses of shaft-tunnel junctions are very related to directions of the excitations, they are studied in two scenarios: the longitudinal-excitation scenario and the transverse-excitation scenario. The former scenario will be addressed in this paper. Given that responses of the tunnel are highly dependent on the shaft, the analytical solutions would be developed firstly for the vertical shaft. Then, the seismic responses of the tunnel would be discussed. Since vertical shafts bear a resemblance to rigid caissons, the solution proposed in this paper is derived by introducing terms of shaft-tunnel and soil-tunnel interactions into equations originally developed for rigid caissons. The validity of the solution is examined by a validation model computed by finite element method. The mutual influence between the shaft and the tunnel is introduced. The soil-structure interactions are discussed parametrically based on the proposed equations. The shaft-tunnel relative displacement and the soil-tunnel relative stiffness are found to be the most important parameters affecting the magnitudes and distributions of the internal forces of the tunnel. A hinge-joint at the shaft-tunnel junction could significantly reduce the degree of stress concentration compared with a rigid joint.

Keywords: analytical solution, longitudinal excitation, numerical validation , shaft-tunnel junction

Procedia PDF Downloads 124
19905 In Search of CO₂: Gravity and Magnetic Data for Enhanced Oil Recovery (EOR) Prospect Generation in Central Libya

Authors: Ahmed Saheel

Abstract:

Enhanced oil recovery using carbon dioxide (CO₂-EOR) is a method that can increase oil production beyond what is typically achievable using conventional recovery methods by injecting, and hence storing, carbon dioxide (CO₂) in the oil reservoir. In Libya, plans are under way to source a proportion of this CO₂ from subsurface geology that is known from previous drilling to contain high volumes of CO₂. But first these subsurface volumes need to be more clearly defined and understood. Focusing on the Al-Harouj region of central Libya, ground gravity and airborne magnetic data from the LPI database and the African Magnetic Mapping Project respectively have been prepared and processed by Libyan Petroleum Institute (LPI) and Reid Geophysics Limited (RGL) to produce a range of grids and related products suitable for interpreting geological structure and to make recommendations for subsequent work that will assist CO₂ exploration for purposes of enhanced oil recovery (EOR).

Keywords: gravity, magnetic, deduced lineaments, upward continuation

Procedia PDF Downloads 86
19904 Quality Evaluation of Backfill Grout in Tunnel Boring Machine Tail Void Using Impact-Echo (IE): Short-Time Fourier Transform (STFT) Numerical Analysis

Authors: Ju-Young Choi, Ki-Il Song, Kyoung-Yul Kim

Abstract:

During Tunnel Boring Machine (TBM) tunnel excavation, backfill grout should be injected after the installation of segment lining to ensure the stability of the tunnel and to minimize ground deformation. If grouting is not sufficient to fill the gap between the segments and rock mass, hydraulic pressures occur in the void, which can negatively influence the stability of the tunnel. Recently the tendency to use TBM tunnelling method to replace the drill and blast(NATM) method is increasing. However, there are only a few studies of evaluation of backfill grout. This study evaluates the TBM tunnel backfill state using Impact-Echo(IE). 3-layers, segment-grout-rock mass, are simulated by FLAC 2D, FDM-based software. The signals obtained from numerical analysis and IE test are analyzed by Short-Time Fourier Transform(STFT) in time domain, frequency domain, and time-frequency domain. The result of this study can be used to evaluate the quality of backfill grouting in tail void.

Keywords: tunnel boring machine, backfill grout, impact-echo method, time-frequency domain analysis, finite difference method

Procedia PDF Downloads 241
19903 Three Dimensional Numerical Analysis for Longitudinal Seismic Response of Tunnels under Asynchronous Earthquake

Authors: Peng Li, Er-xiang Song

Abstract:

Numerical analysis of longitudinal tunnel seismic response due to spatial variation of earthquake ground motion is an important issue that cannot be ignored in the design and safety evaluation of tunnel structures. In this paper, numerical methods for analysis of tunnel longitudinal response under asynchronous seismic wave is extensively studied, including the improvement of the 1D time-domain finite element method, three dimensional numerical simulation technique for the site asynchronous earthquake response as well as the 3-D soil-tunnel structure interaction analysis. The study outcome will be beneficial to aid further research on the nonlinear meticulous numerical analysis and seismic response mechanism of tunnel structures under asynchronous earthquake motion.

