Search results for: sensory processing sensitivity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5994

Search results for: sensory processing sensitivity

2154 KSVD-SVM Approach for Spontaneous Facial Expression Recognition

Authors: Dawood Al Chanti, Alice Caplier

Abstract:

Sparse representations of signals have received a great deal of attention in recent years. In this paper, the interest of using sparse representation as a mean for performing sparse discriminative analysis between spontaneous facial expressions is demonstrated. An automatic facial expressions recognition system is presented. It uses a KSVD-SVM approach which is made of three main stages: A pre-processing and feature extraction stage, which solves the problem of shared subspace distribution based on the random projection theory, to obtain low dimensional discriminative and reconstructive features; A dictionary learning and sparse coding stage, which uses the KSVD model to learn discriminative under or over dictionaries for sparse coding; Finally a classification stage, which uses a SVM classifier for facial expressions recognition. Our main concern is to be able to recognize non-basic affective states and non-acted expressions. Extensive experiments on the JAFFE static acted facial expressions database but also on the DynEmo dynamic spontaneous facial expressions database exhibit very good recognition rates.

Keywords: dictionary learning, random projection, pose and spontaneous facial expression, sparse representation

Procedia PDF Downloads 305
2153 Ubiquitous Collaborative Learning Activities with Virtual Teams Using CPS Processes to Develop Creative Thinking and Collaboration Skills

Authors: Sitthichai Laisema, Panita Wannapiroon

Abstract:

This study is a research and development which is intended to: 1) design ubiquitous collaborative learning activities with virtual teams using CPS processes to develop creative thinking and collaboration skills, and 2) assess the suitability of the ubiquitous collaborative learning activities. Its methods are divided into 2 phases. Phase 1 is the design of ubiquitous collaborative learning activities with virtual teams using CPS processes, phase 2 is the assessment of the suitability of the learning activities. The samples used in this study are 5 professionals in the field of learning activity design, ubiquitous learning, information technology, creative thinking, and collaboration skills. The results showed that ubiquitous collaborative learning activities with virtual teams using CPS processes to develop creative thinking and collaboration skills consist of 3 main steps which are: 1) preparation before learning, 2) learning activities processing and 3) performance appraisal. The result of the learning activities suitability assessment from the professionals is in the highest level.

Keywords: ubiquitous learning, collaborative learning, virtual team, creative problem solving

Procedia PDF Downloads 515
2152 3D Plant Growth Measurement System Using Deep Learning Technology

Authors: Kazuaki Shiraishi, Narumitsu Asai, Tsukasa Kitahara, Sosuke Mieno, Takaharu Kameoka

Abstract:

The purpose of this research is to facilitate productivity advances in agriculture. To accomplish this, we developed an automatic three-dimensional (3D) recording system for growth of field crops that consists of a number of inexpensive modules: a very low-cost stereo camera, a couple of ZigBee wireless modules, a Raspberry Pi single-board computer, and a third generation (3G) wireless communication module. Our system uses an inexpensive Web stereo camera in order to keep total costs low. However, inexpensive video cameras record low-resolution images that are very noisy. Accordingly, in order to resolve these problems, we adopted a deep learning method. Based on the results of extended period of time operation test conducted without the use of an external power supply, we found that by using Super-Resolution Convolutional Neural Network method, our system could achieve a balance between the competing goals of low-cost and superior performance. Our experimental results showed the effectiveness of our system.

Keywords: 3D plant data, automatic recording, stereo camera, deep learning, image processing

Procedia PDF Downloads 273
2151 Secure Text Steganography for Microsoft Word Document

Authors: Khan Farhan Rafat, M. Junaid Hussain

Abstract:

Seamless modification of an entity for the purpose of hiding a message of significance inside its substance in a manner that the embedding remains oblivious to an observer is known as steganography. Together with today's pervasive registering frameworks, steganography has developed into a science that offers an assortment of strategies for stealth correspondence over the globe that must, however, need a critical appraisal from security breach standpoint. Microsoft Word is amongst the preferably used word processing software, which comes as a part of the Microsoft Office suite. With a user-friendly graphical interface, the richness of text editing, and formatting topographies, the documents produced through this software are also most suitable for stealth communication. This research aimed not only to epitomize the fundamental concepts of steganography but also to expound on the utilization of Microsoft Word document as a carrier for furtive message exchange. The exertion is to examine contemporary message hiding schemes from security aspect so as to present the explorative discoveries and suggest enhancements which may serve a wellspring of information to encourage such futuristic research endeavors.

Keywords: hiding information in plain sight, stealth communication, oblivious information exchange, conceal, steganography

Procedia PDF Downloads 241
2150 Academic Achievement in Argentinean College Students: Major Findings in Psychological Assessment

Authors: F. Uriel, M. M. Fernandez Liporace

Abstract:

