Search results for: data driven diagnosis
26998 Fault Diagnosis of Manufacturing Systems Using AntTreeStoch with Parameter Optimization by ACO
Authors: Ouahab Kadri, Leila Hayet Mouss
Abstract:
In this paper, we present three diagnostic modules for complex and dynamic systems. These modules are based on three ant colony algorithms, which are AntTreeStoch, Lumer & Faieta and Binary ant colony. We chose these algorithms for their simplicity and their wide application range. However, we cannot use these algorithms in their basement forms as they have several limitations. To use these algorithms in a diagnostic system, we have proposed three variants. We have tested these algorithms on datasets issued from two industrial systems, which are clinkering system and pasteurization system.Keywords: ant colony algorithms, complex and dynamic systems, diagnosis, classification, optimization
Procedia PDF Downloads 29826997 A Next-Generation Blockchain-Based Data Platform: Leveraging Decentralized Storage and Layer 2 Scaling for Secure Data Management
Authors: Kenneth Harper
Abstract:
The rapid growth of data-driven decision-making across various industries necessitates advanced solutions to ensure data integrity, scalability, and security. This study introduces a decentralized data platform built on blockchain technology to improve data management processes in high-volume environments such as healthcare and financial services. The platform integrates blockchain networks using Cosmos SDK and Polkadot Substrate alongside decentralized storage solutions like IPFS and Filecoin, and coupled with decentralized computing infrastructure built on top of Avalanche. By leveraging advanced consensus mechanisms, we create a scalable, tamper-proof architecture that supports both structured and unstructured data. Key features include secure data ingestion, cryptographic hashing for robust data lineage, and Zero-Knowledge Proof mechanisms that enhance privacy while ensuring compliance with regulatory standards. Additionally, we implement performance optimizations through Layer 2 scaling solutions, including ZK-Rollups, which provide low-latency data access and trustless data verification across a distributed ledger. The findings from this exercise demonstrate significant improvements in data accessibility, reduced operational costs, and enhanced data integrity when tested in real-world scenarios. This platform reference architecture offers a decentralized alternative to traditional centralized data storage models, providing scalability, security, and operational efficiency.Keywords: blockchain, cosmos SDK, decentralized data platform, IPFS, ZK-Rollups
Procedia PDF Downloads 2726996 Transport of Analytes under Mixed Electroosmotic and Pressure Driven Flow of Power Law Fluid
Authors: Naren Bag, S. Bhattacharyya, Partha P. Gopmandal
Abstract:
In this study, we have analyzed the transport of analytes under a two dimensional steady incompressible flow of power-law fluids through rectangular nanochannel. A mathematical model based on the Cauchy momentum-Nernst-Planck-Poisson equations is considered to study the combined effect of mixed electroosmotic (EO) and pressure driven (PD) flow. The coupled governing equations are solved numerically by finite volume method. We have studied extensively the effect of key parameters, e.g., flow behavior index, concentration of the electrolyte, surface potential, imposed pressure gradient and imposed electric field strength on the net average flow across the channel. In addition to study the effect of mixed EOF and PD on the analyte distribution across the channel, we consider a nonlinear model based on general convective-diffusion-electromigration equation. We have also presented the retention factor for various values of electrolyte concentration and flow behavior index.Keywords: electric double layer, finite volume method, flow behavior index, mixed electroosmotic/pressure driven flow, non-Newtonian power-law fluids, numerical simulation
Procedia PDF Downloads 31126995 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches
Authors: Wuttigrai Ngamsirijit
Abstract:
Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.Keywords: decision making, human capital analytics, talent management, talent value chain
Procedia PDF Downloads 18726994 The Implementation of a Nurse-Driven Palliative Care Trigger Tool
Authors: Sawyer Spurry
Abstract:
Problem: Palliative care providers at an academic medical center in Maryland stated medical intensive care unit (MICU) patients are often referred late in their hospital stay. The MICU has performed well below the hospital quality performance metric of 80% of patients who expire with expected outcomes should have received a palliative care consult within 48 hours of admission. Purpose: The purpose of this quality improvement (QI) project is to increase palliative care utilization in the MICU through the implementation of a Nurse-Driven PalliativeTriggerTool to prompt the need for specialty palliative care consult. Methods: MICU nursing staff and providers received education concerning the implications of underused palliative care services and the literature data supporting the use of nurse-driven palliative care tools as a means of increasing utilization of palliative care. A MICU population specific criteria of palliative triggers (Palliative Care Trigger Tool) was formulated by the QI implementation team, palliative care team, and patient care services department. Nursing staff were asked to assess patients daily for the presence of palliative triggers using the Palliative Care Trigger Tool and present findings during bedside rounds. MICU providers were asked to consult palliative medicinegiven the presence of palliative triggers; following interdisciplinary rounds. Rates of palliative consult, given the presence of triggers, were collected via electronic medical record e-data pull, de-identified, and recorded in the data collection tool. Preliminary Results: Over 140 MICU registered nurses were educated on the