Search results for: behavior detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9704

Search results for: behavior detection

9344 Multi-Temporal Cloud Detection and Removal in Satellite Imagery for Land Resources Investigation

Authors: Feng Yin

Abstract:

Clouds are inevitable contaminants in optical satellite imagery, and prevent the satellite imaging systems from acquiring clear view of the earth surface. The presence of clouds in satellite imagery bring negative influences for remote sensing land resources investigation. As a consequence, detecting the locations of clouds in satellite imagery is an essential preprocessing step, and further remove the existing clouds is crucial for the application of imagery. In this paper, a multi-temporal based satellite imagery cloud detection and removal method is proposed, which will be used for large-scale land resource investigation. The proposed method is mainly composed of four steps. First, cloud masks are generated for cloud contaminated images by single temporal cloud detection based on multiple spectral features. Then, a cloud-free reference image of target areas is synthesized by weighted averaging time-series images in which cloud pixels are ignored. Thirdly, the refined cloud detection results are acquired by multi-temporal analysis based on the reference image. Finally, detected clouds are removed via multi-temporal linear regression. The results of a case application in Hubei province indicate that the proposed multi-temporal cloud detection and removal method is effective and promising for large-scale land resource investigation.

Keywords: cloud detection, cloud remove, multi-temporal imagery, land resources investigation

Procedia PDF Downloads 278
9343 A Detection Method of Faults in Railway Pantographs Based on Dynamic Phase Plots

Authors: G. Santamato, M. Solazzi, A. Frisoli

Abstract:

Systems for detection of damages in railway pantographs effectively reduce the cost of maintenance and improve time scheduling. In this paper, we present an approach to design a monitoring tool fitting strong customer requirements such as portability and ease of use. Pantograph has been modeled to estimate its dynamical properties, since no data are available. With the aim to focus on suspensions health, a two Degrees of Freedom (DOF) scheme has been adopted. Parameters have been calculated by means of analytical dynamics. A Finite Element Method (FEM) modal analysis verified the former model with an acceptable error. The detection strategy seeks phase-plots topology alteration, induced by defects. In order to test the suitability of the method, leakage in the dashpot was simulated on the lumped model. Results are interesting because changes in phase plots are more appreciable than frequency-shift. Further calculations as well as experimental tests will support future developments of this smart strategy.

Keywords: pantograph models, phase plots, structural health monitoring, damage detection

Procedia PDF Downloads 362
9342 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks

Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos

Abstract:

This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.

Keywords: metaphor detection, deep learning, representation learning, embeddings

Procedia PDF Downloads 153
9341 Current Approach in Biodosimetry: Electrochemical Detection of DNA Damage

Authors: Marcela Jelicova, Anna Lierova, Zuzana Sinkorova, Radovan Metelka

Abstract:

At present, electrochemical methods are used in various research fields, especially for analysis of biological molecules. The fact offers the possibility of using the detection of oxidative damage induced indirectly by γ rays in DNA in biodosimentry. The main goal of our study is to optimize the detection of 8-hydroxyguanine by differential pulse voltammetry. The level of this stable and specific indicator of DNA damage could be determined in DNA isolated from peripheral blood lymphocytes, plasma or urine of irradiated individuals. Screen-printed carbon electrodes modified with carboxy-functionalized multi-walled carbon nanotubes were utilized for highly sensitive electrochemical detection of 8-hydroxyguanine. Electrochemical oxidation of 8-hydroxoguanine monitored by differential pulse voltammetry was found pH-dependent and the most intensive signal was recorded at pH 7. After recalculating the current density, several times higher sensitivity was attained in comparison with already published results, which were obtained using screen-printed carbon electrodes with unmodified carbon ink. Subsequently, the modified electrochemical technique was used for the detection of 8-hydroxoguanine in calf thymus DNA samples irradiated by 60Co gamma source in the dose range from 0.5 to 20 Gy using by various types of sample pretreatment and measurement conditions. This method could serve for fast retrospective quantification of absorbed dose in cases of accidental exposure to ionizing radiation and may play an important role in biodosimetry.