In the last decade, academic achievement in higher education has become a topic of agenda in Argentina, regarding the high figures of adjustment problems, academic failure and dropout, and the low graduation rates in the context of massive classes and traditional teaching methods. Psychological variables, such as perceived social support, academic motivation and learning styles and strategies have much to offer since their measurement by tests allows a proper diagnose of their influence on academic achievement. Framed in a major research, several studies analysed multiple samples, totalizing 5135 students attending Argentinean public universities. The first goal was aimed at the identification of statistically significant differences in psychological variables -perceived social support, learning styles, learning strategies, and academic motivation- by age, gender, and degree of academic advance (freshmen versus sophomores). Thus, an inferential group differences study for each psychological dependent variable was developed by means of student’s T tests, given the features of data distribution. The second goal, aimed at examining associations between the four psychological variables on the one hand, and academic achievement on the other, was responded by correlational studies, calculating Pearson’s coefficients, employing grades as the quantitative indicator of academic achievement. The positive and significant results that were obtained led to the formulation of different predictive models of academic achievement which had to be tested in terms of adjustment and predictive power. These models took the four psychological variables above mentioned as predictors, using regression equations, examining predictors individually, in groups of two, and together, analysing indirect effects as well, and adding the degree of academic advance and gender, which had shown their importance within the first goal’s findings. The most relevant results were: first, gender showed no influence on any dependent variable. Second, only good achievers perceived high social support from teachers, and male students were prone to perceive less social support. Third, freshmen exhibited a pragmatic learning style, preferring unstructured environments, the use of examples and simultaneous-visual processing in learning, whereas sophomores manifest an assimilative learning style, choosing sequential and analytic processing modes. Despite these features, freshmen have to deal with abstract contents and sophomores, with practical learning situations due to study programs in force. Fifth, no differences in academic motivation were found between freshmen and sophomores. However, the latter employ a higher number of more efficient learning strategies. Sixth, freshmen low achievers lack intrinsic motivation. Seventh, models testing showed that social support, learning styles and academic motivation influence learning strategies, which affect academic achievement in freshmen, particularly males; only learning styles influence achievement in sophomores of both genders with direct effects. These findings led to conclude that educational psychologists, education specialists, teachers, and universities must plan urgent and major changes. These must be applied in renewed and better study programs, syllabi and classes, as well as tutoring and training systems. Such developments should be targeted to the support and empowerment of students in their academic pathways, and therefore to the upgrade of learning quality, especially in the case of freshmen, male freshmen, and low achievers.

Keywords: academic achievement, academic motivation, coping, learning strategies, learning styles, perceived social support

Procedia PDF Downloads 122
2149 Towards a Distributed Computation Platform Tailored for Educational Process Discovery and Analysis

Authors: Awatef Hicheur Cairns, Billel Gueni, Hind Hafdi, Christian Joubert, Nasser Khelifa

Abstract:

Given the ever changing needs of the job markets, education and training centers are increasingly held accountable for student success. Therefore, education and training centers have to focus on ways to streamline their offers and educational processes in order to achieve the highest level of quality in curriculum contents and managerial decisions. Educational process mining is an emerging field in the educational data mining (EDM) discipline, concerned with developing methods to discover, analyze and provide a visual representation of complete educational processes. In this paper, we present our distributed computation platform which allows different education centers and institutions to load their data and access to advanced data mining and process mining services. To achieve this, we present also a comparative study of the different clustering techniques developed in the context of process mining to partition efficiently educational traces. Our goal is to find the best strategy for distributing heavy analysis computations on many processing nodes of our platform.

Keywords: educational process mining, distributed process mining, clustering, distributed platform, educational data mining, ProM

Procedia PDF Downloads 454
2148 A Two Level Load Balancing Approach for Cloud Environment

Authors: Anurag Jain, Rajneesh Kumar

Abstract:

Cloud computing is the outcome of rapid growth of internet. Due to elastic nature of cloud computing and unpredictable behavior of user, load balancing is the major issue in cloud computing paradigm. An efficient load balancing technique can improve the performance in terms of efficient resource utilization and higher customer satisfaction. Load balancing can be implemented through task scheduling, resource allocation and task migration. Various parameters to analyze the performance of load balancing approach are response time, cost, data processing time and throughput. This paper demonstrates a two level load balancer approach by combining join idle queue and join shortest queue approach. Authors have used cloud analyst simulator to test proposed two level load balancer approach. The results are analyzed and compared with the existing algorithms and as observed, proposed work is one step ahead of existing techniques.

Keywords: cloud analyst, cloud computing, join idle queue, join shortest queue, load balancing, task scheduling

Procedia PDF Downloads 431
2147 Electrochemical Impedance Spectroscopy Based Label-Free Detection of TSG101 by Electric Field Lysis of Immobilized Exosomes from Human Serum

Authors: Nusrat Praween, Krishna Thej Pammi Guru, Palash Kumar Basu

Abstract:

Designing non-invasive biosensors for cancer diagnosis is essential for developing an affordable and specific tool to measure cancer-related exosome biomarkers. Exosomes, released by healthy as well as cancer cells, contain valuable information about the biomarkers of various diseases, including cancer. Despite the availability of various isolation techniques, ultracentrifugation is the standard technique that is being employed. Post isolation, exosomes are traditionally exposed to detergents for extracting their proteins, which can often lead to protein degradation. Further to this, it is very essential to develop a sensing platform for the quantification of clinically relevant proteins in a wider range to ensure practicality. In this study, exosomes were immobilized on the Au Screen Printed Electrode (SPE) using EDC/NHS chemistry to facilitate binding. After immobilizing the exosomes on the screen-printed electrode (SPE), we investigated the impact of the electric field by applying various voltages to induce exosome lysis and release their contents. The lysed solution was used for sensing TSG101, a crucial biomarker associated with various cancers, using both faradaic and non-faradaic electrochemical impedance spectroscopy (EIS) methods. The results of non-faradaic and faradaic EIS were comparable and showed good consistency, indicating that non-faradaic sensing can be a reliable alternative. Hence, the non-faradaic sensing technique was used for label-free quantification of the TSG101 biomarker. The results were validated using ELISA. Our electrochemical immunosensor demonstrated a consistent response of TSG101 from 125 pg/mL to 8000 pg/mL, with a detection limit of 0.125 pg/mL at room temperature. Additionally, since non-faradic sensing is label-free, the ease of usage and cost of the final sensor developed can be reduced. The proposed immunosensor is capable of detecting the TSG101 protein at low levels in healthy serum with good sensitivity and specificity, making it a promising platform for biomarker detection.