Keywords: asynchronous input, longitudinal seismic response, tunnel structure, numerical simulation, traveling wave effect

Procedia PDF Downloads 399
19902 The Challenge of Navigating Long Tunnels

Authors: Ali Mohammadi

Abstract:

One of the concerns that employers and contractors have in creating long tunnels is that when the excavation is completed, the tunnel will be exited in the correct position according to designed, the deviation of the tunnel from its path can have many costs for the employer and the contractor, lack of correct calculations by the surveying engineer or the employer and contractors lack of importance to the surveying team in guiding the tunnel can cause the tunnel to deviate from its path and this deviation becomes a disaster. But employers are able to make the right decisions so that the tunnel is guided with the highest precision if they consider some points. We are investigating two tunnels with lengths of 12 and 18 kilometers that were dug by Tunnel boring machine machines to transfer water, how the contractor’s decision to control the 12 kilometer tunnel caused the most accuracy of one centimeter to the next part of the tunnel will be connected. We will also investigate the reasons for the deviation of axis in the 18 km tunnel about 20 meters. Also we review the calculations of surveyor engineers in both tunnels and what challenges there will be in the calculations and teach how to solve these challenges. Surveying calculations are the most important part in controlling long tunnels.

Keywords: UTM, localization, scale factor, traverse

Procedia PDF Downloads 35
19901 Mathematical Modeling of the Working Principle of Gravity Gradient Instrument

Authors: Danni Cong, Meiping Wu, Hua Mu, Xiaofeng He, Junxiang Lian, Juliang Cao, Shaokun Cai, Hao Qin

Abstract:

Gravity field is of great significance in geoscience, national economy and national security, and gravitational gradient measurement has been extensively studied due to its higher accuracy than gravity measurement. Gravity gradient sensor, being one of core devices of the gravity gradient instrument, plays a key role in measuring accuracy. Therefore, this paper starts from analyzing the working principle of the gravity gradient sensor by Newton’s law, and then considers the relative motion between inertial and non-inertial systems to build a relatively adequate mathematical model, laying a foundation for the measurement error calibration, measurement accuracy improvement.

Keywords: gravity gradient, gravity gradient sensor, accelerometer, single-axis rotation modulation

Procedia PDF Downloads 286
19900 Stability Analysis of Rock Tunnel Subjected to Internal Blast Loading

Authors: Mohammad Zaid, Md. Rehan Sadique

Abstract:

Underground structures are an integral part of urban infrastructures. Tunnels are being used for the transportation of humans and goods from distance to distance. Terrorist attacks on underground structures such as tunnels have resulted in the improvement of design methodologies of tunnels. The design of underground tunnels must include anti-terror design parameters. The study has been carried out to analyse the rock tunnel when subjected to internal blast loading. The finite element analysis has been carried out for 30m by 30m of the cross-section of the tunnel and 35m length of extrusion of the rock tunnel model. The effect of tunnel diameter and overburden depth of tunnel has been studied under internal blast loading. Four different diameters of tunnel considered are 5m, 6m, 7m, and 8m, and four different overburden depth of tunnel considered are 5m, 7.5m, 10m, and 12.5m. The mohr-coulomb constitutive material model has been considered for the Quartzite rock. A concrete damage plasticity model has been adopted for concrete tunnel lining. For the trinitrotoluene (TNT) Jones-Wilkens-Lee (JWL) material model has been considered. Coupled-Eulerian-Lagrangian (CEL) approach for blast analysis has been considered in the present study. The present study concludes that a shallow tunnel having smaller diameter needs more attention in comparison to blast resistant design of deep tunnel having a larger diameter. Further, in the case of shallow tunnels, more bulging has been observed, and a more substantial zone of rock has been affected by internal blast loading.

