Search results for: agroforestry trees
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 622

Search results for: agroforestry trees

262 Recommender Systems Using Ensemble Techniques

Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim

Abstract:

This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.

Keywords: product recommender system, ensemble technique, association rules, decision tree, artificial neural networks

Procedia PDF Downloads 294
261 Measuring the Biomechanical Effects of Worker Skill Level and Joystick Crane Speed on Forestry Harvesting Performance Using a Simulator

Authors: Victoria L. Chester, Usha Kuruganti

Abstract:

The forest industry is a major economic sector of Canada and also one of the most dangerous industries for workers. The use of mechanized mobile forestry harvesting machines has successfully reduced the incidence of injuries in forest workers related to manual labor. However, these machines have also created additional concerns, including a high machine operation learning curve, increased the length of the workday, repetitive strain injury, cognitive load, physical and mental fatigue, and increased postural loads due to sitting in a confined space. It is critical to obtain objective performance data for employers to develop appropriate work practices for this industry, however ergonomic field studies of this industry are lacking mainly due to the difficulties in obtaining comprehensive data while operators are cutting trees in the woods. The purpose of this study was to establish a measurement and experimental protocol to examine the effects of worker skill level and movement training speed (joystick crane speed) on harvesting performance using a forestry simulator. A custom wrist angle measurement device was developed as part of the study to monitor Euler angles during operation of the simulator. The device of the system consisted of two accelerometers, a Bluetooth module, three 3V coin cells, a microcontroller, a voltage regulator and an application software. Harvesting performance and crane data was provided by the simulator software and included tree to frame collisions, crane to tree collisions, boom tip distance, number of trees cut, etc. A pilot study of 3 operators with various skill levels was tested to identify factors that distinguish highly skilled operators from novice or intermediate operators. Dependent variables such as reaction time, math skill, past work experience, training movement speed (e.g. joystick control speeds), harvesting experience level, muscle activity, and wrist biomechanics were measured and analyzed. A 10-channel wireless surface EMG system was used to monitor the amplitude and mean frequency of 10 upper extremity muscles during pre and postperformance on the forestry harvest stimulator. The results of the pilot study showed inconsistent changes in median frequency pre-and postoperation, but there was the increase in the activity of the flexor carpi radialis, anterior deltoid and upper trapezius of both arms. The wrist sensor results indicated that wrist supination and pronation occurred more than flexion and extension with radial-ulnar rotation demonstrating the least movement. Overall, wrist angular motion increased as the crane speed increased from slow to fast. Further data collection is needed and will help industry partners determine those factors that separate skill levels of operators, identify optimal training speeds, and determine the length of training required to bring new operators to an efficient skill level effectively. In addition to effective and employment training programs, results of this work will be used for selective employee recruitment strategies to improve employee retention after training. Further, improved training procedures and knowledge of the physical and mental demands on workers will lead to highly trained and efficient personnel, reduced risk of injury, and optimal work protocols.

Keywords: EMG, forestry, human factors, wrist biomechanics

Procedia PDF Downloads 141
260 Autonomous Vehicle Detection and Classification in High Resolution Satellite Imagery

Authors: Ali J. Ghandour, Houssam A. Krayem, Abedelkarim A. Jezzini

Abstract:

High-resolution satellite images and remote sensing can provide global information in a fast way compared to traditional methods of data collection. Under such high resolution, a road is not a thin line anymore. Objects such as cars and trees are easily identifiable. Automatic vehicles enumeration can be considered one of the most important applications in traffic management. In this paper, autonomous vehicle detection and classification approach in highway environment is proposed. This approach consists mainly of three stages: (i) first, a set of preprocessing operations are applied including soil, vegetation, water suppression. (ii) Then, road networks detection and delineation is implemented using built-up area index, followed by several morphological operations. This step plays an important role in increasing the overall detection accuracy since vehicles candidates are objects contained within the road networks only. (iii) Multi-level Otsu segmentation is implemented in the last stage, resulting in vehicle detection and classification, where detected vehicles are classified into cars and trucks. Accuracy assessment analysis is conducted over different study areas to show the great efficiency of the proposed method, especially in highway environment.

Keywords: remote sensing, object identification, vehicle and road extraction, vehicle and road features-based classification

Procedia PDF Downloads 230
259 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments

Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard

Abstract:

With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.

Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home

Procedia PDF Downloads 355
258 Systematics of Water Lilies (Genus Nymphaea L.) Using 18S rDNA Sequences

Authors: M. Nakkuntod, S. Srinarang, K.W. Hilu

Abstract:

Water lily (Nymphaea L.) is the largest genus of Nymphaeaceae. This family is composed of six genera (Nuphar, Ondinea, Euryale, Victoria, Barclaya, Nymphaea). Its members are nearly worldwide in tropical and temperate regions. The classification of some species in Nymphaea is ambiguous due to high variation in leaf and flower parts such as leaf margin, stamen appendage. Therefore, the phylogenetic relationships based on 18S rDNA were constructed to delimit this genus. DNAs of 52 specimens belonging to water lily family were extracted using modified conventional method containing cetyltrimethyl ammonium bromide (CTAB). The results showed that the amplified fragment is about 1600 base pairs in size. After analysis, the aligned sequences presented 9.36% for variable characters comprising 2.66% of parsimonious informative sites and 6.70% of singleton sites. Moreover, there are 6 regions of 1-2 base(s) for insertion/deletion. The phylogenetic trees based on maximum parsimony and maximum likelihood with high bootstrap support indicated that genus Nymphaea was a paraphyletic group because of Ondinea, Victoria and Euryale disruption. Within genus Nymphaea, subgenus Nymphaea is a basal lineage group which cooperated with Euryale and Victoria. The other four subgenera, namely Lotos, Hydrocallis, Brachyceras and Anecphya were included the same large clade which Ondinea was placed within Anecphya clade due to geographical sharing.

Keywords: nrDNA, phylogeny, taxonomy, waterlily

Procedia PDF Downloads 142
257 The Design of English Materials to Communicate the Identity of Mueang Distict, Samut Songkram for Ecotourism

Authors: Kitda Praraththajariya

Abstract:

The main purpose of this research was to study how to communicate the identity of the Mueang district, Samut Songkram province for ecotourism. The qualitative data was collected through studying related materials, exploring the area, in-depth interviews with three groups of people: three directly responsible officers who were key informants of the district, twenty foreign tourists and five Thai tourist guides. A content analysis was used to analyze the qualitative data. The two main findings of the study were as follows: 1. The identity of Amphur (District) Mueang, Samut Songkram province. This establishment was near the Mouth of Maekong River for normal people and tourists, consisting of rest accommodations. There are restaurants where food and drinks are served, rich mangrove forests, Hoy Lod (Razor Clam) and mangrove trees. Don Hoy Lod, is characterized by muddy beaches, is a coastal wetland for Ramsar Site. It is at 1099th ranging where the greatest number of Hoy Lod (Razor Clam) can be seen from March to May each year. 2. The communication of the identity of Amphur Mueang, Samut Songkram province which the researcher could find and design to present in English materials can be summed up in 4 items: 1) The history of Amphur Mueang, Samut Songkram province 2) Wat Phet Samut Worrawihan 3) The Learning source of Ecotourism: Don Hoy Lod and Mangrove forest 4) How to keep Amphur Mueang, Samut Songkram province for ecotourism.

Keywords: foreigner tourists, signified, semiotics, ecotourism

Procedia PDF Downloads 239
256 Random Forest Classification for Population Segmentation

Authors: Regina Chua

Abstract:

To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.

Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling

Procedia PDF Downloads 91
255 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition

Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar

Abstract:

In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.

Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers

Procedia PDF Downloads 42
254 Identifying the Conservation Gaps in Poorly Studied Protected Area in the Philippines: A Study Case of Sibuyan Island

Authors: Roven Tumaneng, Angelica Kristina Monzon, Ralph Sedricke Lapuz, Jose Don De Alban, Jennica Paula Masigan, Joanne Rae Pales, Laila Monera Pornel, Dennis Tablazon, Rizza Karen Veridiano, Jackie Lou Wenceslao, Edmund Leo Rico, Neil Aldrin Mallari

Abstract:

Most protected area management plans in the Philippines, particularly the smaller and more remote islands suffer from insufficient baseline data, which should provide the bases for formulating measureable conservation targets and appropriate management interventions for these protected areas. Attempts to synthesize available data particularly on cultural and socio-economic characteristic of local peoples within and outside protected areas also suffer from the lack of comprehensive and detailed inventories, which should be considered in designing adaptive management interventions to be used for those protected areas. Mt Guiting-guiting Natural Park (MGGNP) located in Sibuyan Island is one of the poorly studied protected areas in the Philippines. In this study, we determined the highly biologically important areas of the protected area using Maximum Entropy approach (MaxEnt) from environmental predictors (i.e., topographic, bioclimatic,land cover, and soil image layers) derived from global remotely sensed data and point occurrence data of species of birds and trees recorded during field surveys on the island. A total of 23 trigger species of birds and trees was modeled and stacked to generate species richness maps for biological high conservation value areas (HCVAs). Forest habitat change was delineated using dual-polarised L-band ALOS-PALSAR mosaic data at 25 meter spatial resolution, taken at two acquisition years 2007 and 2009 to provide information on forest cover ad habitat change in the island between year 2007 and 2009. Determining the livelihood guilds were also conducted using the data gathered from171 household interviews, from which demographic and livelihood variables were extracted (i.e., age, gender, number of household members, educational attainment, years of residency, distance from forest edge, main occupation, alternative sources of food and resources during scarcity months, and sources of these alternative resources).Using Principal Component Analysis (PCA) and Kruskal-Wallis test, the diversity and patterns of forest resource use by people in the island were determined with particular focus on the economic activities that directly and indirectly affect the population of key species as well as to identify levels of forest resource use by people in different areas of the park.Results showed that there are gaps in the area occupied by the natural park, as evidenced by the mismatch of the proposed HCVAs and the existing perimeters of the park. We found out that subsistence forest gathering was the possible main driver for forest degradation out of the eight livelihood guilds that were identified in the park. Determining the high conservation areas and identifyingthe anthropogenic factors that influence the species richness and abundance of key species in the different management zone of MGGNP would provide guidance for the design of a protected area management plan and future monitoring programs. However, through intensive communication and consultation with government stakeholders and local communities our results led to setting conservation targets in local development plans and serve as a basis for the reposition of the boundaries and reconfiguration of the management zones of MGGNP.