palliative trigger initiative along with 8 nurse practitioners, 4 intensivists, 2 pulmonary critical care fellows, and 2 palliative medicine physicians. Over 200 patients were admitted to the MICU and screened for palliative triggers during the 15-week implementation period. Primary outcomes showed an increase in palliative care consult rates to those patients presenting with triggers, a decreased mean time from admission to palliative consult, and increased recognition of unmet palliative care needs by MICU nurses and providers. Conclusions: Anticipatory findings of this QI project would suggest a positive correlation between utilizing palliative care trigger criteria and decreased time to palliative care consult. The direct outcomes of effective palliative care results in decreased length of stay, healthcare costs, and moral distress, as well as improved symptom management and quality of life (QOL).Keywords: palliative care, nursing, quality improvement, trigger tool
Procedia PDF Downloads 19426993 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction
Authors: Yan Zhang
Abstract:
Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.Keywords: Internet of Things, machine learning, predictive maintenance, streaming data
Procedia PDF Downloads 38626992 A 3-Year Evaluation Study on Fine Needle Aspiration Cytology and Corresponding Histology
Authors: Amjad Al Shammari, Ashraf Ibrahim, Laila Seada
Abstract:
Background and Objectives: Incidence of thyroid carcinoma has been increasing world-wide. In the present study, we evaluated diagnostic accuracy of Fine needle aspiration (FNA) and its efficiency in early detecting neoplastic lesions of thyroid gland over a 3-year period. Methods: Data have been retrieved from pathology files in King Khalid Hospital. For each patient, age, gender, FNA, site & size of nodule and final histopathologic diagnosis were recorded. Results: Study included 490 cases where 419 of them were female and 71 male. Male to female ratio was 1:6. Mean age was 43 years for males and 38 for females. Cases with confirmed histopathology were 131. In 101/131 (77.1%), concordance was found between FNA and histology. In 30/131 (22.9%), there was discrepancy in diagnosis. Total malignant cases were 43, out of which 14 (32.5%) were true positive and 29 (67.44%) were false negative. No false positive cases could be found in our series. Conclusion: FNA could diagnose benign nodules in all cases, however, in malignant cases, ultrasound findings have to be taken into consideration to avoid missing of a microcarcinoma in the contralateral lobe.Keywords: FNA, hail, histopathology, thyroid
Procedia PDF Downloads 33526991 Optimizing Data Integration and Management Strategies for Upstream Oil and Gas Operations
Authors: Deepak Singh, Rail Kuliev
Abstract:
The abstract highlights the critical importance of optimizing data integration and management strategies in the upstream oil and gas industry. With its complex and dynamic nature generating vast volumes of data, efficient data integration and management are essential for informed decision-making, cost reduction, and maximizing operational performance. Challenges such as data silos, heterogeneity, real-time data management, and data quality issues are addressed, prompting the proposal of several strategies. These strategies include implementing a centralized data repository, adopting industry-wide data standards, employing master data management (MDM), utilizing real-time data integration technologies, and ensuring data quality assurance. Training and developing the workforce, “reskilling and upskilling” the employees and establishing robust Data Management training programs play an essential role and integral part in this strategy. The article also emphasizes the significance of data governance and best practices, as well as the role of technological advancements such as big data analytics, cloud computing, Internet of Things (IoT), and artificial intelligence (AI) and machine learning (ML). To illustrate the practicality of these strategies, real-world case studies are presented, showcasing successful implementations that improve operational efficiency and decision-making. In present study, by embracing the proposed optimization strategies, leveraging technological advancements, and adhering to best practices, upstream oil and gas companies can harness the full potential of data-driven decision-making, ultimately achieving increased profitability and a competitive edge in the ever-evolving industry.Keywords: master data management, IoT, AI&ML, cloud Computing, data optimization
Procedia PDF Downloads 7026990 The Importance of the Phases of Information, Diagnosis, Planning, Intervention and Management in a Historic Center
Authors: Giovanni Duran Polo
Abstract:
Demonstrate the importance of the stages such as Information, Diagnosis, Management, and Intervention is fundamental to have a historical, live, and quality inhabited center. One of the major actions to take is to promote the concept of the management of a historic center with harmonious development. For that, concerned actors should strengthen the concept that said historic center may be the neighborhood of all and for all. The centers of historical cities, presented as any other urban area, social, environmental issues etc; yet they get added value that have no other city neighborhoods. The equity component, either by the urban plan, or environmental quality offered properties of architectural, landscape or some land uses are the differentiating element, while the tool that makes them attractive face pressure exerted by new housing developments or shopping centers. That's why through the experience of working in historical centers, they are declared the actions in heritage areas. This paper will show how the encounter with each of these places are trying to take the phases of information, to gather all the data needed to be closer to the territory with specific data, diagnosis; which allowed the actors to see what state they were, felt how the