Keywords: biodosimetry, electrochemical detection, voltametry, 8-hydroxyguanine

Procedia PDF Downloads 274
9340 Intrusion Detection In MANET Using Game Theory

Authors: S. B. Kumbalavati, J. D. Mallapur, K. Y. Bendigeri

Abstract:

A mobile Ad-hoc network (MANET) is a multihop wireless network where nodes communicate each other without any pre-deployed infrastructure. There is no central administrating unit. Hence, MANET is generally prone to many of the attacks. These attacks may alter, release or deny data. These attacks are nothing but intrusions. Intrusion is a set of actions that attempts to compromise integrity, confidentiality and availability of resources. A major issue in the design and operation of ad-hoc network is sharing the common spectrum or common channel bandwidth among all the nodes. We are performing intrusion detection using game theory approach. Game theory is a mathematical tool for analysing problems of competition and negotiation among the players in any field like marketing, e-commerce and networking. In this paper mathematical model is developed using game theory approach and intruders are detected and removed. Bandwidth utilization is estimated and comparison is made between bandwidth utilization with intrusion detection technique and without intrusion detection technique. Percentage of intruders and efficiency of the network is analysed.

Keywords: ad-hoc network, IDS, game theory, sensor networks

Procedia PDF Downloads 387
9339 The Influence of Water Content on the Shear Resistance of Silty Sands

Authors: Mohamed Boualem Salah

Abstract:

This work involves an experimental study of the behavior of chlef sand under effect of various parameters influencing on shear strength. Because of their distinct nature, sands, silts and clays exhibit completely different behavior (shear strength, the contracting and dilatancy, the angle of internal friction and cohesion etc.). By cons when these materials are mixed, their behavior will become different from each considered alone. The behavior of these mixtures (silty sands etc.) is currently the state of several studies to better use. We studied in this work: The influence of the following factors on the shear strength: (The density, the fines content, the water content). The apparatus used for the tests is the shear box casagrande. This device, although one may have some disadvantages and modern instrumentation is appropriate used to study the shear strength of soils.

Keywords: behavior, shear strength, sand, silt, friction angle, cohesion, fines content, moisture content

Procedia PDF Downloads 407
9338 Exercise Behavior of Infertile Women at Risk of Osteoporosis: Application of The Health Belief Model

Authors: Arezoo Fallahi

Abstract:

We aimed at investigating the association between health beliefs and exercise behavior in infertile women who were at risk of developing osteoporosis. This cross-sectional study was conducted in Sanandaj city, west of Iran in 2018. From 35 comprehensive healthcare centers, 483 infertile women were included in the study through convenience sampling. Standardized face-to-face interviews were conducted using established, reliable instruments for the assessment of exercise behavior behavior and health beliefs. Logistic regression models were applied to assess the association between exercise behavior and health beliefs. Estimates were adjusted for age, job status, income, literacy, and duration and type of infertility. We reported estimated logits and Odds Ratios (OR) with corresponding 95% confidence intervals (95% CI). Employed women compared to housewives had substantially higher odds of adopting exercise behavior behaviors (OR=3.19, 95% CI=1.53-6.66, p<0.01). Moreover, the odds of exercise behavior adoption increased with self-efficacy (OR=1.35, 95% CI=1.20-1.52, p<0.01), and decreased with perceived barriers (OR=0.90, 95% CI=0.84-0.97, p<0.01). It is essential to increase perceived self-efficacy and reduce perceived barriers to promote EB in infertile women. Consequently, health professionals should develop or adopt appropriate strategies to decrease barriers and increase self-efficacy to enhance exercise behavior in this group of women.

Keywords: infertility, women, exercise, osteoporosis

Procedia PDF Downloads 71
9337 Temporal Myopia in Sustainable Behavior under Uncertainty

Authors: Arianne Van Der Wal, Femke Van Horen, Amir Grinstein

Abstract:

Consumers in today’s world are confronted with the alarming consequences of unsustainable behavior such as pollution and resource degradation. In addition, they are facing an increase in uncertainty due to, for instance, economic instability and terror attacks. Although these two problems are central to consumers’ lives, occur on a global scale, and have significant impact on the world’s political, economic, environmental, and social landscapes, they have not been systematically studied in tandem before. Contributing to research on persuasion and pro-social behavior, this paper shows in five studies (three experimental studies and one field study) that the two problems are intertwined. We demonstrate that uncertainty leads to lower sustainable behavior in comparison to certainty (Studies 1 and 2) and that this is due to consumers displaying higher levels of temporal discounting (i.e., adopting a more immediate orientation; Study 2). Finally, providing valuable implications for policy makers and responsible marketers, we show that emphasizing the immediate benefits of sustainable behavior during uncertainty buffers the negative effect (Studies 3 and 4).