Keywords: biosensor, exosomes isolation on SPE, electric field lysis of exosome, EIS sensing of TSG101

Procedia PDF Downloads 46
2146 Improvement of Ground Water Quality Index Using Citrus limetta

Authors: Rupas Kumar M., Saravana Kumar M., Amarendra Kumar S., Likhita Komal V., Sree Deepthi M.

Abstract:

The demand for water is increasing at an alarming rate due to rapid urbanization and increase in population. Due to freshwater scarcity, Groundwater became the necessary source of potable water to major parts of the world. This problem of freshwater scarcity and groundwater dependency is very severe particularly in developing countries and overpopulated regions like India. The present study aimed at evaluating the Ground Water Quality Index (GWQI), which represents overall quality of water at certain location and time based on water quality parameters. To evaluate the GWQI, sixteen water quality parameters have been considered viz. colour, pH, electrical conductivity, total dissolved solids, turbidity, total hardness, alkalinity, calcium, magnesium, sodium, chloride, nitrate, sulphate, iron, manganese and fluorides. The groundwater samples are collected from Kadapa City in Andhra Pradesh, India and subjected to comprehensive physicochemical analysis. The high value of GWQI has been found to be mainly from higher values of total dissolved solids, electrical conductivity, turbidity, alkalinity, hardness, and fluorides. in the present study, citrus limetta (sweet lemon) peel powder has used as a coagulant and GWQI values are recorded in different concentrations to improve GWQI. Sensitivity analysis is also carried out to determine the effect of coagulant dosage, mixing speed and stirring time on GWQI. The research found the maximum percentage improvement in GWQI values are obtained when the coagulant dosage is 100ppm, mixing speed is 100 rpm and stirring time is 10 mins. Alum is also used as a coagulant aid and the optimal ratio of citrus limetta and alum is identified as 3:2 which resulted in best GWQI value. The present study proposes Citrus limetta peel powder as a potential natural coagulant to treat Groundwater and to improve GWQI.

Keywords: alum, Citrus limetta, ground water quality index, physicochemical analysis

Procedia PDF Downloads 227
2145 A Case Study at Lara's Landfill: Solid Waste Management and Energy Recovery

Authors: Kelly Danielly Da Silva Alcantara, Daniel Fernando Molina Junqueira, Graziella Colato Antonio

Abstract:

The Law No. 12,305/10, established by the National Solid Waste Policy (PNRS), provides major changes in the management and managing scenario of solid waste in Brazil. The PNRS established since changes from population behavior as environmental and the consciousness and commitment of the companies with the waste produced. The objective of this project is to conduct a benchmarking study of the management models of Waste Management Municipal Solid (MSW) in national and international levels emphasizing especially in the European Union (Portugal, France and Germany), which are reference countries in energy development, sustainability and consequently recovery of waste generated. The management that encompasses all stages that are included in this sector will be analyzed by benchmarking, as the collection, transportation, processing/treatment and final disposal of waste. Considering the needs to produce clean energy in Brazil, this study will allow the determination to the best treatment of the waste in order to reduce the amount of waste and increase the lifetime of the landfill. Finally, it intends to identify the energy recovery potential through a study analysis of economic viability, energy and sustainable based on a holistic approach.

Keywords: benchmarking, energy recovery, landfill, municipal solid waste

Procedia PDF Downloads 426
2144 Mathematical Modelling of Spatial Distribution of Covid-19 Outbreak Using Diffusion Equation

Authors: Kayode Oshinubi, Brice Kammegne, Jacques Demongeot

Abstract:

The use of mathematical tools like Partial Differential Equations and Ordinary Differential Equations have become very important to predict the evolution of a viral disease in a population in order to take preventive and curative measures. In December 2019, a novel variety of Coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China causing a severe and potentially fatal respiratory syndrome, i.e., COVID-19. Since then, it has become a pandemic declared by World Health Organization (WHO) on March 11, 2020 which has spread around the globe. A reaction-diffusion system is a mathematical model that describes the evolution of a phenomenon subjected to two processes: a reaction process in which different substances are transformed, and a diffusion process that causes a distribution in space. This article provides a mathematical study of the Susceptible, Exposed, Infected, Recovered, and Vaccinated population model of the COVID-19 pandemic by the bias of reaction-diffusion equations. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are determined using the Lyapunov function are considered and the endemic equilibrium point exists and is stable if it satisfies Routh–Hurwitz criteria. Also, adequate conditions for the existence and uniqueness of the solution of the model have been proved. We showed the spatial distribution of the model compartments when the basic reproduction rate $\mathcal{R}_0 < 1$ and $\mathcal{R}_0 > 1$ and sensitivity analysis is performed in order to determine the most sensitive parameters in the proposed model. We demonstrate the model's effectiveness by performing numerical simulations. We investigate the impact of vaccination and the significance of spatial distribution parameters in the spread of COVID-19. The findings indicate that reducing contact with an infected person and increasing the proportion of susceptible people who receive high-efficacy vaccination will lessen the burden of COVID-19 in the population. To the public health policymakers, we offered a better understanding of the COVID-19 management.