heart is related to the rest of the city, show what problems affected the situation and what potential it had to compete in a global market. Also, to discuss the importance of the organization, as it is legal and normative basis for it have an order and a concept, when you know what can and what cannot, in an area where the citizen has many myth or history, when he wanted to intervene in protected buildings. It is also appropriate to show how it could develop the intervention phase, where the shares on the tangible elements and intervention for the protection of the heritage property are executed. The management is the final phase which will carry out all that was raised on paper, it's time to orient, explain, persuade, promote, and encourage citizens to take care of the heritage. It is profitable and also an obligation and it is not an insurmountable burden. It has to be said this is the time to pull all the cards to make the historical center and heritage becoming more alive today. It is the moment to make it more inhabited and to transformer it into a quality place, so citizens will cherish and understand the importance of such a place. Inhabited historical centers, endowments and equipment required, with trade quality, with constant cultural offer, with well-preserved buildings and tidy, modern and safe public spaces are always attractive for tourism, but first of all, the place should be conceived for citizens, otherwise everything will be doomed to failure.Keywords: development, diagnosis, heritage historic center, intervention, management, patrimony
Procedia PDF Downloads 39526989 Active Features Determination: A Unified Framework
Authors: Meenal Badki
Abstract:
We address the issue of active feature determination, where the objective is to determine the set of examples on which additional data (such as lab tests) needs to be gathered, given a large number of examples with some features (such as demographics) and some examples with all the features (such as the complete Electronic Health Record). We note that certain features may be more costly, unique, or laborious to gather. Our proposal is a general active learning approach that is independent of classifiers and similarity metrics. It allows us to identify examples that differ from the full data set and obtain all the features for the examples that match. Our comprehensive evaluation shows the efficacy of this approach, which is driven by four authentic clinical tasks.Keywords: feature determination, classification, active learning, sample-efficiency
Procedia PDF Downloads 7526988 Neural Network Based Decision Trees Using Machine Learning for Alzheimer's Diagnosis
Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, S. Meenakshi Sundaram
Abstract:
Alzheimer’s disease is one of the prevalent kind of ailment, expected for impudent reconciliation or an effectual therapy is to be accredited hitherto. Probable detonation of patients in the upcoming years, and consequently an enormous deal of apprehension in early discovery of the disorder, this will conceivably chaperon to enhanced healing outcomes. Complex impetuosity of the brain is an observant symbolic of the disease and a unique recognition of genetic sign of the disease. Machine learning alongside deep learning and decision tree reinforces the aptitude to absorb characteristics from multi-dimensional data’s and thus simplifies automatic classification of Alzheimer’s disease. Susceptible testing was prophesied and realized in training the prospect of Alzheimer’s disease classification built on machine learning advances. It was shrewd that the decision trees trained with deep neural network fashioned the excellent results parallel to related pattern classification.Keywords: Alzheimer's diagnosis, decision trees, deep neural network, machine learning, pattern classification
Procedia PDF Downloads 29726987 Exploring the History of Chinese Music Acoustic Technology through Data Fluctuations
Abstract:
The study of extant musical sites can provide a side-by-side picture of historical ethnomusicological information. In their data collection on Chinese opera houses, researchers found that one Ming Dynasty opera house reached a width of nearly 18 meters, while all opera houses of the same period and after it was far from such a width, being significantly smaller than 18 meters. The historical transient fluctuations in the data dimension of width that caused Chinese theatres to fluctuate in the absence of construction scale constraints have piqued the interest of researchers as to why there is data variation in width. What factors have contributed to the lack of further expansion in the width of theatres? To address this question, this study used a comparative approach to conduct a venue experiment between this theater stage and another theater stage for non-heritage opera performances, collecting the subjective perceptions of performers and audiences at different theater stages, as well as combining BK Connect platform software to measure data such as echo and delay. From the subjective and objective results, it is inferred that the Chinese ancients discovered and understood the acoustical phenomenon of the Haas effect by exploring the effect of stage width on musical performance and appreciation of listening states during the Ming Dynasty and utilized this discovery to serve music in subsequent stage construction. This discovery marked a node of evolution in Chinese architectural acoustics technology driven by musical demands. It is also instructive to note that, in contrast to many of the world's "unsuccessful civilizations," China can use a combination of heritage and intangible cultural research to chart a clear, demand-driven course for the evolution of human music technology, and that the findings of such research will complete the course of human exploration of music acoustics. The findings of such research will complete the journey of human exploration of music acoustics, and this practical experience can be applied to the exploration and understanding of other musical heritage base data.Keywords: Haas effect, musical acoustics, history of acoustical technology, Chinese opera stage, structure