Keywords: sustainable behavior, uncertainty, temporal discounting, framing

Procedia PDF Downloads 318
9336 An Embedded System for Early Detection of Gas Leakage in Hospitals and Industries

Authors: Sehreen Moorat, Hiba, Maham Mahnoor, Faryal Soomro

Abstract:

Leakage of gases in a system makes infrastructures and users vulnerable; it can occur due to its environmental conditions or old groundwork. In hospitals and industries, it is very important to detect any small level of gas leakage because of their sensitivity. In this research, a portable detection system for the small leakage of gases has been developed, gas sensor (MQ-2) is used to find leakage when it’s at its initial phase. The sensor and transmitting module senses the change in level of gas by using a sensing circuit. When a concentration of gas reach at a specified threshold level, it will activate an alarm and send the alarming situation notification to receiver through GSM module. The proposed system works well in hospitals, home, and industries.

Keywords: gases, detection, Arduino, MQ-2, alarm

Procedia PDF Downloads 205
9335 On Enabling Miner Self-Rescue with In-Mine Robots using Real-Time Object Detection with Thermal Images

Authors: Cyrus Addy, Venkata Sriram Siddhardh Nadendla, Kwame Awuah-Offei

Abstract:

Surface robots in modern underground mine rescue operations suffer from several limitations in enabling a prompt self-rescue. Therefore, the possibility of designing and deploying in-mine robots to expedite miner self-rescue can have a transformative impact on miner safety. These in-mine robots for miner self-rescue can be envisioned to carry out diverse tasks such as object detection, autonomous navigation, and payload delivery. Specifically, this paper investigates the challenges in the design of object detection algorithms for in-mine robots using thermal images, especially to detect people in real-time. A total of 125 thermal images were collected in the Missouri S&T Experimental Mine with the help of student volunteers using the FLIR TG 297 infrared camera, which were pre-processed into training and validation datasets with 100 and 25 images, respectively. Three state-of-the-art, pre-trained real-time object detection models, namely YOLOv5, YOLO-FIRI, and YOLOv8, were considered and re-trained using transfer learning techniques on the training dataset. On the validation dataset, the re-trained YOLOv8 outperforms the re-trained versions of both YOLOv5, and YOLO-FIRI.

Keywords: miner self-rescue, object detection, underground mine, YOLO

Procedia PDF Downloads 81
9334 Research on Energy-Related Occupant Behavior of Residential Air Conditioning Based on Zigbee Intelligent Electronic Equipment

Authors: Dawei Xia, Benyan Jiang, Yong Li

Abstract:

Split-type air conditioners is widely used for indoor temperature regulation in urban residential buildings in summer in China. The energy-related occupant behavior has a great impact on building energy consumption. Obtaining the energy-related occupant behavior data of air conditioners is the research basis for the energy consumption prediction and simulation. Relying on the development of sensing and control technology, this paper selects Zigbee intelligent electronic equipment to monitor the energy-related occupant behavior of 20 households for 3 months in summer. Through analysis of data, it is found that people of different ages in the region have significant difference in the time, duration, frequency, and energy consumption of air conditioners, and form a data model of three basic energy-related occupant behavior patterns to provide an accurate simulation of energy.

Keywords: occupant behavior, Zigbee, split air conditioner, energy simulation

Procedia PDF Downloads 196
9333 Management of Organizational Behavior Utilizing Human Resources

Authors: Habab Ahmed Hassan Abuzeid

Abstract:

Organizations are social systems. If one wishes to work in them or to manage them, it is necessary to understand how they operate. Organizations combine science and people–technology and humanity. Unless we have qualified people to design and implement, techniques alone will not produce desirable results. Human behavior in organizations is rather unpredictable. It is unpredictable because it arises from people’s deep-seated needs and value systems. However, it can be partially understood in terms of the framework of behavioral science, management and other disciplines. There is no idealistic solution to organizational problems. All that can be done is to increase our understanding and skills so that human relations at work can be enhanced. In this paper, we consider management of organization behavior utilizing human resources. Study the elements of organization behavior, the effectiveness of mechanism to enhance staff relationships. Many approaches could be applied for healthy organizational environment, it’s highlighted more details in this paper. Organization behavior can raise the employees’ engagement, loyalty and commitment; to accomplish the goal.