Keywords: finite element method, blast, rock, tunnel, CEL, JWL

Procedia PDF Downloads 114
19899 Calculating All Dark Energy and Dark Matter Effects Through Dynamic Gravity Theory

Authors: Sean Kinney

Abstract:

In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifest. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, using the math of Dynamic Gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need of exotic measures.

Keywords: gravity, dynamic gravity, dark matter, dark energy

Procedia PDF Downloads 67
19898 A Sectional Control Method to Decrease the Accumulated Survey Error of Tunnel Installation Control Network

Authors: Yinggang Guo, Zongchun Li

Abstract:

In order to decrease the accumulated survey error of tunnel installation control network of particle accelerator, a sectional control method is proposed. Firstly, the accumulation rule of positional error with the length of the control network is obtained by simulation calculation according to the shape of the tunnel installation-control-network. Then, the RMS of horizontal positional precision of tunnel backbone control network is taken as the threshold. When the accumulated error is bigger than the threshold, the tunnel installation control network should be divided into subsections reasonably. On each segment, the middle survey station is taken as the datum for independent adjustment calculation. Finally, by taking the backbone control points as faint datums, the weighted partial parameters adjustment is performed with the adjustment results of each segment and the coordinates of backbone control points. The subsections are jointed and unified into the global coordinate system in the adjustment process. An installation control network of the linac with a length of 1.6 km is simulated. The RMS of positional deviation of the proposed method is 2.583 mm, and the RMS of the difference of positional deviation between adjacent points reaches 0.035 mm. Experimental results show that the proposed sectional control method can not only effectively decrease the accumulated survey error but also guarantee the relative positional precision of the installation control network. So it can be applied in the data processing of tunnel installation control networks, especially for large particle accelerators.

Keywords: alignment, tunnel installation control network, accumulated survey error, sectional control method, datum

Procedia PDF Downloads 159
19897 Analysis of Simple Mechanisms to Continuously Vary Mach Number in a Supersonic Wind Tunnel Facility

Authors: Prateek Kishore, T. M. Muruganandam

Abstract:

Supersonic wind tunnel nozzles are generally capable of producing a constant Mach number flow in the test section of the wind tunnel. As a result, most of the supersonic vehicles are widely designed using steady state flow characteristics which may have errors while facing unsteady situations. This study aims to explore the possibility of varying the Mach number of the flow during wind tunnel operation. The nozzle walls are restricted to be inflexible for cooling near the throat due to high stagnation temperature requirement of the flow to simulate the conditions as experienced by the vehicle. Two simple independent mechanisms, rotation and translation of nozzle walls have been analyzed and the nozzle ranges have been optimized to vary the Mach number from Mach 2 to Mach 5 using minimum number of nozzles in the wind tunnel.

Keywords: method of characteristics, nozzle, supersonic wind tunnel, variable mach number

Procedia PDF Downloads 259
19896 Dynamic Analysis of Double Deck Tunnel

Authors: C. W. Kwak, I. J. Park, D. I. Jang

Abstract:

The importance of cost-wise effective application and construction is getting increase due to the surge of traffic volume in the metropolitan cities. Accordingly, the necessity of the tunnel has large section becomes more critical. Double deck tunnel can be one of the most appropriate solutions to the necessity. The dynamic stability of double deck tunnel is essential against seismic load since it has large section and connection between perimeter lining and interim slab. In this study, 3-dimensional dynamic numerical analysis was conducted based on the Finite Difference Method to investigate the seismic behavior of double deck tunnel. Seismic joint for dynamic stability and the mitigation of seismic impact on the lining was considered in the modeling and analysis. Consequently, the mitigation of acceleration, lining displacement and stress were verified successfully.

Keywords: double deck tunnel, interim slab, 3-dimensional dynamic numerical analysis, seismic joint

Procedia PDF Downloads 356
19895 Calculating All Dark Energy and Dark Matter Effects through Dynamic Gravity Theory

Authors: Sean Michael Kinney

Abstract:

In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifests. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, use the math of Dynamic gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need for exotic measures.

