Search results for: Adiabatic Quantum Dynamics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3321

Search results for: Adiabatic Quantum Dynamics

2961 Bound State Problems and Functional Differential Geometry

Authors: S. Srednyak

Abstract:

We study a class of functional partial differential equations(FPDEs). This class is suggested by Quantum Field Theory. We derive general properties of solutions to such equations. In particular, we demonstrate that they lead to systems of coupled integral equations with singular kernels. We show that solutions to such hierarchies can be sought among functions with regular singularities at a countable set of subvarieties of the physical space. We also develop a formal analogy of basic constructions of differential geometry on functional manifolds, as this is necessary for in depth study of FPDEs. We also consider the case of linear overdetermined systems of functional differential equations and show that it can be completely solved in terms of formal solutions of a functional equation that is a functional analogy of a system of determined algebraic equations. This development leads us to formally define the functional analogy of algebraic geometry, which we call functional algebraic geometry. We study basic properties of functional algebraic varieties. In particular, we investigate the case of a formally discrete set of solutions. We also define and study functional analogy of discriminants. In the case of fully determined systems such that the defining functionals have regular singularities, we demonstrate that formal solutions can be sought in the class of functions with regular singularities. This case provides a practical way to apply our results to physics problems.

Keywords: functional equations, quantum field theory, holomorphic functions, Yang Mills mass gap problem, quantum chaos

Procedia PDF Downloads 44
2960 Experimental and Numerical Determination of the Freeze Point Depression of a Multi-Phase Flow in a Scraped Surface Heat Exchanger

Authors: Carlos A. Acosta, Amar Bhalla, Ruyan Guo

Abstract:

Scraped surface heat exchangers (SSHE) use a rotor shaft assembly with scraping blades to homogenize viscous fluids during the heat transfer process. Obtaining in-situ measurements is difficult because the rotor and scraping blades spin continuously inside the mixing chamber, obstructing the instrumentation pathway. Computational fluid dynamics simulations provide useful insight into the flow behavior around the scraper blades for a variety of fluids and blade geometries. However, numerical solutions often focus on the fluid dynamics and heat transfer phenomena of rotating flow, ignoring the glass-transition temperature and freezing point depression. This research studies the multi-phase fluid dynamics and freezing point depression inside the SSHE with non-isothermal conditions in a time dependent process using an aqueous solution that contains 13.5 wt.% high fructose corn syrup and CO₂. The computational results were validated with in-situ pressure, temperature, and optical spectroscopy measurements. Results from the numerical model show good quantitatively agreement with experimental values.

Keywords: computational fluid dynamics, freezing point depression, phase-transition temperature, multi-phase flow

Procedia PDF Downloads 125
2959 Use of Personal Rhythm to Authenticate Encrypted Messages

Authors: Carlos Gonzalez

Abstract:

When communicating using private and secure keys, there is always the doubt as to the identity of the message creator. We introduce an algorithm that uses the personal typing rhythm (keystroke dynamics) of the message originator to increase the trust of the authenticity of the message originator by the message recipient. The methodology proposes the use of a Rhythm Certificate Authority (RCA) to validate rhythm information. An illustrative example of the communication between Bob and Alice and the RCA is included. An algorithm of how to communicate with the RCA is presented. This RCA can be an independent authority or an enhanced Certificate Authority like the one used in public key infrastructure (PKI).

Keywords: authentication, digital signature, keystroke dynamics, personal rhythm, public-key encryption

Procedia PDF Downloads 275
2958 Computational Fluid Dynamics Analysis of Cyclone Separator Performance Using Discrete Phase Model

Authors: Sandeep Mohan Ahuja, Gulshan Kumar Jawa

Abstract:

Cyclone separators are crucial components in various industries tasked with efficiently separating particulate matter from gas streams. Achieving optimal performance hinges on a deep understanding of flow dynamics and particle behaviour within these separators. In this investigation, Computational Fluid Dynamics (CFD) simulations are conducted utilizing the Discrete Phase Model (DPM) to dissect the intricate flow patterns, particle trajectories, and separation efficiency within cyclone separators. The study delves into the influence of pivotal parameters like inlet velocity, particle size distribution, and cyclone geometry on separation efficiency. Through numerical simulations, a comprehensive comprehension of fluid-particle interaction phenomena within cyclone separators is attained, allowing for the assessment of solid collection efficiency across diverse operational conditions and geometrical setups. The insights gleaned from this study promise to advance our understanding of the complex interplay between fluid and particle within cyclone separators, thereby enabling optimization across a wide array of industrial applications. By harnessing the power of CFD simulations and the DPM, this research endeavours to furnish valuable insights for designing, operating, and evaluating the performance of cyclone separators, ultimately fostering greater efficiency and environmental sustainability within industrial processes.