Keywords: environment, engagement, human resources, organization behavior

Procedia PDF Downloads 364
9332 Plasmonic Nanoshells Based Metabolite Detection for in-vitro Metabolic Diagnostics and Therapeutic Evaluation

Authors: Deepanjali Gurav, Kun Qian

Abstract:

In-vitro metabolic diagnosis relies on designed materials-based analytical platforms for detection of selected metabolites in biological samples, which has a key role in disease detection and therapeutic evaluation in clinics. However, the basic challenge deals with developing a simple approach for metabolic analysis in bio-samples with high sample complexity and low molecular abundance. In this work, we report a designer plasmonic nanoshells based platform for direct detection of small metabolites in clinical samples for in-vitro metabolic diagnostics. We first synthesized a series of plasmonic core-shell particles with tunable nanoshell structures. The optimized plasmonic nanoshells as new matrices allowed fast, multiplex, sensitive, and selective LDI MS (Laser desorption/ionization mass spectrometry) detection of small metabolites in 0.5 μL of bio-fluids without enrichment or purification. Furthermore, coupling with isotopic quantification of selected metabolites, we demonstrated the use of these plasmonic nanoshells for disease detection and therapeutic evaluation in clinics. For disease detection, we identified patients with postoperative brain infection through glucose quantitation and daily monitoring by cerebrospinal fluid (CSF) analysis. For therapeutic evaluation, we investigated drug distribution in blood and CSF systems and validated the function and permeability of blood-brain/CSF-barriers, during therapeutic treatment of patients with cerebral edema for pharmacokinetic study. Our work sheds light on the design of materials for high-performance metabolic analysis and precision diagnostics in real cases.

Keywords: plasmonic nanoparticles, metabolites, fingerprinting, mass spectrometry, in-vitro diagnostics

Procedia PDF Downloads 138
9331 Risky Driving Behavior among Bus Driver in Jakarta

Authors: Ratri A. Benedictus, Felicia M. Yolanda

Abstract:

Public transport is a crucial issue for capital city in developing country, such as Jakarta. Inadequate number and low quality of public transport services resulting personal vehicles as the main option. As a result, traffic jams are getting worse in Jakarta. The low quality of public transport, particularly buses, compounded by the risk behavior of the driver. Traffic accidents involving public bus in Jakarta were often the case, even result in fatality. The purpose of this study is to get a description of risk behavior among the public bus drivers in Jakarta. 132 bus drivers become respondent of this study. Risky Driving Behavior scale of Dorn were used. Data were analyzed using descriptive statistics. 51.5% of respondents felt often showing risky behavior while on driving. The highest type of risky driving behavior is still using the unsafe bus (62%). Followed by trespass the bus line (30%), over speed (21%), violate the road signs (15%) and driving with unhealthy physical condition (4%). Results of this study suggested that high understanding of the bus drivers on their risk behaviors have not lead to the emergence of safe driving behavior. Therefore, together with technical engineering and instrumentation work intervention over this issue, psychological aspects also need to be considered, such as: risk perception, safety attitude,safety culture, locus of control and Fatalism.

Keywords: bus driver, psychological factors, public transportation, risky driving behavior

Procedia PDF Downloads 358
9330 Collective Behavior of Mice Passing through a Middle-Exit or Corner-Exit under Panic

Authors: Teng Zhang, Xuelin Zhang, Shouxiang Lu, Changhai Li

Abstract:

The existence of animal groups and collective migration are common in nature, and collective behavior is attracting more and more attention of researchers. Previous results have shown that architectural design had an important effect on the process of crowd evacuation. In this paper, collective behavior of mice passing through a middle-exit or corner-exit under panic was investigated. Selfish behavior and herd behavior were easily observed in our video, which caused the congregation with high density near the exit. Triangle structure of congregation formed near the middle-exit while arch structure formed near the corner-exit. It is noteworthy that the exit located at the middle of the wall was more effective for evacuation than at the corner. Meanwhile, the escape sequence of mouse passing through the exit was investigated, and the result showed that the priority depends largely on its location in the congregation. With the level of stimulus increasing, these phenomena still exist. The frequency distributions of time intervals and the burst sizes were also analyzed in this study to explore the secret of collective behavior of mice. These results could provide evidence for the hypothesis or prediction about human behavior in crowd evacuation. However, it is not clear whether the simulated results from different species can correspond to reality or not. Broader comparison among different species about this topic will be eager to be conducted to deepen our understanding of collective behavior in nature.