Keywords: dynamic gravity, gravity, dark matter, dark energy

Procedia PDF Downloads 43
19894 Study on Shape Coefficient of Large Statue Building Based on CFD

Authors: Wang Guangda, Ma Jun, Zhao Caiqi, Pan Rui

Abstract:

Wind load is the main control load of large statue structures. Due to the irregular plane and elevation and uneven outer contour, statues’ shape coefficient can not pick up from the current code. Currently a common practice is based on wind tunnel test. But this method is time-consuming and high cost. In this paper, based on the fundamental theory of CFD, using fluid dynamics software of Fluent 15.0, a few large statue structure of 40 to 70m high, which are located in china , including large fairy statues and large Buddha statues, are analyzed by numerical wind tunnel. The results are contrasted with the recommended values in load code and the wind tunnel test results respectively. Results show that the shape coefficient has a good reliability by the numerical wind tunnel method of this kind of building. This will has a certain reference value of wind load values for large statues’ structure.

Keywords: large statue structure, shape coefficient, irregular structure, wind tunnel test, numerical wind tunnel simulation

Procedia PDF Downloads 343
19893 Effect of Piston and its Weight on the Performance of a Gun Tunnel via Computational Fluid Dynamics

Authors: A. A. Ahmadi, A. R. Pishevar, M. Nili

Abstract:

As the test gas in a gun tunnel is non-isentropically compressed and heated by a light weight piston. Here, first consideration is the optimum piston weight. Although various aspects of the influence of piston weight on gun tunnel performance have been studied, it is not possible to decide from the existing literature what piston weight is required for optimum performance in various conditions. The technique whereby the piston is rapidly brought to rest at the end of the gun tunnel barrel, and the resulted peak pressure is equal in magnitude to the final equilibrium pressure, is called the equilibrium piston technique. The equilibrium piston technique was developed to estimate the equilibrium piston mass; but this technique cannot give an appropriate estimate for the optimum piston weight. In the present work, a gun tunnel with diameter of 3 in. is described and its performance is investigated numerically to obtain the effect of piston and its weight. Numerical results in the present work are in very good agreement with experimental results. Significant influence of the existence of a piston is shown by comparing the gun tunnel results with results of a conventional shock tunnel in the same dimension and same initial condition. In gun tunnel, an increase of around 250% in running time is gained relative to shock tunnel. Also, Numerical results show that equilibrium piston technique is not a good way to estimate suitable piston weight and there will be a lighter piston which can increase running time of the gun tunnel around 60%.

Keywords: gun tunnel, hypersonic flow, piston, shock tunnel

Procedia PDF Downloads 344
19892 In Search of CO₂: Gravity and Magnetic Data for Eor Prospect Generation in Central Libya

Authors: Ahmed Saheel, Milad Ahmed Elmaradi, Tim Archer, Muammer Ahmed Aboaesha, Abdulkhaliq Abdulmajid Altoubashi

Abstract:

Enhanced oil recovery using carbon dioxide (CO₂-EOR) is a method that can increase oil production beyond what is typically achievable using conventional recovery methods by injecting and hence storing, carbon dioxide (CO₂) in the oil reservoir. In Libya, plans are underway to source a proportion of this CO₂ from subsurface geology that is known from previous drilling to contain high volumes of CO₂. But first, these subsurface volumes need to be more clearly defined and understood. Focusing on the Al-Harouj region of central Libya, ground gravity and airborne magnetic data from the LPI database and the African Magnetic Mapping Project respectively have been prepared and processed by Libyan Petroleum Institute (LPI) and Reid Geophysics Limited (RGL) to produce a range of grids and related products suitable for interpreting geological structure and to make recommendations for subsequent work that will assist CO₂ exploration for purposes of enhanced oil recovery (EOR).