Keywords: COVID-19, SEIRV epidemic model, reaction-diffusion equation, basic reproduction number, vaccination, spatial distribution

Procedia PDF Downloads 123
2143 Cooperative Sensing for Wireless Sensor Networks

Authors: Julien Romieux, Fabio Verdicchio

Abstract:

Wireless Sensor Networks (WSNs), which sense environmental data with battery-powered nodes, require multi-hop communication. This power-demanding task adds an extra workload that is unfairly distributed across the network. As a result, nodes run out of battery at different times: this requires an impractical individual node maintenance scheme. Therefore we investigate a new Cooperative Sensing approach that extends the WSN operational life and allows a more practical network maintenance scheme (where all nodes deplete their batteries almost at the same time). We propose a novel cooperative algorithm that derives a piecewise representation of the sensed signal while controlling approximation accuracy. Simulations show that our algorithm increases WSN operational life and spreads communication workload evenly. Results convey a counterintuitive conclusion: distributing workload fairly amongst nodes may not decrease the network power consumption and yet extend the WSN operational life. This is achieved as our cooperative approach decreases the workload of the most burdened cluster in the network.

Keywords: cooperative signal processing, signal representation and approximation, power management, wireless sensor networks

Procedia PDF Downloads 390
2142 Deep-Learning to Generation of Weights for Image Captioning Using Part-of-Speech Approach

Authors: Tiago do Carmo Nogueira, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior, Matheus Rudolfo Diedrich Ullmann

Abstract:

Generating automatic image descriptions through natural language is a challenging task. Image captioning is a task that consistently describes an image by combining computer vision and natural language processing techniques. To accomplish this task, cutting-edge models use encoder-decoder structures. Thus, Convolutional Neural Networks (CNN) are used to extract the characteristics of the images, and Recurrent Neural Networks (RNN) generate the descriptive sentences of the images. However, cutting-edge approaches still suffer from problems of generating incorrect captions and accumulating errors in the decoders. To solve this problem, we propose a model based on the encoder-decoder structure, introducing a module that generates the weights according to the importance of the word to form the sentence, using the part-of-speech (PoS). Thus, the results demonstrate that our model surpasses state-of-the-art models.

Keywords: gated recurrent units, caption generation, convolutional neural network, part-of-speech

Procedia PDF Downloads 102
2141 Solvent Free Microwave Extraction of Essential Oils: A Clean Chemical Processing in the Teaching and Research Laboratory

Authors: M. A. Ferhat, M. N. Boukhatem, F. Chemat

Abstract:

Microwave Clevenger or microwave accelerated distillation (MAD) is a combination of microwave heating and distillation, performed at atmospheric pressure without added any solvent or water. Isolation and concentration of volatile compounds are performed by a single stage. MAD extraction of orange essential oil was studied using fresh orange peel from Valencia late cultivar oranges as the raw material. MAD has been compared with a conventional technique, which used a Clevenger apparatus with hydro-distillation (HD). MAD and HD were compared in term of extraction time, yields, chemical composition and quality of the essential oil, efficiency and costs of the process. Extraction of essential oils from orange peels with MAD was better in terms of energy saving, extraction time (30 min versus 3 h), oxygenated fraction (11.7% versus 7.9%), product yield (0.42% versus 0.39%) and product quality. Orange peels treated by MAD and HD were observed by scanning electronic microscopy (SEM). Micrographs provide evidence of more rapid opening of essential oil glands treated by MAD, in contrast to conventional hydro-distillation.

Keywords: clevenger, microwave, extraction; hydro-distillation, essential oil, orange peel

Procedia PDF Downloads 350
2140 Enhanced Near-Infrared Upconversion Emission Based Lateral Flow Immunoassay for Background-Free Detection of Avian Influenza Viruses

Authors: Jaeyoung Kim, Heeju Lee, Huijin Jung, Heesoo Pyo, Seungki Kim, Joonseok Lee

Abstract:

Avian influenza viruses (AIV) are the primary cause of highly contagious respiratory diseases caused by type A influenza viruses of the Orthomyxoviridae family. AIV are categorized on the basis of types of surface glycoproteins such as hemagglutinin and neuraminidase. Certain H5 and H7 subtypes of AIV have evolved to the high pathogenic avian influenza (HPAI) virus, which has caused considerable economic loss to the poultry industry and led to severe public health crisis. Several commercial kits have been developed for on-site detection of AIV. However, the sensitivity of these methods is too low to detect low virus concentrations in clinical samples and opaque stool samples. Here, we introduced a background-free near-infrared (NIR)-to-NIR upconversion nanoparticle-based lateral flow immunoassay (NNLFA) platform to yield a sensor that detects AIV within 20 minutes. Ca²⁺ ion in the shell was used to enhance the NIR-to-NIR upconversion photoluminescence (PL) emission as a heterogeneous dopant without inducing significant changes in the morphology and size of the UCNPs. In a mixture of opaque stool samples and gold nanoparticles (GNPs), which are components of commercial AIV LFA, the background signal of the stool samples mask the absorption peak of GNPs. However, UCNPs dispersed in the stool samples still show strong emission centered at 800 nm when excited at 980 nm, which enables the NNLFA platform to detect 10-times lower viral load than a commercial GNP-based AIV LFA. The detection limit of NNLFA for low pathogenic avian influenza (LPAI) H5N2 and HPAI H5N6 viruses was 10² EID₅₀/mL and 10³.⁵ EID₅₀/mL, respectively. Moreover, when opaque brown-colored samples were used as the target analytes, strong NIR emission signal from the test line in NNLFA confirmed the presence of AIV, whereas commercial AIV LFA detected AIV with difficulty. Therefore, we propose that this rapid and background-free NNLFA platform has the potential of detecting AIV in the field, which could effectively prevent the spread of these viruses at an early stage.