Keywords: conservation gaps, livelihood guilds, MaxEnt, protected area

Procedia PDF Downloads 404
253 Fruit Identification System in Sweet Orange Citrus (L.) Osbeck Using Thermal Imaging and Fuzzy

Authors: Ingrid Argote, John Archila, Marcelo Becker

Abstract:

In agriculture, intelligent systems applications have generated great advances in automating some of the processes in the production chain. In order to improve the efficiency of those systems is proposed a vision system to estimate the amount of fruits in sweet orange trees. This work presents a system proposal using capture of thermal images and fuzzy logic. A bibliographical review has been done to analyze the state-of-the-art of the different systems used in fruit recognition, and also the different applications of thermography in agricultural systems. The algorithm developed for this project uses the metrics of the fuzzines parameter to the contrast improvement and segmentation of the image, for the counting algorith m was used the Hough transform. In order to validate the proposed algorithm was created a bank of images of sweet orange Citrus (L.) Osbeck acquired in the Maringá Farm. The tests with the algorithm Indicated that the variation of the tree branch temperature and the fruit is not very high, Which makes the process of image segmentation using this differentiates, This Increases the amount of false positives in the fruit counting algorithm. Recognition of fruits isolated with the proposed algorithm present an overall accuracy of 90.5 % and grouped fruits. The accuracy was 81.3 %. The experiments show the need for a more suitable hardware to have a better recognition of small temperature changes in the image.

Keywords: Agricultural systems, Citrus, Fuzzy logic, Thermal images.

Procedia PDF Downloads 228
252 Marketing Practices of the Urban and Recycled Wood Industry in the United States

Authors: Robert Smith, Omar Espinoza, Anna Pitta

Abstract:

In the United States, trees felled in urban areas and wood generated through construction and demolition are primarily disposed of as low-value resources, such as biomass for energy, landscaping mulch, composting, or landfilled. An emerging industry makes use of these underutilized resources to produce high value-added products, with associated benefits for the environment, the local economy, and consumers. For the circular economy to be successful, markets must be created for sustainable, reusable natural materials. Research was carried out to increase the understanding of the marketing practices of urban and reclaimed wood industries. This paper presents the results of a nationwide survey of these companies. The results indicate that a majority of companies in this industry are small firms, operating for less than 10 years, which produce mostly to order and sell their products at comparatively higher prices than competing products made from virgin natural resources. Promotional messages included quality, aesthetics, and customization, conveyed through company webpages, word of mouth, and social media. Distribution channels used include direct sales, online sales, and retail sales. Partnerships are critical for effective raw material procurement. Respondents indicated optimistic growth expectations, despite barriers associated with urban and reclaimed wood materials and production.

Keywords: urban and reclaimed wood, circular economy, marketing, wood products

Procedia PDF Downloads 123
251 Plant Species Composition and Frequency Distribution Along a Disturbance Gradient in Kano Metropolis Nigeria

Authors: Hamisu Jibril

Abstract:

The study explores changes in plant species composition along disturbance gradient in urban areas in Nigeria at Bayero University Kano campuses. The aim is to assess changes in plant species composition and distribution within a degraded dryland environment in Kano Metropolis, Nigeria. Vegetation sampling was conducted using plots quadrat and transect methods, and different plant species were identified in the three study sites. Data were analyzed using ANOVA, t-tests and conventional indices to compare species richness, evenness and diversity. The study found no significant differences in species frequency among sites or sampling methods but observed higher species richness, evenness and diversity values in grasses species compared to trees. The study addressed changes in plant species composition along a disturbance gradient in an urban environment, focusing on species richness, evenness, and diversity. The study contributes to understanding the vegetation dynamics in degraded urban environments and highlights the need for conservation efforts. The research also adds to the existing literature by confirming previous findings and suggesting re-planting efforts. The study suggests similarities in plant species composition between old and new campus areas and emphasizes the importance of further investigating factors leading to vegetation loss for conservation purposes.