Keywords: cyclone separator, computational fluid dynamics, enhancing efficiency, discrete phase model

Procedia PDF Downloads 20
2957 Quantum Inspired Security on a Mobile Phone

Authors: Yu Qin, Wanjiaman Li

Abstract:

The widespread use of mobile electronic devices increases the complexities of mobile security. This thesis aims to provide a secure communication environment for smartphone users. Some research proves that the one-time pad is one of the securest encryption methods, and that the key distribution problem can be solved by using the QKD (quantum key distribution). The objective of this project is to design an Android APP (application) to exchange several random keys between mobile phones. Inspired by QKD, the developed APP uses the quick response (QR) code as a carrier to dispatch large amounts of one-time keys. After evaluating the performance of APP, it allows the mobile phone to capture and decode 1800 bytes of random data in 600ms. The continuous scanning mode of APP is designed to improve the overall transmission performance and user experience, and the maximum transmission rate of this mode is around 2200 bytes/s. The omnidirectional readability and error correction capability of QR code gives it a better real-life application, and the features of adequate storage capacity and quick response optimize overall transmission efficiency. The security of this APP is guaranteed since QR code is exchanged face-to-face, eliminating the risk of being eavesdropped. Also, the id of QR code is the only message that would be transmitted through the whole communication. The experimental results show this project can achieve superior transmission performance, and the correlation between the transmission rate of the system and several parameters, such as the QR code size, has been analyzed. In addition, some existing technologies and the main findings in the context of the project are summarized and critically compared in detail.

Keywords: one-time pad, QKD (quantum key distribution), QR code, application

Procedia PDF Downloads 122
2956 Molecular Modeling and Prediction of the Physicochemical Properties of Polyols in Aqueous Solution

Authors: Maria Fontenele, Claude-Gilles Dussap, Vincent Dumouilla, Baptiste Boit

Abstract:

Roquette Frères is a producer of plant-based ingredients that employs many processes to extract relevant molecules and often transforms them through chemical and physical processes to create desired ingredients with specific functionalities. In this context, Roquette encounters numerous multi-component complex systems in their processes, including fibers, proteins, and carbohydrates, in an aqueous environment. To develop, control, and optimize both new and old processes, Roquette aims to develop new in silico tools. Currently, Roquette uses process modelling tools which include specific thermodynamic models and is willing to develop computational methodologies such as molecular dynamics simulations to gain insights into the complex interactions in such complex media, and especially hydrogen bonding interactions. The issue at hand concerns aqueous mixtures of polyols with high dry matter content. The polyols mannitol and sorbitol molecules are diastereoisomers that have nearly identical chemical structures but very different physicochemical properties: for example, the solubility of sorbitol in water is 2.5 kg/kg of water, while mannitol has a solubility of 0.25 kg/kg of water at 25°C. Therefore, predicting liquid-solid equilibrium properties in this case requires sophisticated solution models that cannot be based solely on chemical group contributions, knowing that for mannitol and sorbitol, the chemical constitutive groups are the same. Recognizing the significance of solvation phenomena in polyols, the GePEB (Chemical Engineering, Applied Thermodynamics, and Biosystems) team at Institut Pascal has developed the COSMO-UCA model, which has the structural advantage of using quantum mechanics tools to predict formation and phase equilibrium properties. In this work, we use molecular dynamics simulations to elucidate the behavior of polyols in aqueous solution. Specifically, we employ simulations to compute essential metrics such as radial distribution functions and hydrogen bond autocorrelation functions. Our findings illuminate a fundamental contrast: sorbitol and mannitol exhibit disparate hydrogen bond lifetimes within aqueous environments. This observation serves as a cornerstone in elucidating the divergent physicochemical properties inherent to each compound, shedding light on the nuanced interplay between their molecular structures and water interactions. We also present a methodology to predict the physicochemical properties of complex solutions, taking as sole input the three-dimensional structure of the molecules in the medium. Finally, by developing knowledge models, we represent some physicochemical properties of aqueous solutions of sorbitol and mannitol.