Procedia PDF Downloads 18426986 Purpose-Driven Collaborative Strategic Learning
Authors: Mingyan Hong, Shuozhao Hou
Abstract:
Collaborative Strategic Learning (CSL) teaches students to use learning strategies while working cooperatively. Student strategies include the following steps: defining the learning task and purpose; conducting ongoing negotiation of the learning materials by deciding "click" (I get it and I can teach it – green card, I get it –yellow card) or "clunk" (I don't get it – red card) at the end of each learning unit; "getting the gist" of the most important parts of the learning materials; and "wrapping up" key ideas. Find out how to help students of mixed achievement levels apply learning strategies while learning content area in materials in small groups. The design of CSL is based on social-constructivism and Vygotsky’s best-known concept of the Zone of Proximal Development (ZPD). The definition of ZPD is the distance between the actual acquisition level as decided by individual problem solution case and the level of potential acquisition level, similar to Krashen (1980)’s i+1, as decided through the problem-solution case under the facilitator’s guidance, or in group work with other more capable members (Vygotsky, 1978). Vygotsky claimed that learners’ ideal learning environment is in the ZPD. An ideal teacher or more-knowledgable-other (MKO) should be able to recognize a learner’s ZPD and facilitates them to develop beyond it. Then the MKO is able to leave the support step by step until the learner can perform the task without aid. Steven Krashen (1980) proposed Input hypothesis including i+1 hypothesis. The input hypothesis models are the application of ZPD in second language acquisition and have been widely recognized until today. Krashen (2019)’s optimal language learning environment (2019) further developed the application of ZPD and added the component of strategic group learning. The strategic group learning is composed of desirable learning materials learners are motivated to learn and desirable group members who are more capable and are therefore able to offer meaningful input to the learners. Purpose-driven Collaborative Strategic Learning Model is a strategic integration of ZPD, i+1 hypothesis model, and Optimal Language Learning Environment Model. It is purpose driven to ensure group members are motivated. It is collaborative so that an optimal learning environment where meaningful input from meaningful conversation can be generated. It is strategic because facilitators in the model strategically assign each member a meaningful and collaborative role, e.g., team leader, technician, problem solver, appraiser, offer group learning instrument so that the learning process is structured, and integrate group learning and team building making sure holistic development of each participant. Using data collected from college year one and year two students’ English courses, this presentation will demonstrate how purpose-driven collaborative strategic learning model is implemented in the second/foreign language classroom, using the qualitative data from questionnaire and interview. Particular, this presentation will show how second/foreign language learners grow from functioning with facilitator or more capable peer’s aid to performing without aid. The implication of this research is that purpose-driven collaborative strategic learning model can be used not only in language learning, but also in any subject area.Keywords: collaborative, strategic, optimal input, second language acquisition
Procedia PDF Downloads 12726985 Evaluation of P16, Human Papillomavirus Capsid Protein L1 and Ki67 in Cervical Intraepithelial Lesions: Potential Utility in Diagnosis and Prognosis
Authors: Hanan Alsaeid Alshenawy
Abstract:
Background: Cervical dysplasia, which is potentially precancerous, has increased in young women. Detection of cervical is important for reducing morbidity and mortality in cervical cancer. This study analyzes the immunohistochemical expression of p16, HPV L1 capsid protein and Ki67 in cervical intraepithelial lesions and correlates them with lesion grade to develop a set of markers for diagnosis and detect the prognosis of cervical cancer precursors. Methods: 75 specimens were analyzed including 15 cases CIN 1, 28 CIN 2, 20 CIN 3, and 12 cervical squamous carcinoma, besides 10 normal cervical tissues. They were stained for p16, HPV L1 and Ki-67. Sensitivity, specificity, predictive values and accuracy were evaluated for each marker. Results: p16 expression increased during the progression from CIN 1 to carcinoma. HPV L1 positivity was detected in CIN 2 and decreased gradually as the CIN grade increased but disappear in carcinoma. Strong Ki-67 expression was observed with high grades CIN and carcinoma. p16, HPV L1 and Ki67 were sensitive but with variable specificity in detecting CIN lesions. Conclusions: p16, HPV L1 and Ki67 are useful set of markers in establishing the risk of high-grade CIN. They complete each other to reach accurate diagnosis and prognosis.Keywords: p16, HPV L1, Ki67, CIN, cervical carcinoma
Procedia PDF Downloads 34126984 Raising Test of English for International Communication (TOEIC) Scores through Purpose-Driven Vocabulary Acquisition
Authors: Edward Sarich, Jack Ryan
Abstract:
In contrast to learning new vocabulary incidentally in one’s first language, foreign language vocabulary is often acquired purposefully, because a lack of natural exposure requires it to be studied in an artificial environment. It follows then that foreign language vocabulary may be more efficiently acquired if it is purpose-driven, or linked to a clear and desirable outcome. The research described in this paper relates to the early stages of what is seen as a long-term effort to measure the effectiveness of a methodology for purpose-driven foreign language vocabulary instruction, specifically by analyzing whether directed studying from high-frequency vocabulary lists leads to an improvement in Test of English for International Communication (TOEIC) scores. The research was carried out in two sections of a first-year university English composition class at a small university in Japan. The results seem to indicate that purposeful study from relevant high-frequency vocabulary lists can contribute to raising TOEIC scores and that the test preparation methodology used in this study was thought by students to be beneficial in helping them to prepare to take this high-stakes test.Keywords: corpus vocabulary, language asssessment, second language vocabulary acquisition, TOEIC test preparation
Procedia PDF Downloads 14926983 Creation of a Clinical Tool for Diagnosis and Treatment of Skin Disease in HIV Positive Patients in Malawi
Authors: Alice Huffman, Joseph Hartland, Sam Gibbs
Abstract:
Dermatology is often a neglected specialty in low-resource settings, despite the high morbidity associated with skin disease. This becomes even more significant when associated with HIV infection, as dermatological conditions are more common and aggressive in HIV positive patients. African countries have the highest HIV infection rates and skin conditions are frequently misdiagnosed and mismanaged, because of a lack of dermatological training and educational material. The frequent lack of diagnostic tests in the African setting renders basic clinical skills all the more vital. This project aimed to improve diagnosis and treatment of skin disease in the HIV population in a district hospital in Malawi. A basic dermatological clinical tool was developed and produced in collaboration with local staff and based on available literature and data collected from clinics. The aim was to improve diagnostic accuracy and provide guidance for the treatment of skin disease in HIV positive patients. A literature search within Embase, Medline and Google scholar was performed and supplemented through data obtained from attending 5 Antiretroviral clinics. From the literature, conditions were selected for inclusion in the resource if they were described as specific, more prevalent, or extensive in the HIV population or have more adverse outcomes if they develop in HIV patients. Resource-appropriate treatment options were decided using Malawian Ministry of Health guidelines and textbooks specific to African dermatology. After the collection of data and discussion with local clinical and pharmacy staff a list of 15 skin conditions was included and a booklet created using the simple layout of a picture, a diagnostic description of the disease and treatment options. Clinical photographs were collected from local clinics (with full consent of the patient) or from the book ‘Common Skin Diseases in Africa’ (permission granted if fully acknowledged and used in a not-for-profit capacity). This tool was evaluated by the local staff, alongside an educational teaching session on skin disease. This project aimed to reduce uncertainty in diagnosis and provide guidance for appropriate treatment in HIV patients by gathering information into one practical and manageable resource. To further this project, we hope to review the effectiveness of the tool in practice.Keywords: dermatology, HIV, Malawi, skin disease
Procedia PDF Downloads 20326982 HelpMeBreathe: A Web-Based System for Asthma Management
Authors: Alia Al Rayssi, Mahra Al Marar, Alyazia Alkhaili, Reem Al Dhaheri, Shayma Alkobaisi, Hoda Amer
Abstract:
We present in this paper a web-based system called “HelpMeBreathe” for managing asthma. The proposed system provides analytical tools, which allow better understanding of environmental triggers of asthma, hence better support of data-driven decision making. The developed system provides warning messages to a specific asthma patient if the weather in his/her area might cause any difficulty in breathing or could trigger an asthma attack. HelpMeBreathe collects, stores, and analyzes individuals’ moving trajectories and health conditions as well as environmental data. It then processes and displays the patients’ data through an analytical tool that leads to an effective decision making by physicians and other decision makers.Keywords: asthma, environmental triggers, map interface, web-based systems
Procedia PDF Downloads 29426981 The Thinking of Dynamic Formulation of Rock Aging Agent Driven by Data
Authors: Longlong Zhang, Xiaohua Zhu, Ping Zhao, Yu Wang
Abstract:
The construction of mines, railways, highways, water conservancy projects, etc., have formed a large number of high steep slope wounds in China. Under the premise of slope stability and safety, the minimum cost, green and close to natural wound space repair, has become a new problem. Nowadays, in situ element testing and analysis, monitoring, field quantitative factor classification, and assignment evaluation will produce vast amounts of data. Data processing and analysis will inevitably differentiate the morphology, mineral composition, physicochemical properties between rock wounds, by which to dynamically match the appropriate techniques and materials for restoration. In the present research, based on the grid partition of the slope surface, tested the content of the combined oxide of rock mineral (SiO₂, CaO, MgO, Al₂O₃, Fe₃O₄, etc.), and classified and assigned values to the hardness and breakage of rock texture. The data of essential factors are interpolated and normalized in GIS, which formed the differential zoning map of slope space. According to the physical and chemical properties and spatial morphology of rocks in different zones, organic acids (plant waste fruit, fruit residue, etc.), natural mineral powder (zeolite, apatite, kaolin, etc.), water-retaining agent, and plant gum (melon powder) were mixed in different proportions to form rock aging agents. To spray the aging agent with different formulas on the slopes in different sections can affectively age the fresh rock wound, providing convenience for seed implantation, and reducing the transformation of heavy metals in the rocks. Through many practical engineering practices, a dynamic data platform of rock aging agent formula system is formed, which provides materials for the restoration of different slopes. It will also provide a guideline for the mixed-use of various natural materials to solve the complex, non-uniformity ecological restoration problem.Keywords: data-driven, dynamic state, high steep slope, rock aging agent, wounds