Keywords: gravity anomaly, magnetic anomaly, DEDUCED lineaments, Total horizontal derivative, upward-continuation

Procedia PDF Downloads 80
19891 Aerodynamic Analysis of Vehicles in the Wind Tunnel and Water Tunnel

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

The simulation in wind tunnel is used thoroughly to model real situations of drainages of air. Besides the automotive industry, a great number of applications can be numbered: dispersion of pollutant, studies of pedestrians comfort and dispersion of particles. This work had the objective of visualizing the characteristics aerodynamics of two automobiles in different ways. To accomplish that drainage of air a fan that generated a speed exists (measured with anemometer of hot thread) of 4,1m/s and 4,95m/s. To visualize the path of the air through the cars, in the wind tunnel, smoke was used, obtained with it burns of vegetable oil. For “to do smoke” vegetable oil was used, that was burned for a tension of 20 V generated by a thread of 2,5 mm. The cars were placed inside of the wind tunnel with the drainage of “air-smoke” and photographed, registering like this the path lines around them, in the 3 different speeds.

Keywords: aerodynamics, vehicle drag, vegetable oil, wind tunnel

Procedia PDF Downloads 565
19890 Calibration of the Radical Installation Limit Error of the Accelerometer in the Gravity Gradient Instrument

Authors: Danni Cong, Meiping Wu, Xiaofeng He, Junxiang Lian, Juliang Cao, Shaokuncai, Hao Qin

Abstract:

Gravity gradient instrument (GGI) is the core of the gravity gradiometer, so the structural error of the sensor has a great impact on the measurement results. In order not to affect the aimed measurement accuracy, limit error is required in the installation of the accelerometer. In this paper, based on the established measuring principle model, the radial installation limit error is calibrated, which is taken as an example to provide a method to calculate the other limit error of the installation under the premise of ensuring the accuracy of the measurement result. This method provides the idea for deriving the limit error of the geometry structure of the sensor, laying the foundation for the mechanical precision design and physical design.

Keywords: gravity gradient sensor, radial installation limit error, accelerometer, uniaxial rotational modulation

Procedia PDF Downloads 395
19889 Ultrasound Guided Treatment of Carpal Tunnel Syndrome

Authors: Kazem Shakouri, Alireza Pishgahi, Homayoun Sadeghi-bBazargani, Shahla Dareshiri

Abstract:

Introduction: Carpal Tunnel Syndrome has numerous nonsurgical treatments including splint, physical therapy and corticosteroid injections. Aim: The purpose of this study was to evaluate the effectiveness of an ultrasound guided treatment procedure, for individuals with severe carpal tunnel syndrome. Materials and Method: 20 patients with an electrodiagnostic evidence of severe carpal tunnel syndrome were treated by an office-based ultrasound guided procedure (combination of percutaneous needle release of carpal tunnel and corticosteroid injection). Electrodiagnostic (nerve conduction study), clinical (Boston Carpal Tunnel Questionnaire, grip strength) and ultrasonic (median nerve and carpal tunnel cross-sectional area) measurements were recorded at baseline and one month after intervention. Results: Our preliminary data analysis showed that in one month follow up, patients had a significantly smaller cross-sectional area of the median nerve compared to pretreatment values (mean difference 0.06; 95%CI: 0.02-0.1; p < 0.001). In addition, patients had significantly less functional impairment (mean difference 35; 95% CI:28.7-43.4 ; p < 0.001), and an improved hand grip strength in one month follow up (mean difference 5.4; 95%CI: 3.1-7.8; p < 0.001;). There were no significant complications. Conclusion: Patients with severe carpal tunnel syndrome, who are candidates for surgical intervention, can consider office-based ultrasound guided needle release of carpal tunnel as an alternative safe treatment.

Keywords: Carpal Tunnel Syndrome, needle release, pain, ultrasound

Procedia PDF Downloads 216
19888 Experiment of Geophysical Exploration in Egypt

Authors: Ramadan Fayez Zowaid Hussein

Abstract:

Exploration geophysics is an applied branch of geophysics, and it is very important to use such a method in Egypt and not just Egypt but in Africa and the Middle East. This research aims to work deeply on the importance of this method, and this paper focuses more on the benefits of the exploration of geophysics and how to apply it to scientific methods. It helps to discover earthquakes and assist in seismology. It also helps to map the surface structure of a region and also magnetic techniques, including aeromagnetic surveys to map magnetic anomalies. This is known that having a great experience in this field as it was very interesting reading a lot and searching about this matter and this technology, and all was found made this fantastic: as the method is existing and we do not use it. It costs a lot, but one believes that this method is very important; for example, in discovering earthquakes, check the surface of the ground easily; it makes us see the surface of the ground clearly so we can find the elements of the earth easily. In conclusion, geophysical exploration use is very important, and it must be highlighted and considered to be discussed in the Middle East, not just in the Middle East but also in Africa.