Keywords: species diversity, urban kano, dryland environment, vegetation sampling

Procedia PDF Downloads 58
250 Optimum Irrigation System Management for Climate Resilient and Improved Productivity of Flood-based Livelihood Systems

Authors: Mara Getachew Zenebe, Luuk Fleskens, Abdu Obieda Ahmed

Abstract:

This paper seeks to advance our scientific understanding of optimizing flood utilization in regions impacted by climate change, with a focus on enhancing agricultural productivity through effective irrigation management. The study was conducted as part of a three-year (2021 to 2023) USAID-supported initiative aimed at promoting Economic Growth and Peace in the Gash Agricultural Scheme (GAS), situated in Sudan's water-stressed Eastern region. GAS is the country's largest flood-irrigated scheme, covering 100,800 hectares of cultivable land, with a potential to provide the food security needs of over a quarter of a million agro-pastoral community members. GAS relies on the Gash River, which sources its water from high-intensity rainfall events in the highlands of Ethiopia and Eritrea. However, climate change and variations in these highlands have led to increased variability in the Gash River's flow. The study conducted water balance analyses based on a ten-year dataset of the annual Gash River flow, irrigated area; as well as the evapotranspiration demand of the major sorghum crop. Data collection methods included field measurements, surveys, remote sensing, and CropWat modelling. The water balance assessment revealed that the existing three-year rotation-based irrigation system management, capping cultivated land at 33,000 hectares annually, is excessively risk-averse. While this system reduced conflicts among the agro-pastoral communities by consistently delivering on the land promised to be annually cultivated, it also increased GAS's vulnerability to flood damage due to several reasons. The irrigation efficiency over the past decade was approximately 30%, leaving significant unharnessed floodwater that caused damage to infrastructure and agricultural land. The three-year rotation resulted in inadequate infrastructural maintenance, given the destructive nature of floods. Additionally, it led to infrequent land tillage, allowing the encroachment of mesquite trees hindering major sorghum crop growth. Remote sensing data confirmed that mesquite trees have overtaken 70,000 hectares in the past two decades, rendering them unavailable for agriculture. The water balance analyses suggest shifting to a two-year rotation, covering approximately 50,000 hectares annually while maintaining risk aversion. This shift could boost GAS's annual sorghum production by two-thirds, exceeding 850,000 tons. The scheme's efficiency can be further enhanced through low-cost on-farm interventions. Currently, large irrigation plots that range from 420 to 756 hectares are irrigated with limited water distribution guidance, leading to uneven irrigation. As demonstrated through field trials, implementing internal longitudinal bunds and horizontal deflector bunds can increase adequately irrigated parts of the irrigation plots from 50% to 80% and thus nearly double the sorghum yield to 2 tons per hectare while reducing the irrigation duration from 30 days to a maximum of 17 days. Flow measurements in 2021 and 2022 confirmed that these changes sufficiently meet the sorghum crop's water requirements, even with a conservative 60% field application efficiency assumption. These insights and lessons from the GAS on enhancing agricultural resilience and sustainability in the face of climate change are relevant to flood-based livelihood systems globally.

Keywords: climate change, irrigation management and productivity, variable flood flows, water balance analysis

Procedia PDF Downloads 72
249 Influence of Densification Process and Material Properties on Final Briquettes Quality from FastGrowing Willows

Authors: Peter Križan, Juraj Beniak, Ľubomír Šooš, Miloš Matúš

Abstract:

Biomass treatment through densification is very suitable and important technology before its effective energy recovery. Densification process of biomass is significantly influenced by various technological and also material parameters which are ultimately reflected on the final solid Biofuels quality. The paper deals with the experimental research of the relationship between technological and material parameters during densification of fast-growing trees, roundly fast-rowing willow. The main goal of presented experimental research is to determine the relationship between pressing pressure raw material fraction size from a final briquettes density point of view. Experimental research was realized by single-axis densification. The impact of fraction size with interaction of pressing pressure and stabilization time on the quality properties of briquettes was determined. These parameters interaction affects the final solid biofuels (briquettes) quality. From briquettes production point of view and also from densification machines constructions point of view is very important to know about mutual interaction of these parameters on final briquettes quality. The experimental findings presented here are showing the importance of mentioned parameters during the densification process.

Keywords: briquettes density, densification, fraction size, pressing pressure, stabilization time

Procedia PDF Downloads 366
248 Entomological Study of Pests of Olive Trees in the Region of Batna - Algeria

Authors: Smail Chafaa, Abdelkrim Si Bachir

Abstract:

Our work aims to study the insect diversity based on bioclimatic levels of pests in olive cultures (Olea europea L.) in the area of Batna (arid and semi arid north eastern Algeria) during the period from January 2011 to May 2011. Several sampling techniques were used, those of hunting on sight, visual inspection, hatches traps, colored traps, Japanese umbrella and sweep net. We have identified in total, 2311 individuals with results in inventory 206 species divided to 74 families and 11 orders, including Coleoptera order is quantitatively the most represented with 47.1%. The most dominant diet in our inventory is the phytophagous. Between the herbivorous insects that we have listed and which are the main olive pest of olive cultivation; we quote the olive fly (Bactrocera oleae), cochineal purple olive (Parlatoria oleae) the psyllid olive (Euphyllura olivina) and olive Trips (Liothrips oleae). The distribution of species between stations shows that Boumia resort with the most number of species (113) compared to other resorts and beetles are also better represented in three groves. Total wealth is high in Boumia station compared with the others stations. The values of (H') exceeding 3.9 bits for all the stations studied indicate a specific wealth and diversity of ecological nests in insect species. The values of equitability are near the unit; that suggests a balance between the numbers of insect populations sampled in the various stations.

Keywords: entomology, olive, grove, batna, Algeria

Procedia PDF Downloads 341
247 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform

Authors: Reza Mohammadzadeh

Abstract:

The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.