Keywords: COSMO models, hydrogen bond, molecular dynamics, thermodynamics

Procedia PDF Downloads 17
2955 Biotechonomy System Dynamics Modelling: Sustainability of Pellet Production

Authors: Andra Blumberga, Armands Gravelsins, Haralds Vigants, Dagnija Blumberga

Abstract:

The paper discovers biotechonomy development analysis by use of system dynamics modelling. The research is connected with investigations of biomass application for production of bioproducts with higher added value. The most popular bioresource is wood, and therefore, the main question today is about future development and eco-design of products. The paper emphasizes and evaluates energy sector which is open for use of wood logs, wood chips, wood pellets and so on. The main aim for this research study was to build a framework to analyse development perspectives for wood pellet production. To reach the goal, a system dynamics model of energy wood supplies, processing, and consumption is built. Production capacity, energy consumption, changes in energy and technology efficiency, required labour source, prices of wood, energy and labour are taken into account. Validation and verification tests with available data and information have been carried out and indicate that the model constitutes the dynamic hypothesis. It is found that the more is invested into pellets production, the higher the specific profit per production unit compared to wood logs and wood chips. As a result, wood chips production is decreasing dramatically and is replaced by wood pellets. The limiting factor for pellet industry growth is availability of wood sources. This is governed by felling limit set by the government based on sustainable forestry principles.

Keywords: bioenergy, biotechonomy, system dynamics modelling, wood pellets

Procedia PDF Downloads 375
2954 Post-Quantum Resistant Edge Authentication in Large Scale Industrial Internet of Things Environments Using Aggregated Local Knowledge and Consistent Triangulation

Authors: C. P. Autry, A. W. Roscoe, Mykhailo Magal

Abstract:

We discuss the theoretical model underlying 2BPA (two-band peer authentication), a practical alternative to conventional authentication of entities and data in IoT. In essence, this involves assembling a virtual map of authentication assets in the network, typically leading to many paths of confirmation between any pair of entities. This map is continuously updated, confirmed, and evaluated. The value of authentication along multiple disjoint paths becomes very clear, and we require analogues of triangulation to extend authentication along extended paths and deliver it along all possible paths. We discover that if an attacker wants to make an honest node falsely believe she has authenticated another, then the length of the authentication paths is of little importance. This is because optimal attack strategies correspond to minimal cuts in the authentication graph and do not contain multiple edges on the same path. The authentication provided by disjoint paths normally is additive (in entropy).

Keywords: authentication, edge computing, industrial IoT, post-quantum resistance

Procedia PDF Downloads 175
2953 A Metric to Evaluate Conventional and Electrified Vehicles in Terms of Customer-Oriented Driving Dynamics

Authors: Stephan Schiffer, Andreas Kain, Philipp Wilde, Maximilian Helbing, Bernard Bäker

Abstract:

Automobile manufacturers progressively focus on a downsizing strategy to meet the EU's CO2 requirements concerning type-approval consumption cycles. The reduction in naturally aspirated engine power is compensated by increased levels of turbocharging. By downsizing conventional engines, CO2 emissions are reduced. However, it also implicates major challenges regarding longitudinal dynamic characteristics. An example of this circumstance is the delayed turbocharger-induced torque reaction which leads to a partially poor response behavior of the vehicle during acceleration operations. That is why it is important to focus conventional drive train design on real customer driving again. The currently considered dynamic maneuvers like the acceleration time 0-100 km/h discussed by journals and car manufacturers describe longitudinal dynamics experienced by a driver inadequately. For that reason we present the realization and evaluation of a comprehensive proband study. Subjects are provided with different vehicle concepts (electrified vehicles, vehicles with naturally aspired engines and vehicles with different concepts of turbochargers etc.) in order to find out which dynamic criteria are decisive for a subjectively strong acceleration and response behavior of a vehicle. Subsequently, realistic acceleration criteria are derived. By weighing the criteria an evaluation metric is developed to objectify customer-oriented transient dynamics. Fully-electrified vehicles are the benchmark in terms of customer-oriented longitudinal dynamics. The electric machine provides the desired torque almost without delay. This advantage compared to combustion engines is especially noticeable at low engine speeds. In conclusion, we will show the degree to which extent customer-relevant longitudinal dynamics of conventional vehicles can be approximated to electrified vehicle concepts. Therefore, various technical measures (turbocharger concepts, 48V electrical chargers etc.) and drive train designs (e.g. varying the final drive) are presented and evaluated in order to strengthen the vehicle’s customer-relevant transient dynamics. As a rating size the newly developed evaluation metric will be used.

Keywords: 48V, customer-oriented driving dynamics, electric charger, electrified vehicles, vehicle concepts

Procedia PDF Downloads 384
2952 Topological Quantum Diffeomorphisms in Field Theory and the Spectrum of the Space-Time

Authors: Francisco Bulnes

Abstract:

Through the Fukaya conjecture and the wrapped Floer cohomology, the correspondences between paths in a loop space and states of a wrapping space of states in a Hamiltonian space (the ramification of field in this case is the connection to the operator that goes from TM to T*M) are demonstrated where these last states are corresponding to bosonic extensions of a spectrum of the space-time or direct image of the functor Spec, on space-time. This establishes a distinguished diffeomorphism defined by the mapping from the corresponding loops space to wrapping category of the Floer cohomology complex which furthermore relates in certain proportion D-branes (certain D-modules) with strings. This also gives to place to certain conjecture that establishes equivalences between moduli spaces that can be consigned in a moduli identity taking as space-time the Hitchin moduli space on G, whose dual can be expressed by a factor of a bosonic moduli spaces.