Procedia PDF Downloads 11526980 Development of an Implicit Physical Influence Upwind Scheme for Cell-Centered Finite Volume Method
Authors: Shidvash Vakilipour, Masoud Mohammadi, Rouzbeh Riazi, Scott Ormiston, Kimia Amiri, Sahar Barati
Abstract:
An essential component of a finite volume method (FVM) is the advection scheme that estimates values on the cell faces based on the calculated values on the nodes or cell centers. The most widely used advection schemes are upwind schemes. These schemes have been developed in FVM on different kinds of structured and unstructured grids. In this research, the physical influence scheme (PIS) is developed for a cell-centered FVM that uses an implicit coupled solver. Results are compared with the exponential differencing scheme (EDS) and the skew upwind differencing scheme (SUDS). Accuracy of these schemes is evaluated for a lid-driven cavity flow at Re = 1000, 3200, and 5000 and a backward-facing step flow at Re = 800. Simulations show considerable differences between the results of EDS scheme with benchmarks, especially for the lid-driven cavity flow at high Reynolds numbers. These differences occur due to false diffusion. Comparing SUDS and PIS schemes shows relatively close results for the backward-facing step flow and different results in lid-driven cavity flow. The poor results of SUDS in the lid-driven cavity flow can be related to its lack of sensitivity to the pressure difference between cell face and upwind points, which is critical for the prediction of such vortex dominant flows.Keywords: cell-centered finite volume method, coupled solver, exponential differencing scheme (EDS), physical influence scheme (PIS), pressure weighted interpolation method (PWIM), skew upwind differencing scheme (SUDS)
Procedia PDF Downloads 28426979 Peptide Aptasensor for Electrochemical Detection of Rheumatoid Arthritis
Authors: Shah Abbas
Abstract:
Rheumatoid arthritis is a systemic, inflammatory autoimmune disease, affecting an overall 1% of the global population. Despite being tremendous efforts by scientists, early diagnosis of RA still has not been achieved. In the current study, a Graphene oxide (GO) based electrochemical sensor has been developed for early diagnosis of RA through Cyclic voltammetry. Chitosan (CHI), a CPnatural polymer has also been incorporated along with GO in order to enhance the biocompatibility and functionalization potential of the biosensor. CCPs are known antigens for Anti Citrullinated Peptide Antibodies (ACPAs) which can be detected in serum even 14 years before the appearance of symptoms, thus they are believed to be an ideal target for the early diagnosis of RA. This study has yielded some promising results regarding the binding and detection of ACPAs through changes in the electrochemical properties of biosensing material. The cyclic voltammogram of this biosensor reflects the binding of ACPAs to the biosensor surface, due to its shifts observed in the current flow (cathodic current) as compared to the when no ACPAs bind as it is absent in RA negative patients.Keywords: rheumatoid arthritis, peptide sensor, graphene oxide, anti citrullinated peptide antibodies, cyclic voltammetry
Procedia PDF Downloads 14226978 Measuring the Effect of Continuous Performance Test-3 Administration on Regional Cerebral Blood Flow with Single-Photon Emission Computed Tomography in Adult ADHD
Authors: Claire Stafford, Charles Golden, Daniel Amen, Kristen Willeumier
Abstract:
The aim of this study is to investigate the effect of the administration of the Conners Continuous Performance Test (CPT-3) on cerebral blood flow (CBF) in adults with ADHD. The data for this study was derived from a large SPECT database. Participants in the ADHD group (n=81, Mage=37.97) were similar to those in the healthy control group (n=8503, Mage=41.86). All participants were assessed for cerebral blood flow levels before and after CPT-3 administration. Both age and gender were considered covariates. Multiple 2-by-2 ANCOVAs with repeated measures were conducted with sphericity assumed. The main effects of CPT-3 administration on CBF levels were significant in the left and right side of the frontal and occipital, and right temporal lobe. The main effects of ADHD diagnosis were significant in all brain areas assessed. The interaction between CPT-3 administration and ADHD diagnosis was significant in the left and right side of the limbic system, basal ganglia, the frontal lobe, and occipital lobe. Post hoc tests with a Bonferroni adjustment revealed that CBF levels increased following CPT-3 administration but less so in the ADHD group. Individuals had higher levels of CBF following the administration of CPT-3. Due to a significant interaction, we can infer that ADHD diagnosis changes the effect of CPT-3 administration on CBF levels. This is consistent with our hypothesis considering that CPT-3 is a test of sustained attention, a common challenge for children with ADHD. The aforementioned interaction was not found to be significant in the parietal lobe. This may be due to the nature of CPT- 3 which does not require an integration of sensory information.Keywords: SPECT, ADHD, conners continuous performance test, cerebral blood flow
Procedia PDF Downloads 10126977 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning
Procedia PDF Downloads 24326976 Epicardial Fat Necrosis in a Young Female: A Case Report
Authors: Tayyibah Shah Alam, Joe Thomas, Nayantara Shenoy
Abstract:
Presenting a case that we would like to share, the answer is straight forward but the path taken to get to the diagnosis is where it gets interesting. A 31-year-old lady presented to the Rheumatology Outpatient department with left-sided chest pain associated with left-sided elbow joint pain intensifying over the last 2 days. She had been having a prolonged history of chest pain with minimal intensity since 2016. The pain is intermittent in nature. Aggravated while exerting, lifting heavy weights and lying down. Relieved while sitting. Her physical examination and laboratory tests were within normal limits. An electrocardiogram (ECG) showed normal sinus rhythm and a chest X-ray with no significant abnormality was noted. The primary suspicion was recurrent costochondritis. Cardiac blood inflammatory markers and Echo were normal, ruling out ACS. CT chest and MRI Thorax contrast showed small ill-defined STIR hyperintensity with thin peripheral enhancement in the anterior mediastinum in the left side posterior to the 5th costal cartilage and anterior to the pericardium suggestive of changes in the fat-focal panniculitis. Confirming the diagnosis as Epicardial fat necrosis. She was started on Colchicine and Nonsteroidal anti-inflammatory drugs for 2-3 weeks, following which a repeat CT showed resolution of the lesion and improvement in her. It is often under-recognized or misdiagnosed. CT scan was collectively used to establish the diagnosis. Making the correct diagnosis prospectively alleviates unnecessary testing in favor of conservative management.Keywords: EFN, panniculitis, unknown etiology, recurrent chest pain
Procedia PDF Downloads 9726975 Headache Masquerading as Common Psychiatric Disorders in Patients of Low Economic Class in a Tertiary Care Setting
Authors: Seema Singh Parmar, Shweta Chauhan
Abstract:
Aims & Objectives: To evaluate the presence of various psychiatric disorders in patients reporting with a headache as the only symptom. Methodology: 200 patients with the chief complain of a headache who visited the psychiatric OPD of a tertiary care were investigated. Out of them 50 who had pure psychiatric illness without any other neurological disease were investigated, and their diagnosis was made. Independent sample t-tests were applied to generate results. Results: The most common psychiatric diagnosis seen in the sample was Depression (64%) out of which 47% showed features of Depression with anxious distress. Other psychiatric disorders seen were Generalized Anxiety Disorder, Panic Attacks, Somatic Symptom Disorder and Obsessive Compulsive Disorder. For pure psychiatry, headache related illnesses female to male ratio was 1.64. Conclusion: The increasing frequency of psychiatric disorders among patients who only visit the doctor seeking treat a headache shows the need for better identification of psychiatric disorders because proper diagnosis and target of psychiatric treatment shall give complete relief to the patient’s symptomatology.Keywords: anxiety disorders, depression, headache, panic attacks
Procedia PDF Downloads 37626974 CDIO-Based Teaching Reform for Software Project Management Course
Authors: Liping Li, Wenan Tan, Na Wang
Abstract:
With the rapid development of information technology, project management has gained more and more attention recently. Based on CDIO, this paper proposes some teaching reform ideas for software project management curriculum. We first change from Teacher-centered classroom to Student-centered and adopt project-driven, scenario animation show, teaching rhythms, case study and team work practice to improve students' learning enthusiasm. Results showed these attempts have been well received and very effective; as well, students prefer to learn with this curriculum more than before the reform.Keywords: CDIO, teaching reform, engineering education, project-driven, scenario animation simulation
Procedia PDF Downloads 42926973 Resting-State Functional Connectivity Analysis Using an Independent Component Approach
Authors: Eric Jacob Bacon, Chaoyang Jin, Dianning He, Shuaishuai Hu, Lanbo Wang, Han Li, Shouliang Qi
Abstract:
Objective: Refractory epilepsy is a complicated type of epilepsy that can be difficult to diagnose. Recent technological advancements have made resting-state functional magnetic resonance (rsfMRI) a vital technique for studying brain activity. However, there is still much to learn about rsfMRI. Investigating rsfMRI connectivity may aid in the detection of abnormal activities. In this paper, we propose studying the functional connectivity of rsfMRI candidates to diagnose epilepsy. Methods: 45 rsfMRI candidates, comprising 26 with refractory epilepsy and 19 healthy controls, were enrolled in this study. A data-driven approach known as independent component analysis (ICA) was used to achieve our goal. First, rsfMRI data from both patients and healthy controls were analyzed using group ICA. The components that were obtained were then spatially sorted to find and select meaningful ones. A two-sample t-test was also used to identify abnormal networks in patients and healthy controls. Finally, based on the fractional amplitude of low-frequency fluctuations (fALFF), a chi-square statistic test was used to distinguish the network properties of the patient and healthy control groups. Results: The two-sample t-test analysis yielded abnormal in the default mode network, including the left superior temporal lobe and the left supramarginal. The right precuneus was found to be abnormal in the dorsal attention network. In addition, the frontal cortex showed an abnormal cluster in the medial temporal gyrus. In contrast, the temporal cortex showed an abnormal cluster in the right middle temporal gyrus and the right fronto-operculum gyrus. Finally, the chi-square statistic test was significant, producing a p-value of 0.001 for the analysis. Conclusion: This study offers evidence that investigating rsfMRI connectivity provides an excellent diagnosis option for refractory epilepsy.Keywords: ICA, RSN, refractory epilepsy, rsfMRI
Procedia PDF Downloads 7626972 The Needs of People with a Diagnosis of Dementia and Their Carers and Families