Keywords: data model, geotechnical risks, machine learning, underground coal mining

Procedia PDF Downloads 274
246 Effect of Temperature on Germination and Seedlings Development of Moringa Oleifera Lam

Authors: Khater N., Rahmine S., Bougoffa C., Bouguenna T., Ouanes H.

Abstract:

Moringa oleifera L. species is considered one of the most useful trees in the world, possessing many interesting properties that make it of great scientific interest. It has been described as the miracle tree, the tree of a thousand virtues, the tree of life and God's gift to man. The present study aims to introduce, produce, and develop Moringa Oleifera as a species with high ecological potential (resistance to biotic and abiotic stresses and productivity), high added value, and multiple virtues. The aim of this work is to study the germination potential of this species under different temperature conditions. In this study, the germination assay was tested in two different temperature ranges: internal (laboratory ambient temperature between 22°c and 25°c) and external (seasonal temperature between 4°c and 8°c). Morphological and physiological analyses were carried out by Shoot length (SL), root length (RL), diameter at the crown (DC), fresh weight of shoots (FWS), fresh weight of roots (FWR), dry weight of shoots (DWS) and dry weight of roots (DWS). For all these variables, the results of the study reveal a significant difference between the two temperature intervals, with a high germination rate of 81. 81% and plant growth was rapid (7cm during 24h) in the laboratory temperature; in contrast to the external temperatures, a germination rate value of around 27% was recorded, and germination took place after 20 days of sowing, with slower plant growth. The results obtained show that a temperature greater than or equal to 25° is the ideal temperature for the germination and growth of moringa seeds and has a positive influence on the speed and percentage of germination.

Keywords: moringa oleifera, temperature, germination rate, growth, biomass

Procedia PDF Downloads 60
245 Nucleotide Diversity and Bacterial Endosymbionts of the Black Cherry Aphid Myzus cerasi (Fabricus, 1775) (Hemiptera: Aphididae) from Turkey

Authors: Burcu Inal, Irfan Kandemir

Abstract:

Sequences of mitochondrial cytochrome oxidase I (COI) gene of twenty-five Turkish and one Greek Myzus cerasi (Fabricus) (Hemiptera: Aphididae) in populations were collected from Prunus avium and Prunus cerasus. The partial coding region of COI studied is 605 bp for all the populations, from which 565 nucleotides were conserved, 40 were variable, 37 were singleton, and 3 sites were parsimony-informative. Four haplotypes were identified based on nucleotide substitutions, and the mean of intraspecific divergence was calculated to be 0.3%. Phylogenetic trees were constructed using Maximum Likelihood, Minimum Evolution, Neighbor-joining, and Unweighed Pair Group Method of Arithmetic Averages (UPGMA) and Myzus persicae (Sulzer) and Myzus borealis Ossiannilson were included as outgroups. The population of M. cerasi from Isparta diverged from the rest of the groups and formed a clade (Haplotype B) with Myzus borealis. The rest of the haplotype diversity includes Haplotype A and Haplotype C with individuals characterized as Myzus cerasi pruniavium and Haplotype D with Myzus cerasi cerasi. M. cerasi diverge into two subspecies and it must be reevaluated whether this pest is monophagous or oligophagous in terms of plant type dependence. The obligated endosymbiont Buchnera aphidicola was also found during this research, but no facultative symbionts could be found. It is expected further studies will be required for a complete barcoding and diversity of bacterial endosymbionts present.

Keywords: bacterial endosymbionts, barcoding, black cherry aphid, nucleotide diversity

Procedia PDF Downloads 171
244 The Abundance and Distribution of Locally Important Species Along Different Altitude: The Case of Mountain Damota, Wolaita South Ethiopia

Authors: Tamirat Solomon, Tadesse Faltamo, Belete Limani

Abstract:

This study was conducted on the mountain Damota of Wolaita to assess the abundance and spatial distribution of two locally important indigenous medicinal plants on the mountain landscape. A total of 130 plots measuring 20x20m were established along eight systematically laid transect lines. In each plot, the abundance and distribution of Hagenia abyssinica (tree) and Pentas schiperiana Vatke (shrub) were evaluated. The abundance and distribution of H. abyssinica were evaluated by measuring height and DBH for mature trees and counting seedlings and saplings, whereas the P. schiperiana Vatke was assessed for its abundance and distribution by counting in each plot. In the entire study plots, a total of 485 H. abyssinica and 760 P. schiperiana vatake were recorded. It was observed that the distribution of the species increased while the altitude increased and the highest abundance of the species was recorded at an altitude range between 2332 and 2661m.a.s.l. However, at the altitudes below 2320 m.a.s.l., the species distributions and abundance was decreased, indicating either the ecological preference of the species or the extraction of the local community surrounding the mountain influenced the species. On average, only 28 seedlings/ha of H. abyssinica and 146/ha of P. schiperiana vatke were recorded in the study areas showing the tendency of decline in the abundance and distribution of both species. Finally, we recommend management intervention for the socially important species which are under threat on the mountain landscape.