Keywords: collective behavior, mice, evacuation, exit location

Procedia PDF Downloads 302
9329 Detection of Resistive Faults in Medium Voltage Overhead Feeders

Authors: Mubarak Suliman, Mohamed Hassan

Abstract:

Detection of downed conductors occurring with high fault resistance (reaching kilo-ohms) has always been a challenge, especially in countries like Saudi Arabia, on which earth resistivity is very high in general (reaching more than 1000 Ω-meter). The new approaches for the detection of resistive and high impedance faults are based on the analysis of the fault current waveform. These methods are still under research and development, and they are currently lacking security and dependability. The other approach is communication-based solutions which depends on voltage measurement at the end of overhead line branches and communicate the measured signals to substation feeder relay or a central control center. However, such a detection method is costly and depends on the availability of communication medium and infrastructure. The main objective of this research is to utilize the available standard protection schemes to increase the probability of detection of downed conductors occurring with a low magnitude of fault currents and at the same time avoiding unwanted tripping in healthy conditions and feeders. By specifying the operating region of the faulty feeder, use of tripping curve for discrimination between faulty and healthy feeders, and with proper selection of core balance current transformer (CBCT) and voltage transformers with fewer measurement errors, it is possible to set the pick-up of sensitive earth fault current to minimum values of few amps (i.e., Pick-up Settings = 3 A or 4 A, …) for the detection of earth faults with fault resistance more than (1 - 2 kΩ) for 13.8kV overhead network and more than (3-4) kΩ fault resistance in 33kV overhead network. By implementation of the outcomes of this study, the probability of detection of downed conductors is increased by the utilization of existing schemes (i.e., Directional Sensitive Earth Fault Protection).

Keywords: sensitive earth fault, zero sequence current, grounded system, resistive fault detection, healthy feeder

Procedia PDF Downloads 115
9328 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms

Authors: Neha Ahirwar

Abstract:

In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.

Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree

Procedia PDF Downloads 66
9327 Investigation of Relationship between Organizational Climate and Organizational Citizenship Behaviour: A Research in Health Sector

Authors: Serdar Öge, Pinar Ertürk

Abstract:

The main objective of this research is to describe the relationship between organizational climate and organizational citizenship behavior. In order to examine this relationship, a research is intended to be carried out in relevant institutions and organizations operating in the health sector in Turkey. It will be found whether there is a statistically significant relationship between organizational climate and organizational citizenship behavior through elated scientific research methods and statistical analysis. In addition, elationships between the dimensions of organizational climate and organizational citizenship behavior subscales will be questioned statistically.

Keywords: organizational climate, organizational citizenship, organizational citizenship behavior, climate

Procedia PDF Downloads 379
9326 Psychosocial Determinants of School Violent Behavior and the Efficacy of Covert Sensitization in Combination with Systematic approach Therapy among Male Students in Lagos Metropolis: Implications for Student Counselors

Authors: Fidel O. Okopi, Aminu Kazeem Ibrahim

Abstract:

The study investigated psychosocial determinants ‘attitudes and self-esteem’ of school violent behaviors and the efficacy of covert sensitization therapy in combination with systematic approach therapy among male students in Lagos metropolis. Ex-post facto experimental research design was adopted for the study. The samples consisted of 39 school violent behavior students identified through the School Disciplinary Record Books and another 39 non-school violent behavior students identified through randomization. The two groups were from four randomly selected Public Senior Secondary Schools. School Violent Behavior Attitudes Scale (SVBAS) and School Violent Behavior Self-Esteem Scale (SVBSES) were used to collect data for the study. Face and Content validity with the Reliability coefficient of 0.772 for SVBAS and 0.813 for SVBSES were obtained. The results showed that the attitude of school violent behavior students do not significantly differ from that of school non-violent behavior students; the self-esteem of school violent behavior students differs significantly from that of school non-violent behavior students and that Covert Sensitization therapy in combination with Systematic Approach therapy were effective in modifying the self-esteem and attitude of school violent behavior students as surf iced in the pre-test and post-test analysis of school violent behavior students’ responses. The School counselors can modify male school violent behaviors that are traced to attitude and self-esteem with Covert Sensitization therapy in combination with Systematic Approach therapy in metropolitan areas.