Keywords: Floer cohomology, Fukaya conjecture, Lagrangian submanifolds, quantum topological diffeomorphism

Procedia PDF Downloads 283
2951 Parallel Random Number Generation for the Modern Supercomputer Architectures

Authors: Roman Snytsar

Abstract:

Pseudo-random numbers are often used in scientific computing such as the Monte Carlo Simulations or the Quantum Inspired Optimization. Requirements for a parallel random number generator running in the modern multi-core vector environment are more stringent than those for sequential random number generators. As well as passing the usual quality tests, the output of the parallel random number generator must be verifiable and reproducible throughout the concurrent execution. We propose a family of vectorized Permuted Congruential Generators. Implementations are available for multiple modern vector modern computer architectures. Besides demonstrating good single core performance, the generators scale easily across many processor cores and multiple distributed nodes. We provide performance and parallel speedup analysis and comparisons between the implementations.

Keywords: pseudo-random numbers, quantum optimization, SIMD, parallel computing

Procedia PDF Downloads 95
2950 Learning the Dynamics of Articulated Tracked Vehicles

Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri

Abstract:

In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.

Keywords: Dirichlet processes, gaussian mixture models, learning motion patterns, tracked robots for urban search and rescue

Procedia PDF Downloads 427
2949 Structural and Optoelectronic Properties of Monovalent Cation Doping PbS Thin Films

Authors: Melissa Chavez Portillo, Hector Juarez Santiesteban, Mauricio Pacio Castillo, Oscar Portillo Moreno

Abstract:

Nanocrystalline Li-doped PbS thin films have been deposited by chemical bath deposition technique. The goal of this work is to study the modification of the optoelectronic and structural properties of Lithium incorporation. The increase of Li doping in PbS thin films leads to an increase of band gap in the range of 1.4-2.3, consequently, quantum size effect becomes pronounced in the Li-doped PbS films, which lead to a significant enhancement in the optical band gap. Doping shows influence in the film growth and results in a reduction of crystallite size from 30 to 14 nm. The refractive index was calculated and a relationship with dielectric constant was investigated. The dc conductivities of Li-doped and undoped samples were measured in the temperature range 290-340K, the conductivity increase with increase of Lithium content in the PbS films.

Keywords: doping, quantum confinement, optical band gap, PbS

Procedia PDF Downloads 359
2948 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid

Authors: D. Šedivý, S. Fialová

Abstract:

The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.

Keywords: computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid

Procedia PDF Downloads 363
2947 Segmental Dynamics of Poly(Alkyl Methacrylate) Chain in Ultra-Thin Spin-Cast Films

Authors: Hiroyuki Aoki

Abstract:

Polymeric materials are often used in a form of thin film such as food wrap and surface coating. In such the applications, polymer films thinner than 100 nm have been often used. The thickness of such the ultra-thin film is less than the unperturbed size of a polymer chain; therefore, the polymer chain in an ultra-thin film is strongly constrained. However, the details on the constrained dynamics of polymer molecules in ultra-thin films are still unclear. In the current study, the segmental dynamics of single polymer chain was directly investigated by fluorescence microscopy. The individual chains of poly(alkyl methacrylate) labeled by a perylenediimide dye molecule were observed by a highly sensitive fluorescence microscope in a defocus condition. The translational and rotational diffusion of the center segment in a single polymer chain was directly analyzed. The segmental motion in a thin film with a thickness of 10 nm was found to be suppressed compared to that in a bulk state. The detailed analysis of the molecular motion revealed that the diffusion rate of the in-plane rotation was similar to the thin film and the bulk; on the other hand, the out-of-plane motion was restricted in a thin film. This result indicates that the spatial restriction in an ultra-thin film thinner than the unperturbed chain dimension alters the dynamics of individual molecules in a polymer system.