Keywords: indigenous medicinal plants, H.abyssinic, P. schiperiana, distribution, abundance, socio-economic importance

Procedia PDF Downloads 120
243 Using Risk Management Indicators in Decision Tree Analysis

Authors: Adel Ali Elshaibani

Abstract:

Risk management indicators augment the reporting infrastructure, particularly for the board and senior management, to identify, monitor, and manage risks. This enhancement facilitates improved decision-making throughout the banking organization. Decision tree analysis is a tool that visually outlines potential outcomes, costs, and consequences of complex decisions. It is particularly beneficial for analyzing quantitative data and making decisions based on numerical values. By calculating the expected value of each outcome, decision tree analysis can help assess the best course of action. In the context of banking, decision tree analysis can assist lenders in evaluating a customer’s creditworthiness, thereby preventing losses. However, applying these tools in developing countries may face several limitations, such as data availability, lack of technological infrastructure and resources, lack of skilled professionals, cultural factors, and cost. Moreover, decision trees can create overly complex models that do not generalize well to new data, known as overfitting. They can also be sensitive to small changes in the data, which can result in different tree structures and can become computationally expensive when dealing with large datasets. In conclusion, while risk management indicators and decision tree analysis are beneficial for decision-making in banks, their effectiveness is contingent upon how they are implemented and utilized by the board of directors, especially in the context of developing countries. It’s important to consider these limitations when planning to implement these tools in developing countries.

Keywords: risk management indicators, decision tree analysis, developing countries, board of directors, bank performance, risk management strategy, banking institutions

Procedia PDF Downloads 58
242 Release Response of Black Spruce and White Spruce Following Overstory Lodgepole Pine Mortality Due to Mountain Pine Beetle Attack

Authors: F. O. Oboite, P. G. Comeau

Abstract:

Advance regeneration is present in many lodgepole pine stands in Alberta. When the overstory pine canopy is killed by Mountain Pine Beetle (MPB) the growth of this advance is likely to increase. Understanding the growth response of these understory tree species is needed to improve mid-term timber supply projections and management decisions. To quantify the growth (diameter, height, height/diameter ratio) responses of black spruce and white spruce to lodgepole pine mortality, sample trees of black and white spruce advance regeneration were selected from 7 lodgepole pine dominated stands (5 attacked; 2 control) in the Foothills Region of western Alberta. Measurements were collected 7-8 years after MPB attack across a wide range of spruce height and stand densities. Analysis was done using mixed model linear regression. Result indicates that there was an increase in both diameter and height growth after MPB attack; however, this increase in growth was delayed for about four years. Both spruce species had similar height response and their height/diameter ratio decreased after release, partly as a result of increased understory light associated with loss of needles in the pine canopy. In addition, the diameter and height growth responses of both spruce species were strongly related to density, prerelease growth and initial size.

Keywords: mountain pine beetle, forest regeneration, lodgepole pine, growth response

Procedia PDF Downloads 375
241 Modeling Fertility and Production of Hazelnut Cultivars through the Artificial Neural Network under Climate Change of Karaj

Authors: Marziyeh Khavari

Abstract:

In recent decades, climate change, global warming, and the growing population worldwide face some challenges, such as increasing food consumption and shortage of resources. Assessing how climate change could disturb crops, especially hazelnut production, seems crucial for sustainable agriculture production. For hazelnut cultivation in the mid-warm condition, such as in Iran, here we present an investigation of climate parameters and how much they are effective on fertility and nut production of hazelnut trees. Therefore, the climate change of the northern zones in Iran has investigated (1960-2017) and was reached an uptrend in temperature. Furthermore, the descriptive analysis performed on six cultivars during seven years shows how this small-scale survey could demonstrate the effects of climate change on hazelnut production and stability. Results showed that some climate parameters are more significant on nut production, such as solar radiation, soil temperature, relative humidity, and precipitation. Moreover, some cultivars have produced more stable production, for instance, Negret and Segorbe, while the Mervill de Boliver recorded the most variation during the study. Another aspect that needs to be met is training and predicting an actual model to simulate nut production through a neural network and linear regression simulation. The study developed and estimated the ANN model's generalization capability with different criteria such as RMSE, SSE, and accuracy factors for dependent and independent variables (environmental and yield traits). The models were trained and tested while the accuracy of the model is proper to predict hazelnut production under fluctuations in weather parameters.

Keywords: climate change, neural network, hazelnut, global warming

Procedia PDF Downloads 131
240 Assessment of Sidewalk Problems and Their Remedial Measures: Case Study of Dire Dawa Town Kebele 02 Sidewalks, Ethiopia

Authors: Abdurahman Anwar Shfa

Abstract:

A Road sidewalk provides benefits, including safety, mobility, and healthier communities by facilitating the movement of goods and people. It enables increased access to daily living and programs in the country. But, these increases in access may be affected by many factors that pose a great challenge in the individuals’ daily activity, ranging from minor injury to death. Those problems are construction roads without sidewalks, using sidewalks for selling purposes, potholes, and west and trees on sidewalks. In this case, our objective is to identify problems related to sidewalks, assess the accessibility of sidewalks to all users, including pedestrians with disabilities, propose appropriate countermeasures for these problems, and prepare the indicator map. This study was undertaken to investigate the performance problems associated with sidewalk, particularly focusing on specified areas of Dire Dawa city kebele 02, to show the main problems and suggest that important consideration should be given to road sidewalk. To meet the objective of research, it is believed to collect data, review sidewalk construction practices and performance problems reported from ERA manual, and carry out a field reconnaissance. This research encompassed a variety of activities regarding sidewalk, including problems and accidents that occurred due to this problem. The purpose of this research is to identify the type of risk to pedestrians who are walking along a roadway and the reasons for those risks. So, based on our study, the sidewalk of Dire Dawa City kebele 02 is not enough. Those sidewalks are not accessible for all pedestrians, including disability.

Keywords: GIS, ERA, GPS, sidewalks way, asphalt road

Procedia PDF Downloads 29
239 Web Page Design Optimisation Based on Segment Analytics

Authors: Varsha V. Rohini, P. R. Shreya, B. Renukadevi

Abstract:

In the web analytics the information delivery and the web usage is optimized and the analysis of data is done. The analytics is the measurement, collection and analysis of webpage data. Page statistics and user metrics are the important factor in most of the web analytics tool. This is the limitation of the existing tools. It does not provide design inputs for the optimization of information. This paper aims at providing an extension for the scope of web analytics to provide analysis and statistics of each segment of a webpage. The number of click count is calculated and the concentration of links in a web page is obtained. Its user metrics are used to help in proper design of the displayed content in a webpage by Vision Based Page Segmentation (VIPS) algorithm. When the algorithm is applied on the web page it divides the entire web page into the visual block tree. The visual block tree generated will further divide the web page into visual blocks or segments which help us to understand the usage of each segment in a page and its content. The dynamic web pages and deep web pages are used to extend the scope of web page segment analytics. Space optimization concept is used with the help of the output obtained from the Vision Based Page Segmentation (VIPS) algorithm. This technique provides us the visibility of the user interaction with the WebPages and helps us to place the important links in the appropriate segments of the webpage and effectively manage space in a page and the concentration of links.

Keywords: analytics, design optimization, visual block trees, vision based technology

Procedia PDF Downloads 265
238 Composition and Acaricidal Activity of Elettaria cardamomum Essential Oil Against Oligonychus afrasiaticus

Authors: Abid Hussain, Muhammad Rizwan-ul-Haq, Hassan Al-Ayedh, Ahmed M. Al-Jabr

Abstract:

Oligonychus afrasiaticus, is an important pest that devastates date palms (Phoenix dactylifera). They caused serious damage to date palm fruits. They start feeding on dates at Kimri stage (greenish color dates with high sugar and moisture level) resulting severe fruit losses and rendering them unfit for human consumption. Currently, acaricides are the only tool available to Saudi growers to prevent O. afrasiaticus damage. Many acaricides are available in the Saudi markets in order to control the mites on date palm trees but their efficacy against O. afrasiaticus is questionable. The intensive use of acaricides has led to resistance in many mite species around the globe and their control becomes exceedingly challenging. The current investigation explored for the first time the acaricidal potential of Elettaria cardamomum essential oil for the environmentally safe management of date mites in the laboratory. E. cardamomum exhibited acaricidal activities in a dose dependent manner. GC-MS fractionation of E. cardamomum detected numerous compounds. Among the identified compounds, Guaniol caused 100% mortality compared to other identified compounds including (+)-α-Pinene, Camphene, (-)-B-Pinene, 3-Carene, (R)-(+)-Limonene, and Citral. Our laboratory results showed that E. cardamomum and its constituents especially Guaniol are promising for the eco-friendly management of date mites, O. afrasiaticus, although their field efficacy remains to be evaluated.

Keywords: cardamom, old world date mite, natural acaricide, toxicity

Procedia PDF Downloads 309
237 Refined Edge Detection Network

Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni

Abstract:

Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.

Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone

Procedia PDF Downloads 102
236 Ultrastructural Changes Occur in Mice Lungs After Cessation to Exposure of Incense Smoke

Authors: Samar Rabah

Abstract:

Background: Incense woods are special kind of trees called Agarwood, which characterized by good smelling odors and many medical benefits. Incense smoke is heavily used in Saudi Arabia although comprehensive studies of its effects on health are limited. The present study demonstrated lung ultrastructure changes of mice after exposure and cessation to Incense smoke. Eighty mice are divided equally into four groups, three groups are exposed to different concentrations of Incense smoke (2, 4 and 6 gm) for three months, while the fourth group is control one. At the end of each month, lungs of five animals from each group are gathered, while the last five animals from each group are kept for another 60 days without exposure to the Incense smoke to allow for recovery. Results: Transmission electron microscope investigations of all exposed groups showed hypertrophy and hyperplasia in Clara Cells and some an enlargement of the macrophage to the point that it fills a large part of the alveolar lumen. Scanning electron microscope marks presence of mucus materials attached to the epithelial bronchioles. After prevention of exposure to the Incense smoke for 60 days, necrosis and degeneration in some cells of epithelial bronchioles, fibrosis of peribronchial, thickening in alveolar walls and aggregation of lymphoid cells were demonstrated. Conclusion: Based on the above findings and other related studies (not published), we conclude that exposure to Incense smoke causes harmful effects due to sever changes in pulmonary ultrastructure, such effects do not disappear even when Incense smoke inhalation was stopped. Therefore, we recommend that Incense smoke should use only in open places to reduce its harms.