Keywords: avian influenza viruses, lateral flow immunoassay on-site detection, upconversion nanoparticles

Procedia PDF Downloads 163
2139 The Use of Rice Husk Ash as a Stabilizing Agent in Lateritic Clay Soil

Authors: J. O. Akinyele, R. W. Salim, K. O. Oikelome, O. T. Olateju

Abstract:

Rice Husk (RH) is the major byproduct in the processing of paddy rice. The management of this waste has become a big challenge to some of the rice producers, some of these wastes are left in open dumps while some are burn in the open space, and these two actions have been contributing to environmental pollution. This study evaluates an alternative waste management of this agricultural product for use as a civil engineering material. The RH was burn in a controlled environment to form Rice Husk Ash (RHA). The RHA was mix with lateritic clay at 0, 2, 4, 6, 8, and 10% proportion by weight. Chemical test was conducted on the open burn and controlled burn RHA with the lateritic clay. Physical test such as particle size distribution, Atterberg limits test, and density test were carried out on the mix material. The chemical composition obtained for the RHA showed that the total percentage compositions of Fe2O3, SiO2 and Al2O3 were found to be above 70% (class “F” pozzolan) which qualifies it as a very good pozzolan. The coefficient of uniformity (Cu) was 8 and coefficient of curvature (Cc) was 2 for the soil sample. The Plasticity Index (PI) for the 0, 2, 4, 6, 8. 10% was 21.0, 18.8, 16.7, 14.4, 12.4 and 10.7 respectively. The work concluded that RHA can be effectively used in hydraulic barriers and as a stabilizing agent in soil stabilization.

Keywords: rice husk ash, pozzolans, paddy rice, lateritic clay

Procedia PDF Downloads 324
2138 Living at Density: Resident Perceptions in Auckland, New Zealand

Authors: Errol J. Haarhoff

Abstract:

Housing in New Zealand, particularly in Auckland, is dominated by low-density suburbs. Over the past 20 years, housing intensification policies aimed to curb outward low-density sprawl and to concentrate development within an urban boundary have been implemented. This requires the greater deployment of attached housing typologies such apartments, duplexes and terrace housing. There has been strong market response and uptake for higher density development, with the number of building approvals received by the Auckland Council for attached housing units increasing from around 15 percent in 2012/13, to 54 percent in 2017/18. A key question about intensification and strong market uptake in a city where lower density has been the norm, is whether higher density neighborhoods will deliver necessary housing satisfaction? This paper reports on the findings to a questionnaire survey and focus group discussions probing resident perceptions to living at higher density in relation to their dwellings, the neighborhood and their sense of community. The findings reveal strong overall housing satisfaction, including key aspects such as privacy, noise and living in close proximity to neighbors. However, when residents are differentiated in terms of length of tenure, age or whether they are bringing up children, greater variation in satisfaction is detected. For example, residents in the 65-plus age cohort express much higher levels of satisfaction, when compared to the 18-44 year cohorts who more likely to be binging up children. This suggests greater design sensitivity to better accommodate the range of household types. Those who have live in the area longer express greater satisfaction than those with shorter duration, indicating time for adaption to living at higher density. Findings strongly underpin the instrumental role that the public amenities play in overall housing satisfaction and the emergence of a strong sense of community. This underscores the necessity for appropriate investment in the public amenities often lacking in market-led higher density housing development. We conclude with an evaluation of the PPP model, and its part in delivering housing satisfaction. The findings should be of interest to cities, housing developers and built environment professional pursuing housing policies promoting intensification and higher density.

Keywords: medium density, housing satisfaction, neighborhoods, sense of community

Procedia PDF Downloads 137
2137 A Greedy Alignment Algorithm Supporting Medication Reconciliation

Authors: David Tresner-Kirsch

Abstract:

Reconciling patient medication lists from multiple sources is a critical task supporting the safe delivery of patient care. Manual reconciliation is a time-consuming and error-prone process, and recently attempts have been made to develop efficiency- and safety-oriented automated support for professionals performing the task. An important capability of any such support system is automated alignment – finding which medications from a list correspond to which medications from a different source, regardless of misspellings, naming differences (e.g. brand name vs. generic), or changes in treatment (e.g. switching a patient from one antidepressant class to another). This work describes a new algorithmic solution to this alignment task, using a greedy matching approach based on string similarity, edit distances, concept extraction and normalization, and synonym search derived from the RxNorm nomenclature. The accuracy of this algorithm was evaluated against a gold-standard corpus of 681 medication records; this evaluation found that the algorithm predicted alignments with 99% precision and 91% recall. This performance is sufficient to support decision support applications for medication reconciliation.