Keywords: polymer materials, single molecule, molecular motion, fluorescence microscopy, super-resolution techniques

Procedia PDF Downloads 300
2946 Nanoparticle-Based Histidine-Rich Protein-2 Assay for the Detection of the Malaria Parasite Plasmodium Falciparum

Authors: Yagahira E. Castro-Sesquen, Chloe Kim, Robert H. Gilman, David J. Sullivan, Peter C. Searson

Abstract:

Diagnosis of severe malaria is particularly important in highly endemic regions since most patients are positive for parasitemia and treatment differs from non-severe malaria. Diagnosis can be challenging due to the prevalence of diseases with similar symptoms. Accurate diagnosis is increasingly important to avoid overprescribing antimalarial drugs, minimize drug resistance, and minimize costs. A nanoparticle-based assay for detection and quantification of Plasmodium falciparum histidine-rich protein 2 (HRP2) in urine and serum is reported. The assay uses magnetic beads conjugated with anti-HRP2 antibody for protein capture and concentration, and antibody-conjugated quantum dots for optical detection. Western Blot analysis demonstrated that magnetic beads allows the concentration of HRP2 protein in urine by 20-fold. The concentration effect was achieved because large volume of urine can be incubated with beads, and magnetic separation can be easily performed in minutes to isolate beads containing HRP2 protein. Magnetic beads and Quantum Dots 525 conjugated to anti-HRP2 antibodies allows the detection of low concentration of HRP2 protein (0.5 ng mL-1), and quantification in the range of 33 to 2,000 ng mL-1 corresponding to the range associated with non-severe to severe malaria. This assay can be easily adapted to a non-invasive point-of-care test for classification of severe malaria.

Keywords: HRP2 protein, malaria, magnetic beads, Quantum dots

Procedia PDF Downloads 307
2945 Quasistationary States and Mean Field Model

Authors: Sergio Curilef, Boris Atenas

Abstract:

Systems with long-range interactions are very common in nature. They are observed from the atomic scale to the astronomical scale and exhibit anomalies, such as inequivalence of ensembles, negative heat capacity, ergodicity breaking, nonequilibrium phase transitions, quasistationary states, and anomalous diffusion. These anomalies are exacerbated when special initial conditions are imposed; in particular, we use the so-called water bag initial conditions that stand for a uniform distribution. Several theoretical and practical implications are discussed here. A potential energy inspired by dipole-dipole interactions is proposed to build the dipole-type Hamiltonian mean-field model. As expected, the dynamics is novel and general to the behavior of systems with long-range interactions, which is obtained through molecular dynamics technique. Two plateaus sequentially emerge before arriving at equilibrium, which are corresponding to two different quasistationary states. The first plateau is a type of quasistationary state the lifetime of which depends on a power law of N and the second plateau seems to be a true quasistationary state as reported in the literature. The general behavior of the model according to its dynamics and thermodynamics is described. Using numerical simulation we characterize the mean kinetic energy, caloric curve, and the diffusion law through the mean square of displacement. The present challenge is to characterize the distributions in phase space. Certainly, the equilibrium state is well characterized by the Gaussian distribution, but quasistationary states in general depart from any Gaussian function.

Keywords: dipole-type interactions, dynamics and thermodynamics, mean field model, quasistationary states

Procedia PDF Downloads 190
2944 Lotus Mechanism: Validation of Deployment Mechanism Using Structural and Dynamic Analysis

Authors: Parth Prajapati, A. R. Srinivas

Abstract:

The purpose of this paper is to validate the concept of the Lotus Mechanism using Computer Aided Engineering (CAE) tools considering the statics and dynamics through actual time dependence involving inertial forces acting on the mechanism joints. For a 1.2 m mirror made of hexagonal segments, with simple harnesses and three-point supports, the maximum diameter is 400 mm, minimum segment base thickness is 1.5 mm, and maximum rib height is considered as 12 mm. Manufacturing challenges are explored for the segments using manufacturing research and development approaches to enable use of large lightweight mirrors required for the future space system.

Keywords: dynamics, manufacturing, reflectors, segmentation, statics

Procedia PDF Downloads 347
2943 Indirect Intergranular Slip Transfer Modeling Through Continuum Dislocation Dynamics

Authors: A. Kalaei, A. H. W. Ngan

Abstract:

In this study, a mesoscopic continuum dislocation dynamics (CDD) approach is applied to simulate the intergranular slip transfer. The CDD scheme applies an efficient kinematics equation to model the evolution of the “all-dislocation density,” which is the line-length of dislocations of each character per unit volume. As the consideration of every dislocation line can be a limiter for the simulation of slip transfer in large scales with a large quantity of participating dislocations, a coarse-grained, extensive description of dislocations in terms of their density is utilized to resolve the effect of collective motion of dislocation lines. For dynamics closure, namely, to obtain the dislocation velocity from a velocity law involving the effective glide stress, mutual elastic interaction of dislocations is calculated using Mura’s equation after singularity removal at the core of dislocation lines. The developed scheme for slip transfer can therefore resolve the effects of the elastic interaction and pile-up of dislocations, which are important physics omitted in coarser models like crystal plasticity finite element methods (CPFEMs). Also, the length and timescales of the simulationareconsiderably larger than those in molecular dynamics (MD) and discrete dislocation dynamics (DDD) models. The present work successfully simulates that, as dislocation density piles up in front of a grain boundary, the elastic stress on the other side increases, leading to dislocation nucleation and stress relaxation when the local glide stress exceeds the operation stress of dislocation sources seeded on the other side of the grain boundary. More importantly, the simulation verifiesa phenomenological misorientation factor often used by experimentalists, namely, the ease of slip transfer increases with the product of the cosines of misorientation angles of slip-plane normals and slip directions on either side of the grain boundary. Furthermore, to investigate the effects of the critical stress-intensity factor of the grain boundary, dislocation density sources are seeded at different distances from the grain boundary, and the critical applied stress to make slip transfer happen is studied.

Keywords: grain boundary, dislocation dynamics, slip transfer, elastic stress

Procedia PDF Downloads 109
2942 Influence of Photophysical Parameters of Photoactive Materials on Exciton Diffusion Length and Diffusion Coefficient in Bulk Heterojunction Organic Solar Cells

Authors: Douglas Yeboah, Jai Singh

Abstract:

It has been experimentally demonstrated that exciton diffusion length in organic solids can be improved by fine-tuning the material parameters that govern exciton transfer. Here, a theoretical study is carried out to support this finding. We have therefore derived expressions for the exciton diffusion length and diffusion coefficient of singlet and triplet excitons using Förster resonance energy transfer and Dexter carrier transfer mechanisms and are plotted as a function of photoluminescence (PL) quantum yield, spectral overlap integral, refractive index and dipole moment of the photoactive material. We found that singlet exciton diffusion length increases with PL quantum yield and spectral overlap integral, and decreases with increase in refractive index. Likewise, the triplet exciton diffusion length increases when PL quantum yield increases and dipole moment decreases. The calculated diffusion lengths in different organic materials are compared with existing experimental values and found to be in reasonable agreement. The results are expected to provide insight in developing new organic materials for fabricating bulk heterojunction (BHJ) organic solar cells (OSCs) with better photoconversion efficiency.

Keywords: Dexter carrier transfer, diffusion coefficient, exciton diffusion length, Föster resonance energy transfer, photoactive materials, photophysical parameters

Procedia PDF Downloads 307
2941 Design of Speedy, Scanty Adder for Lossy Application Using QCA

Authors: T. Angeline Priyanka, R. Ganesan

Abstract:

Recent trends in microelectronics technology have gradually changed the strategies used in very large scale integration (VLSI) circuits. Complementary Metal Oxide Semiconductor (CMOS) technology has been the industry standard for implementing VLSI device for the past two decades, but due to scale-down issues of ultra-low dimension achievement is not achieved so far. Hence it paved a way for Quantum Cellular Automata (QCA). It is only one of the many alternative technologies proposed as a replacement solution to the fundamental limit problem that CMOS technology will impose in the years to come. In this brief, presented a new adder that possesses high speed of operation occupying less area is proposed. This adder is designed especially for error tolerant application. Hence in the proposed adder, the overall area (cell count) and simulation time are reduced by 88 and 73 percent respectively. Various results of the proposed adder are shown and described.

Keywords: quantum cellular automata, carry look ahead adder, ripple carry adder, lossy application, majority gate, crossover

Procedia PDF Downloads 531
2940 Simulation of Photocatalytic Degradation of Rhodamine B in Annular Photocatalytic Reactor

Authors: Jatinder Kumar, Ajay Bansal

Abstract:

Simulation of a photocatalytic reactor helps in understanding the complex behavior of the photocatalytic degradation. Simulation also aids the designing and optimization of the photocatalytic reactor. Lack of simulation strategies is a huge hindrance in the commercialization of the photocatalytic technology. With the increased performance of computational resources, and development of simulation software, computational fluid dynamics (CFD) is becoming an affordable engineering tool to simulate and optimize reactor designs. In the present paper, a CFD (Computational fluid dynamics) model for simulating the performance of an immobilized-titanium dioxide based annular photocatalytic reactor was developed. The computational model integrates hydrodynamics, species mass transport, and chemical reaction kinetics using a commercial CFD code Fluent 6.3.26. The CFD model was based on the intrinsic kinetic parameters determined experimentally in a perfectly mixed batch reactor. Rhodamine B, a complex organic compound, was selected as a test pollutant for photocatalytic degradation. It was observed that CFD could become a valuable tool to understand and improve the photocatalytic systems.