Keywords: Incense smoke, lungs, ultrastructure of lungs, Agarwood

Procedia PDF Downloads 411
235 Community Based Landslide Investigation and Treatment in the Earthquake Affected Areas, Nepal

Authors: Basanta Raj Adhikari

Abstract:

Large and small scale earthquakes are frequent in the Nepal, Himalaya, and many co-seismic landslides are resulted out of it. Recently, Gorkha earthquake-2015 has triggered many co-seismic landslides destroying many lives and properties. People have displaced their original places due to having many cracks and unstable ground. Therefore, Nepal has been adopting a pronged development strategy to address the earthquake issues through reconstruction and rehabilitation policy, plans and budgets. Landslides are major threat for the mountain livelihood, and it is very important to investigate and mitigate to improve human wellbeing factoring in considerations of economic growth, environmental safety, and sustainable development. Community based landslide investigation was carried with the involvement of the local community in the Sindhupalchowk District of Central Nepal. Landslide training and field orientation were the major methodological approach of this study. Combination of indigenous and modern scientific knowledge has created unique working environment which enhanced the local capacity and trained people for replication. Local topography of the landslide was created with the help of Total Station and bill of quantity was derived based on it. River training works, plantation of trees and grasses, support structures, surface and sub-surface drainage management are the recommended mitigative measures. This is a very unique example of how academia and local community can work together for sustainable development by reducing disaster risk at the local level with very low-cost technology.

Keywords: community, earthquake, landslides, Nepal

Procedia PDF Downloads 156
234 Characterization of Bacteriophage for Biocontrol of Pseudomonas syringae, Causative Agent of Canker in Prunus spp.

Authors: Mojgan Rabiey, Shyamali Roy, Billy Quilty, Ryan Creeth, George Sundin, Robert W. Jackson

Abstract:

Bacterial canker is a major disease of Prunus species such as cherry (Prunus avium). It is caused by Pseudomonas syringae species including P. syringae pv. syringae (Pss) and P. syringae pv. morsprunorum race 1 (Psm1) and race 2 (Psm2). Concerns over the environmental impact of, and developing resistance to, copper controls call for alternative approaches to disease management. One method of control could be achieved using naturally occurring bacteriophage (phage) infective to the bacterial pathogens. Phages were isolated from soil, leaf, and bark of cherry trees in five locations in the South East of England. The phages were assessed for their host range against strains of Pss, Psm1, and Psm2. The phages exhibited a differential ability to infect and lyse different Pss and Psm isolates as well as some other P. syringae pathovars. However, the phages were unable to infect beneficial bacteria such as Pseudomonas fluorescens. A subset of 18 of these phages were further characterised genetically (Random Amplification of Polymorphic DNA-PCR fingerprinting and sequencing) and using electron microscopy. The phages are tentatively identified as belonging to the order Caudovirales and the families Myoviridae, Podoviridae, and Siphoviridae, with genetic material being dsDNA. Future research will fully sequence the phage genomes. The efficacy of the phage, both individually and in cocktails, to reduce disease progression in vivo will be investigated to understand the potential for practical use of these phages as biocontrol agents.

Keywords: bacteriophage, pseudomonas, bacterial cancker, biological control

Procedia PDF Downloads 150
233 Urbanization on Green Cover and Groundwater Relationships in Delhi, India

Authors: Kiranmay Sarma

Abstract:

Recent decades have witnessed rapid increase in urbanization, for which, rural-urban migration is stated to be the principal reason. Urban growth throughout the world has already outstripped the capacities of most of the cities to provide basic amenities to the citizens, including clean drinking water and consequently, they are struggling to get fresh and clean water to meet water demands. Delhi, the capital of India, is one of the rapid fast growing metropolitan cities of the country. As a result, there has been large influx of population during the last few decades and pressure exerted to the limited available water resources, mainly on groundwater. Considering this important aspect, the present research has been designed to study the effects of urbanization on the green cover and groundwater and their relationships of Delhi. For the purpose, four different land uses of the study area have been considered, viz., protected forest area, trees outside forest, maintained park and settlement area. Samples for groundwater and vegetation were collected seasonally in post-monsoon (October), winter (February) and summer (June) at each study site for two years during 2012 and 2014. The results were integrated into GIS platform. The spatial distribution of groundwater showed that the concentration of most of the ions is decreasing from northern to southern parts of Delhi, thus groundwater shows an improving trend from north to south. The depth was found to be improving from south to north Delhi, i.e., opposite to the water quality. The study concludes the groundwater properties in Delhi vary spatially with depending on the types of land cover.

Keywords: groundwater, urbanization, GIS, green cover, Delhi

Procedia PDF Downloads 287