Keywords: psychosocial determinants, violent behavior, covert sensitization therapy, systematic approach therapy

Procedia PDF Downloads 396
9325 A Dihydropyridine Derivative as a Highly Selective Fluorometric Probe for Quantification of Au3+ Residue in Gold Nanoparticle Solution

Authors: Waroton Paisuwan, Mongkol Sukwattanasinitt, Mamoru Tobisu, Anawat Ajavakom

Abstract:

Novel dihydroquinoline derivatives (DHP and DHP-OH) were synthesized in one pot via a tandem trimerization-cyclization of methylpropiolate. DHP and DHP-OH possess strong blue fluorescence with high quantum efficiencies over 0.70 in aqueous media. DHP-OH displays a remarkable fluorescence quenching selectively to the presence of Au3+ through the oxidation of dihydropyridine to pyridinium ion as confirmed by NMR and HRMS. DHP-OH was used to demonstrate the quantitative analysis of Au3+ in water samples with the limit of detection of 33 ppb and excellent recovery (>95%). This fluorescent probe was also applied for the determination of Au3+ residue in the gold nanoparticle solution and a paper-based sensing strip for the on-site detection of Au3+.

Keywords: Gold(III) ion detection, Fluorescent sensor, Fluorescence quenching, Dihydropyridine, Gold nanoparticles (AuNPs)

Procedia PDF Downloads 85
9324 The Effects of Organizational Apologies for Some Members’ Annoying Behavior on Other Members’ Appraisal of Their Organization

Authors: Chikae Isobe, Toshihiko Souma, Yoshiya Furukawa

Abstract:

In Japan, an organization is sometimes asked for responsibility and apology toward the organization for the annoying behavior of employees, even though the behavior is not relevant to the organization. Our studies have repeatedly shown that it is important for organizational evaluation to organization propose compensatory behavior for such annoying behavior, even though the behavior is not relevant to the organization. In this study, it was examined how such an organizational response (apology) was likely to evaluate by members of the organization who were not related to the annoying behavior. Three independent variables were manipulated that is organization emotion (guilt and shame), compensation (proposal or not), and the relation between organization and the annoying behavior (relate or not). And the effects of organizational identity (high and low) were also examined. We conducted an online survey for 240 participants through a crowdsourcing company. Participants were asked to imagine a situation in which an incident in which some people in your company did not return an important document that they borrowed privately (vs. at work) became the topic of discussion, and the company responded. For the analysis,189 data (111 males and 78 females, mean age = 40.6) were selected. The results of ANOVA of 2 by2 on organizational appraisal, perceived organizational responsibility, and so on were conducted. Organization appraisal by members was also higher when the organization proposed compensatory behavior. In addition, when the annoying behavior was related to their work (than no related), for those who were high in organization identity (than low), organization appraisal was high. The interaction between relatedness and organizational identity was significant. Differences in relatedness between the organization and annoying behavior were significant in those with low organizational identity but not in those with high organizational identity. When the organization stated not taking compensatory action, members were more likely to perceive the organization as responsible for the annoying behavior. However, the interaction results indicated this tendency was limited to when the annoying behavior was not related to the organization. Furthermore, it tended to be perceived as responsible for the organization when the organization made a statement that felt shame for the annoying behavior not related to the organization and would compensate for the annoying behavior. These results indicate that even members of the organization do not consider the organization's compensatory actions to be unjustified. In addition, because those with high organizational identity perceived the organization to be responsible when it showed strong remorse (shame and compensation), they would be a tendency to make judgments that are consistent with organizational judgments. It would be considered that the Japanese have the norm that even if the organization is not at fault for a member's disruptive behavior, it should respond to it.

Keywords: appraisal for organization, annoying behavior, group shame and guilt, compensation, organizational apologies

Procedia PDF Downloads 123
9323 Comparison of Sensitivity and Specificity of Pap Smear and Polymerase Chain Reaction Methods for Detection of Human Papillomavirus: A Review of Literature

Authors: M. Malekian, M. E. Heydari, M. Irani Estyar

Abstract:

Human papillomavirus (HPV) is one of the most common sexually transmitted infection, which may lead to cervical cancer as the main cause of it. With early diagnosis and treatment in health care services, cervical cancer and its complications are considered to be preventable. This study was aimed to compare the efficiency, sensitivity, and specificity of Pap smear and polymerase chain reaction (PCR) in detecting HPV. A literature search was performed in Google Scholar, PubMed and SID databases using the keywords 'human papillomavirus', 'pap smear' and 'polymerase change reaction' to identify studies comparing Pap smear and PCR methods for the detection. No restrictions were considered.10 studies were included in this review. All samples that were positive by pop smear were also positive by PCR. However, there were positive samples detected by PCR which was negative by pop smear and in all studies, many positive samples were missed by pop smear technique. Although The Pap smear had high specificity, PCR based HPV detection was more sensitive method and had the highest sensitivity. In order to promote the quality of detection and high achievement of the maximum results, PCR diagnostic methods in addition to the Pap smear are needed and Pap smear method should be combined with PCR techniques according to the high error rate of Pap smear in detection.

Keywords: human papillomavirus, cervical cancer, pap smear, polymerase chain reaction

Procedia PDF Downloads 131
9322 Vibration Measurements of Single-Lap Cantilevered SPR Beams

Authors: Xiaocong He

Abstract:

Self-pierce riveting (SPR) is a new high-speed mechanical fastening technique which is suitable for point joining dissimilar sheet materials, as well as coated and pre-painted sheet materials. Mechanical structures assembled by SPR are expected to possess a high damping capacity. In this study, experimental measurement techniques were proposed for the prediction of vibration behavior of single-lap cantilevered SPR beams. The dynamic test software and the data acquisition hardware were used in the experimental measurement of the dynamic response of the single-lap cantilevered SPR beams. Free and forced vibration behavior of the single-lap cantilevered SPR beams was measured using the LMS CADA-X experimental modal analysis software and the LMS-DIFA Scadas II data acquisition hardware. The frequency response functions of the SPR beams of different rivet number were compared. The main goal of the paper is to provide a basic measuring method for further research on vibration based non-destructive damage detection in single-lap cantilevered SPR beams.

Keywords: self-piercing riveting, dynamic response, experimental measurement, frequency response functions

Procedia PDF Downloads 429
9321 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network

Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao

Abstract:

The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.

Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations

Procedia PDF Downloads 154
9320 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals

Authors: Naser Safdarian, Nader Jafarnia Dabanloo

Abstract:

In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.

Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition

Procedia PDF Downloads 454
9319 Colorimetric Detection of Melamine in Milk Sample by Using In-Situ Formed Silver Nanoparticles by Tannic Acid

Authors: Md Fazle Alam, Amaj Ahmed Laskar, Hina Younus

Abstract:

Melamine toxicity which causes renal failure and death of humans and animals have recently attracted worldwide attention. Developing an easy, fast and sensitive method for the routine melamine detection is the need of the hour. Herein, we have developed a rapid, sensitive, one step and selective colorimetric method for the detection of melamine in milk samples based upon in-situ formation of silver nanoparticles (AgNPs) via tannic acid at room temperature. These AgNPs thus formed were characterized by UV-VIS spectrophotometer, transmission electron microscope (TEM), zetasizer and dynamic light scattering (DLS). Under optimal conditions, melamine could be selectively detected within the concentration range of 0.05-1.4 µM with a limit of detection (LOD) of 10.1 nM, which is lower than the strictest melamine safety requirement of 1 ppm. This assay does not utilize organic cosolvents, enzymatic reactions, light sensitive dye molecules and sophisticated instrumentation, thereby overcoming some of the limitations of conventional methods.

Keywords: milk adulteration, melamine, silver nanoparticles, tannic acid

Procedia PDF Downloads 246
9318 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach

Authors: Abe Degale D., Cheng Jian

Abstract:

When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.

Keywords: violence detection, faster RCNN, transfer learning and, surveillance video

Procedia PDF Downloads 106
9317 Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation

Authors: Antoni Ivanov, Nikolay Dandanov, Nicole Christoff, Vladimir Poulkov

Abstract:

Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm).

Keywords: cognitive radio, dynamic spectrum access, GNU Radio, spectrum sensing

Procedia PDF Downloads 245
9316 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time

Authors: Xinwen Zhu, Xingguang Li, Sun Yi

Abstract:

Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around  ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.

Keywords: LiDAR, depth camera, real-time, detection and measurement

Procedia PDF Downloads 224
9315 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System

Authors: Kay Thinzar Phu, Lwin Lwin Oo

Abstract:

In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.

Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection

Procedia PDF Downloads 313