Keywords: clinical decision support, medication reconciliation, natural language processing, RxNorm

Procedia PDF Downloads 285
2136 Complex Decision Rules in Quality Assurance Processes for Quick Service Restaurant Industry: Human Factors Determining Acceptability

Authors: Brandon Takahashi, Marielle Hanley, Gerry Hanley

Abstract:

The large-scale quick-service restaurant industry is a complex business to manage optimally. With over 40 suppliers providing different ingredients for food preparation and thousands of restaurants serving over 50 unique food offerings across a wide range of regions, the company must implement a quality assurance process. Businesses want to deliver quality food efficiently, reliably, and successfully at a low cost that the public wants to buy. They also want to make sure that their food offerings are never unsafe to eat or of poor quality. A good reputation (and profitable business) developed over the years can be gone in an instant if customers fall ill eating your food. Poor quality also results in food waste, and the cost of corrective actions is compounded by the reduction in revenue. Product compliance evaluation assesses if the supplier’s ingredients are within compliance with the specifications of several attributes (physical, chemical, organoleptic) that a company will test to ensure that a quality, safe to eat food is given to the consumer and will deliver the same eating experience in all parts of the country. The technical component of the evaluation includes the chemical and physical tests that produce numerical results that relate to shelf-life, food safety, and organoleptic qualities. The psychological component of the evaluation includes organoleptic, which is acting on or involving the use of the sense organs. The rubric for product compliance evaluation has four levels: (1) Ideal: Meeting or exceeding all technical (physical and chemical), organoleptic, & psychological specifications. (2) Deviation from ideal but no impact on quality: Not meeting or exceeding some technical and organoleptic/psychological specifications without impact on consumer quality and meeting all food safety requirements (3) Acceptable: Not meeting or exceeding some technical and organoleptic/psychological specifications resulting in reduction of consumer quality but not enough to lessen demand and meeting all food safety requirements (4) Unacceptable: Not meeting food safety requirements, independent of meeting technical and organoleptic specifications or meeting all food safety requirements but product quality results in consumer rejection of food offering. Sampling of products and consumer tastings within the distribution network is a second critical element of the quality assurance process and are the data sources for the statistical analyses. Each finding is not independently assessed with the rubric. For example, the chemical data will be used to back up/support any inferences on the sensory profiles of the ingredients. Certain flavor profiles may not be as apparent when mixed with other ingredients, which leads to weighing specifications differentially in the acceptability decision. Quality assurance processes are essential to achieve that balance of quality and profitability by making sure the food is safe and tastes good but identifying and remediating product quality issues before they hit the stores. Comprehensive quality assurance procedures implement human factors methodologies, and this report provides recommendations for systemic application of quality assurance processes for quick service restaurant services. This case study will review the complex decision rubric and evaluate processes to ensure the right balance of cost, quality, and safety is achieved.

Keywords: decision making, food safety, organoleptics, product compliance, quality assurance

Procedia PDF Downloads 188
2135 Tools and Techniques in Risk Assessment in Public Risk Management Organisations

Authors: Atousa Khodadadyan, Gabe Mythen, Hirbod Assa, Beverley Bishop

Abstract:

Risk assessment and the knowledge provided through this process is a crucial part of any decision-making process in the management of risks and uncertainties. Failure in assessment of risks can cause inadequacy in the entire process of risk management, which in turn can lead to failure in achieving organisational objectives as well as having significant damaging consequences on populations affected by the potential risks being assessed. The choice of tools and techniques in risk assessment can influence the degree and scope of decision-making and subsequently the risk response strategy. There are various available qualitative and quantitative tools and techniques that are deployed within the broad process of risk assessment. The sheer diversity of tools and techniques available to practitioners makes it difficult for organisations to consistently employ the most appropriate methods. This tools and techniques adaptation is rendered more difficult in public risk regulation organisations due to the sensitive and complex nature of their activities. This is particularly the case in areas relating to the environment, food, and human health and safety, when organisational goals are tied up with societal, political and individuals’ goals at national and international levels. Hence, recognising, analysing and evaluating different decision support tools and techniques employed in assessing risks in public risk management organisations was considered. This research is part of a mixed method study which aimed to examine the perception of risk assessment and the extent to which organisations practise risk assessment’ tools and techniques. The study adopted a semi-structured questionnaire with qualitative and quantitative data analysis to include a range of public risk regulation organisations from the UK, Germany, France, Belgium and the Netherlands. The results indicated the public risk management organisations mainly use diverse tools and techniques in the risk assessment process. The primary hazard analysis; brainstorming; hazard analysis and critical control points were described as the most practiced risk identification techniques. Within qualitative and quantitative risk analysis, the participants named the expert judgement, risk probability and impact assessment, sensitivity analysis and data gathering and representation as the most practised techniques.

Keywords: decision-making, public risk management organisations, risk assessment, tools and techniques

Procedia PDF Downloads 282
2134 Machine Learning-Based Workflow for the Analysis of Project Portfolio

Authors: Jean Marie Tshimula, Atsushi Togashi

Abstract:

We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.

Keywords: machine learning, topic modeling, natural language processing, big data

Procedia PDF Downloads 168
2133 Effect of Cooling Approaches on Chemical Compositions, Phases, and Acidolysis of Panzhihua Titania Slag

Authors: Bing Song, Kexi Han, Xuewei Lv

Abstract:

Titania slag is a high quality raw material containing titanium in the subsequent process of titanium pigment. The effects of cooling approaches of granulating, water cooling, and air cooling on chemical, phases, and acidolysis of Panzhihua titania slag were investigated. Compared to the original slag which was prepared by the conventional processing route, the results show that the titania slag undergoes oxidation of Ti3+during different cooling ways. The Ti2O3 content is 17.50% in the original slag, but it is 16.55% and 16.84% in water cooled and air-cooled slag, respectively. Especially, the Ti2O3 content in granulated slag is decreased about 27.6%. The content of Fe2O3 in granulated slag is approximately 2.86% also obviously higher than water (<0.5%) or air-cooled slag (<0.5%). Rutile in cooled titania slag was formed because of the oxidation of Ti3+. The rutile phase without a noticeable change in water cooled and air-cooled slag after the titania slag was cooled, but increased significantly in the granulated slag. The rate of sulfuric acid acidolysis of cooled slag is less than the original slag. The rate of acidolysis is 90.61% and 92.46% to the water-cooled slag and air-cooled slag, respectively. However, the rate of acidolysis of the granulated slag is less than that of industry slag about 20%, only 74.72%.