Authors: James Boag
Abstract:
The needs of people with a diagnosis of dementia and their carers and families are physical, psychosocial, and psychological and begin at the time of diagnosis. There is frequently a lack of emotional support and counselling. Care- giving support is required from the presentation of the first symptoms of dementia until death. Alzheimer's disease begins decades before the clinical symptoms begin to appear, and in many cases, it remains undiagnosed, or diagnosed too late for any possible interventions to have any effect. However, if an incorrect diagnosis is given, it may result in a person being treated, without effect, for a type of dementia they do not have and delaying the interventions they should have received. Being diagnosed with dementia can cause emotional distress to the person, and physical and emotional support is needed, which will become more important as the disease progresses. The severity of the patient's dementia and their symptoms has a bearing of the impact on the carer and the support needed. A lack of insight and /or a denial of the diagnosis, grief, reacting to anticipated future losses, and coping methods to maximise the disease outcome, are things that should be addressed. Because of the stigma, it is important for carers not to lose contact with family and others because social isolation leads to depression and burnout. The impact on a carer's well- being and quality of life can be influenced by the severity of the illness, its type of dementia, its symptoms, healthcare support, financial and social status, career, age, health, residential setting, and relationship to the patient. Carer burnout due to lack of support leads to people diagnosed with dementia being put into residential care prematurely. Often dementia is not recognised as a terminal illness, limiting the ability of the person diagnosed with dementia and their carers to work on advance care planning and getting access to palliative and other support. Many carers have been satisfied with the physical support they were given in their everyday life, however, it was agreed that there was an immense unmet need for psychosocial support, especially after diagnosis and approaching end of life. Providing continuity and coordination of care is important. Training is necessary for providers to understand that every case is different, and they should understand the complexities. Grief, the emotional response to loss, is suffered during the progression of the disease and long afterwards, and carers should continue to be supported after the death of the person they were caring for.Keywords: dementia, caring, challenges, needs
Procedia PDF Downloads 9726971 Intelligent Process Data Mining for Monitoring for Fault-Free Operation of Industrial Processes
Authors: Hyun-Woo Cho
Abstract:
The real-time fault monitoring and diagnosis of large scale production processes is helpful and necessary in order to operate industrial process safely and efficiently producing good final product quality. Unusual and abnormal events of the process may have a serious impact on the process such as malfunctions or breakdowns. This work try to utilize process measurement data obtained in an on-line basis for the safe and some fault-free operation of industrial processes. To this end, this work evaluated the proposed intelligent process data monitoring framework based on a simulation process. The monitoring scheme extracts the fault pattern in the reduced space for the reliable data representation. Moreover, this work shows the results of using linear and nonlinear techniques for the monitoring purpose. It has shown that the nonlinear technique produced more reliable monitoring results and outperforms linear methods. The adoption of the qualitative monitoring model helps to reduce the sensitivity of the fault pattern to noise.Keywords: process data, data mining, process operation, real-time monitoring
Procedia PDF Downloads 64026970 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions
Authors: Jian Li
Abstract:
The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase
Procedia PDF Downloads 8626969 Comparison of Serological and Molecular Diagnosis of Cerebral Toxoplasmosis in Blood and Cerebrospinal Fluid in HIV Infected Patients
Authors: Berredjem Hajira, Benlaifa Meriem, Becheker Imene, Bardi Rafika, Djebar Med Reda
Abstract:
Recent acquired or reactivation T.gondii infection is a serious complication in HIV patients. Classical serological diagnosis relies on the detection of anti-Toxoplasma immunoglobulin ; however, serology may be unreliable in HIV immunodeficient patients who fail to produce significant titers of specific antibodies. PCR assays allow a rapid diagnosis of Toxoplasma infection. In this study, we compared the value of the PCR for diagnosing active toxoplasmosis in cerebrospinal fluid and blood samples from HIV patients. Anti-Toxoplasma antibodies IgG and IgM titers were determined by ELISA. In parallel, nested PCR targeting B1 gene and conventional PCR-ELISA targeting P30 gene were used to detect T. gondii DNA in 25 blood samples and 12 cerebrospinal fluid samples from patients in whom toxoplasmic encephalitis was confirmed by clinical investigations. A total of 15 negative controls were used. Serology did not contribute to confirm toxoplasmic infection, as IgG and IgM titers decreased early. Only 8 out 25 blood samples and 5 out 12 cerebrospinal fluid samples PCRs yielded a positive result. 5 patients with confirmed toxoplasmosis had positive PCR results in either blood or cerebrospinal fluid samples. However, conventional nested B1 PCR gave best results than the P30 gene one for the detection of T.gondii DNA in both samples. All samples from control patients were negative. This study demonstrates the unusefulness of the serological tests and the high sensitivity and specificity of PCR in the diagnosis of toxoplasmic encephalitis in HIV patients.Keywords: cerebrospinal fluid, HIV, Toxoplasmosis, PCR
Procedia PDF Downloads 376