Keywords: geophysics, magnetic, gravitational, hydrocarbon exploration

Procedia PDF Downloads 38
19887 Exploring Solutions in Extended Horava-Lifshitz Gravity

Authors: Aziza Altaibayeva, Ertan Güdekli, Ratbay Myrzakulov

Abstract:

In this letter, we explore exact solutions for the Horava-Lifshitz gravity. We use of an extension of this theory with first order dynamical lapse function. The equations of motion have been derived in a fully consistent scenario. We assume that there are some spherically symmetric families of exact solutions of this extended theory of gravity. We obtain exact solutions and investigate the singularity structures of these solutions. Specially, an exact solution with the regular horizon is found.

Keywords: quantum gravity, Horava-Lifshitz gravity, black hole, spherically symmetric space times

Procedia PDF Downloads 546
19886 Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock

Authors: Hadi Farhadian, Homayoon Katibeh

Abstract:

Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.

Keywords: water inflow, tunnel, discontinues rock, numerical simulation

Procedia PDF Downloads 495
19885 Practices in Planning, Design and Construction of Head Race Tunnel of a Hydroelectric Project

Authors: M. S. Thakur, Mohit Shukla

Abstract:

A channel/tunnel, which carries the water to the penstock/pressure shaft is called headrace tunnel (HRT). It is necessary to know the general topography, geology of the area, state of stress and other mechanical properties of the strata. For this certain topographical and geological investigations, in-situ and laboratory tests, and observations are required to be done. These investigations play an important role in a tunnel design as these help in deciding the optimum layout, shape and size and support requirements of the tunnel. The paper includes inputs from Nathpa Jhakri Hydeoelectric project which is India’s highest capacity (1500 MW) operating hydroelectric project. The paper would help the design engineers with various new concepts and preparedness against geological surprises.

Keywords: tunnelling, geology, HRT, rockmass

Procedia PDF Downloads 222
19884 Performance Analysis of Air-Tunnel Heat Exchanger Integrated into Raft Foundation

Authors: Chien-Yeh Hsu, Yuan-Ching Chiang, Zi-Jie Chien, Sih-Li Chen

Abstract:

In this study, a field experiment and performance analysis of air-tunnel heat exchanger integrated with water-filled raft foundation of residential building were performed. In order to obtain better performance, conventional applications of air-tunnel inevitably have high initial cost or issues about insufficient installation space. To improve the feasibility of air tunnel heat exchanger in high-density housing, an integrated system consisting of air pipes immersed in the water-filled raft foundation was presented, taking advantage of immense amount of water and relatively stable temperature in raft foundation of building. The foundation-integrated air tunnel was applied to a residential building located in Yilan, Taiwan, and its thermal performance was measured in the field experiment. The results indicated that the cooling potential of integrated system was close to the potential of soil-based EAHE at 2 m depth or deeper. An analytical model based on thermal resistance method was validated by measurement results, and was used to carry out the dimensioning of foundation-integrated air tunnel. The discrepancies between calculated value and measured data were less than 2.7%. In addition, the return-on-investment with regard to thermal performance and economics of the application was evaluated. Because the installation for air tunnel is scheduled in the building foundation construction, the utilization of integrated system spends less construction cost compare to the conventional earth-air tunnel.

Keywords: air tunnel, ground heat exchanger, raft foundation, residential building

Procedia PDF Downloads 293
19883 Conformal Invariance and F(R,T) Gravity

Authors: P. Y. Tsyba, O. V. Razina, E. Güdekli, R. Myrzakulov

Abstract:

In this paper, we consider the equation of motion for the F(R,T) gravity on their property of conformal invariance. It is shown that in the general case such a theory is not conformally invariant. Special cases for the functions v and u, in which the properties of the theory can appear, were studied.

Keywords: conformal invariance, gravity, space-time, metric

Procedia PDF Downloads 627