Keywords: cooling approaches, titania slag, granulating, sulfuric acid acidolysis

Procedia PDF Downloads 238
2132 A Contactless Capacitive Biosensor for Muscle Activity Measurement

Authors: Charn Loong Ng, Mamun Bin Ibne Reaz

Abstract:

As elderly population grows globally, the percentage of people diagnosed with musculoskeletal disorder (MSD) increase proportionally. Electromyography (EMG) is an important biosignal that contributes to MSD’s clinical diagnose and recovery process. Conventional conductive electrode has many disadvantages in the continuous EMG measurement application. This research has design a new surface EMG biosensor based on the parallel-plate capacitive coupling principle. The biosensor is developed by using a double-sided PCB with having one side of the PCB use to construct high input impedance circuitry while the other side of the copper (CU) plate function as biosignal sensing metal plate. The metal plate is insulated using kapton tape for contactless application. The result implicates that capacitive biosensor is capable to constantly capture EMG signal without having galvanic contact to human skin surface. However, there are noticeable noise couple into the measured signal. Post signal processing is needed in order to present a clean and significant EMG signal. A complete design of single ended, non-contact, high input impedance, front end EMG biosensor is presented in this paper.

Keywords: contactless, capacitive, biosensor, electromyography

Procedia PDF Downloads 450
2131 Global Mittag-Leffler Stability of Fractional-Order Bidirectional Associative Memory Neural Network with Discrete and Distributed Transmission Delays

Authors: Swati Tyagi, Syed Abbas

Abstract:

Fractional-order Hopfield neural networks are generally used to model the information processing among the interacting neurons. To show the constancy of the processed information, it is required to analyze the stability of these systems. In this work, we perform Mittag-Leffler stability for the corresponding Caputo fractional-order bidirectional associative memory (BAM) neural networks with various time-delays. We derive sufficient conditions to ensure the existence and uniqueness of the equilibrium point by using the theory of topological degree theory. By applying the fractional Lyapunov method and Mittag-Leffler functions, we derive sufficient conditions for the global Mittag-Leffler stability, which further imply the global asymptotic stability of the network equilibrium. Finally, we present two suitable examples to show the effectiveness of the obtained results.

Keywords: bidirectional associative memory neural network, existence and uniqueness, fractional-order, Lyapunov function, Mittag-Leffler stability

Procedia PDF Downloads 364
2130 Speckle-Based Phase Contrast Micro-Computed Tomography with Neural Network Reconstruction

Authors: Y. Zheng, M. Busi, A. F. Pedersen, M. A. Beltran, C. Gundlach

Abstract:

X-ray phase contrast imaging has shown to yield a better contrast compared to conventional attenuation X-ray imaging, especially for soft tissues in the medical imaging energy range. This can potentially lead to better diagnosis for patients. However, phase contrast imaging has mainly been performed using highly brilliant Synchrotron radiation, as it requires high coherence X-rays. Many research teams have demonstrated that it is also feasible using a laboratory source, bringing it one step closer to clinical use. Nevertheless, the requirement of fine gratings and high precision stepping motors when using a laboratory source prevents it from being widely used. Recently, a random phase object has been proposed as an analyzer. This method requires a much less robust experimental setup. However, previous studies were done using a particular X-ray source (liquid-metal jet micro-focus source) or high precision motors for stepping. We have been working on a much simpler setup with just small modification of a commercial bench-top micro-CT (computed tomography) scanner, by introducing a piece of sandpaper as the phase analyzer in front of the X-ray source. However, it needs a suitable algorithm for speckle tracking and 3D reconstructions. The precision and sensitivity of speckle tracking algorithm determine the resolution of the system, while the 3D reconstruction algorithm will affect the minimum number of projections required, thus limiting the temporal resolution. As phase contrast imaging methods usually require much longer exposure time than traditional absorption based X-ray imaging technologies, a dynamic phase contrast micro-CT with a high temporal resolution is particularly challenging. Different reconstruction methods, including neural network based techniques, will be evaluated in this project to increase the temporal resolution of the phase contrast micro-CT. A Monte Carlo ray tracing simulation (McXtrace) was used to generate a large dataset to train the neural network, in order to address the issue that neural networks require large amount of training data to get high-quality reconstructions.

Keywords: micro-ct, neural networks, reconstruction, speckle-based x-ray phase contrast

Procedia PDF Downloads 257
2129 Computational Study of Composite Films

Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova

Abstract:

Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.