Keywords: simulation, computational fluid dynamics (CFD), annular photocatalytic reactor, titanium dioxide

Procedia PDF Downloads 561
2939 Induced Chemistry for Dissociative Electron Attachment to Focused Electron Beam Induced Deposition Precursors Based on Ti, Si and Fe Metal Elements

Authors: Maria Pintea, Nigel Mason

Abstract:

Induced chemistry is one of the newest pathways in the nanotechnology field with applications in the focused electron beam induced processes for deposition of nm scale structures. Si(OPr)₄ and Ti(OEt)₄ are two of the precursors that have not been so extensively researched, though highly sought for semiconductor and medical applications fields, the two compounds make good candidates for FEBIP and are the subject of velocity slice map imaging analysis for deposition purposes, offering information on kinetic energies, fragmentation channels, and angular distributions. The velocity slice map imaging technique is a method used for the characterization of molecular dynamics of the molecule and the fragmentation channels as a result of induced chemistry. To support the gas-phase analysis, Meso-Bio-Nano simulations of irradiation dynamics studies are employed with final results on Fe(CO)₅ deposited on various substrates. The software is capable of running large scale simulations for complex biomolecular, nano- and mesoscopic systems with applications to thermos-mechanical DNA damage, complex materials, gases, nanoparticles for cancer research and deposition applications for nanotechnology, using a large library of classical potentials, many-body force fields, molecular force fields involved in the classical molecular dynamics.

Keywords: focused electron beam induced deposition, FEBID, induced chemistry, molecular dynamics, velocity map slice imaging

Procedia PDF Downloads 86
2938 Development of Immuno-Modulators: Application of Molecular Dynamics Simulation

Authors: Ruqaiya Khalil, Saman Usmani, Zaheer Ul-Haq

Abstract:

The accurate characterization of ligand binding affinity is indispensable for designing molecules with optimized binding affinity. Computational tools help in many directions to predict quantitative correlations between protein-ligand structure and their binding affinities. Molecular dynamics (MD) simulation is a modern state-of-the-art technique to evaluate the underlying basis of ligand-protein interactions by characterizing dynamic and energetic properties during the event. Autoimmune diseases arise from an abnormal immune response of the body against own tissues. The current regimen for the described condition is limited to immune-modulators having compromised pharmacodynamics and pharmacokinetics profiles. One of the key player mediating immunity and tolerance, thus invoking autoimmunity is Interleukin-2; a cytokine influencing the growth of T cells. Molecular dynamics simulation techniques are applied to seek insight into the inhibitory mechanisms of newly synthesized compounds that manifested immunosuppressant potentials during in silico pipeline. In addition to estimation of free energies associated with ligand binding, MD simulation yielded us a great deal of information about ligand-macromolecule interactions to evaluate the pattern of interactions and the molecular basis of inhibition. The present study is a continuum of our efforts to identify interleukin-2 inhibitors of both natural and synthetic origin. Herein, we report molecular dynamics simulation studies of Interluekin-2 complexed with different antagonists previously reported by our group. The study of protein-ligand dynamics enabled us to gain a better understanding of the contribution of different active site residues in ligand binding. The results of the study will be used as the guide to rationalize the fragment based synthesis of drug-like interleukin-2 inhibitors as immune-modulators.

Keywords: immuno-modulators, MD simulation, protein-ligand interaction, structure-based drug design

Procedia PDF Downloads 235
2937 Determining the Octanol-Water Partition Coefficient for Armchair Polyhex BN Nanotubes Using Topological Indices

Authors: Esmat Mohammadinasab

Abstract:

The aim of this paper is to investigate theoretically and establish a predictive model for determination LogP of armchair polyhex BN nanotubes by using simple descriptors. The relationship between the octanol-water partition coefficient (LogP) and quantum chemical descriptors, electric moments, and topological indices of some armchair polyhex BN nanotubes with various lengths and fixed circumference are represented. Based on density functional theory (DFT) electric moments and physico-chemical properties of those nanotubes are calculated. The DFT method performed based on the Becke’s 3-parameter formulation with the Lee-Yang-Parr functional (B3LYP) method and 3-21G standard basis sets. For the first time, the relationship between partition coefficient and different properties of polyhex BN nanotubes is investigated.

Keywords: topological indices, quantum descriptors, DFT method, nanotubes

Procedia PDF Downloads 317
2936 Inhibition of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase from Mycobacterium Tuberculosis Using High Throughput Virtual Screening and Molecular Dynamics Studies

Authors: Christy Rosaline, Rathankar Roa, Waheeta Hopper

Abstract:

Persistence of tuberculosis, emergence of multidrug-resistance and extensively drug-resistant forms of the disease, has increased the interest in developing new antitubercular drugs. Developing inhibitors for 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis (MtbDAH7Ps), an enzyme involved in shikimate pathway, gives a selective target for antitubercular agents. MtbDAH7Ps was screened against ZINC database, and shortlisted compounds were subjected to induce fit docking. Prime/Molecular Mechanics Generalized Born Surface Area calculation was used to validate the binding energy of ligand-protein complex. Molecular Dynamics analysis for of the lead compounds–MtbDAH7Ps complexes showed that the backbone of MtbDAH7Ps in their complexes were stable. These results suggest that the shortlisted lead compounds ZINC04097114, ZINC15163225, ZINC16857013, ZINC06275603, and ZINC05331260 could be developed into novel drug leads to inhibit DAH7Ps in Mycobacterium tuberculosis.

Keywords: MtbDAH7Ps, Mycobacterium tuberculosis, HTVS, molecular dynamics

Procedia PDF Downloads 156
2935 Quantom Magnetic Effects of P-B Fusion in Plasma Focus Devices

Authors: M. Habibi

Abstract:

The feasibility of proton-boron fusion in plasmoids caused by magneto hydrodynamics instabilities in plasma focus devices is studied analytically. In plasmoids, fusion power for 76 keV < Ti < 1500 keV exceeds bremsstrahlung loss (W/Pb=5.39). In such situation gain factor and the ratio of Te to Ti for a typical 150 kJ plasma focus device will be 7.8 and 4.8 respectively. Also with considering the ion viscous heating effect, W/Pb and Ti/Te will be 2.7 and 6 respectively. Strong magnetic field will reduces ion-electron collision rate due to quantization of electron orbits. While approximately there is no change in electron-ion collision rate, the effect of quantum magnetic field makes ions much hotter than electrons which enhance the fraction of fusion power to bremsstrahlung loss. Therefore self-sustained p-11B fusion reactions would be possible and it could be said that p-11B fuelled plasma focus device is a clean and efficient source of energy.

Keywords: plasmoids, p11B fuel, ion viscous heating, quantum magnetic field, plasma focus device

Procedia PDF Downloads 434
2934 Studies on Influence of Rub on Vibration Signature of Rotating Machines

Authors: K. N. Umesh, K. S. Srinivasan

Abstract:

The influence of rotor rub was studied with respect to light rub and heavy rub conditions. The investigations were carried out for both below and above critical speeds. The time domain waveform has revealed truncation of the waveform during rubbing conditions. The quantum of rubbing has been indicated by the quantum of truncation. The orbits for light rub have indicated a single loop whereas for heavy rub multi looped orbits have been observed. In the heavy rub condition above critical speed both sub harmonics and super harmonics are exhibited. The orbit precess in a direction opposite to the direction of the rotation of the rotor. When the rubbing was created above the critical speed the orbit shape was of '8' shape indicating the rotor instability. Super-harmonics and sub-harmonics of vibration signals have been observed for light rub and heavy rub conditions and for speeds above critical.

Keywords: rotor rub, orbital analysis, frequency analysis, vibration signatures

Procedia PDF Downloads 293
2933 Some Integral Inequalities of Hermite-Hadamard Type on Time Scale and Their Applications

Authors: Artion Kashuri, Rozana Liko

Abstract:

In this paper, the authors establish an integral identity using delta differentiable functions. By applying this identity, some new results via a general class of convex functions with respect to two nonnegative functions on a time scale are given. Also, for suitable choices of nonnegative functions, some special cases are deduced. Finally, in order to illustrate the efficiency of our main results, some applications to special means are obtained as well. We hope that current work using our idea and technique will attract the attention of researchers working in mathematical analysis, mathematical inequalities, numerical analysis, special functions, fractional calculus, quantum mechanics, quantum calculus, physics, probability and statistics, differential and difference equations, optimization theory, and other related fields in pure and applied sciences.

Keywords: convex functions, Hermite-Hadamard inequality, special means, time scale

Procedia PDF Downloads 129
2932 Basic Calibration and Normalization Techniques for Time Domain Reflectometry Measurements

Authors: Shagufta Tabassum

Abstract:

The study of dielectric properties in a binary mixture of liquids is very useful to understand the liquid structure, molecular interaction, dynamics, and kinematics of the mixture. Time-domain reflectometry (TDR) is a powerful tool for studying the cooperation and molecular dynamics of the H-bonded system. In this paper, we discuss the basic calibration and normalization procedure for time-domain reflectometry measurements. Our approach is to explain the different types of error occur during TDR measurements and how these errors can be eliminated or minimized.

Keywords: time domain reflectometry measurement techinque, cable and connector loss, oscilloscope loss, and normalization technique

Procedia PDF Downloads 181