Keywords: composite films, computer modelling, image analysis, nanocomposite films

Procedia PDF Downloads 393
2128 Optimized Parameters for Simultaneous Detection of Cd²⁺, Pb²⁺ and CO²⁺ Ions in Water Using Square Wave Voltammetry on the Unmodified Glassy Carbon Electrode

Authors: K. Sruthi, Sai Snehitha Yadavalli, Swathi Gosh Acharyya

Abstract:

Water is the most crucial element for sustaining life on earth. Increasing water pollution directly or indirectly leads to harmful effects on human life. Most of the heavy metal ions are harmful in their cationic form. These heavy metal ions are released by various activities like disposing of batteries, industrial wastes, automobile emissions, and soil contamination. Ions like (Pb, Co, Cd) are carcinogenic and show many harmful effects when consumed more than certain limits proposed by WHO. The simultaneous detection of the heavy metal ions (Pb, Co, Cd), which are highly toxic, is reported in this study. There are many analytical methods for quantifying, but electrochemical techniques are given high priority because of their sensitivity and ability to detect and recognize lower concentrations. Square wave voltammetry was preferred in electrochemical methods due to the absence of background currents which is interference. Square wave voltammetry was performed on GCE for the quantitative detection of ions. Three electrode system consisting of a glassy carbon electrode as the working electrode (3 mm diameter), Ag/Agcl electrode as the reference electrode, and a platinum wire as the counter electrode was chosen for experimentation. The mechanism of detection was done by optimizing the experimental parameters, namely pH, scan rate, and temperature. Under the optimized conditions, square wave voltammetry was performed for simultaneous detection. Scan rates were varied from 5 mV/s to 100 mV/s and found that at 25 mV/s all the three ions were detected simultaneously with proper peaks at particular stripping potential. The variation of pH from 3 to 8 was done where the optimized pH was taken as pH 5 which holds good for three ions. There was a decreasing trend at starting because of hydrogen gas evolution, and after pH 5 again there was a decreasing trend that is because of hydroxide formation on the surface of the working electrode (GCE). The temperature variation from 25˚C to 45˚C was done where the optimum temperature concerning three ions was taken as 35˚C. Deposition and stripping potentials were given as +1.5 V and -1.5 V, and the resting time of 150 seconds was given. Three ions were detected at stripping potentials of Cd²⁺ at -0.84 V, Pb²⁺ at -0.54 V, and Co²⁺ at -0.44 V. The parameters of detection were optimized on a glassy carbon electrode for simultaneous detection of the ions at lower concentrations by square wave voltammetry.

Keywords: cadmium, cobalt, lead, glassy carbon electrode, square wave anodic stripping voltammetry

Procedia PDF Downloads 117
2127 Jump-Like Deformation of Ultrafinegrained AZ31 at Temperature 4,2 - 0,5 K

Authors: Pavel Zabrodin

Abstract:

The drawback of magnesium alloys is poor plasticity, which complicates the forming. Effective way of improving the properties of the cast magnesium alloy AZ31 (3 wt. % Al, 0.8 wt. % Zn, 0.2 wt. % Mn)) is to combine hot extrusion at 350°C and equal-channel angular pressing (ECAP) at 180°C. Because of reduced grain sizes, changes in the nature of the grain boundaries, and enhancement of a texture that favors basal dislocation glide, after this kind of processing, increase yield stress and ductility. For study of the effect of microstructure on the mechanisms for plastic deformation, there is some interest in investigating the mechanical properties of the ultrafinegrained (UFG) Mg alloy at low temperatures, before and after annealing. It found that the amplitude and statistics at the low-temperature jump-like deformation the Mg alloy of dependent on microstructure. Reduction of the average density of dislocations and grain growth during annealing causing a reduction in the amplitude of the jump-like deformation and changes in the distribution of surges in amplitude. It found that the amplitude and statistics at the low-temperature jump-like deformation UFG alloy dependent on temperature of deformation. Plastic deformation of UFG alloy at a temperature of 10 K occurs uniformly - peculiarities is not observed. Increasing of the temperature of deformation from 4,2 to 0,5 K is causing a reduction in the amplitude and increasing the frequency of the jump-like deformation.

Keywords: jump-like deformation, low temperature, plasticity, magnesium alloy

Procedia PDF Downloads 455
2126 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction

Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal

Abstract:

Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.

Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction

Procedia PDF Downloads 139
2125 A Differential Detection Method for Chip-Scale Spin-Exchange Relaxation Free Atomic Magnetometer

Authors: Yi Zhang, Yuan Tian, Jiehua Chen, Sihong Gu

Abstract:

Chip-scale spin-exchange relaxation free (SERF) atomic magnetometer makes use of millimeter-scale vapor cells micro-fabricated by Micro-electromechanical Systems (MEMS) technique and SERF mechanism, resulting in the characteristics of high spatial resolution and high sensitivity. It is useful for biomagnetic imaging including magnetoencephalography and magnetocardiography. In a prevailing scheme, circularly polarized on-resonance laser beam is adapted for both pumping and probing the atomic polarization. And the magnetic-field-sensitive signal is extracted by transmission laser intensity enhancement as a result of atomic polarization increase on zero field level crossing resonance. The scheme is very suitable for integration, however, the laser amplitude modulation (AM) noise and laser frequency modulation to amplitude modulation (FM-AM) noise is superimposed on the photon shot noise reducing the signal to noise ratio (SNR). To suppress AM and FM-AM noise the paper puts forward a novel scheme which adopts circularly polarized on-resonance light pumping and linearly polarized frequency-detuning laser probing. The transmission beam is divided into transmission and reflection beams by a polarization analyzer, the angle between the analyzer's transmission polarization axis and frequency-detuning laser polarization direction is set to 45°. The magnetic-field-sensitive signal is extracted by polarization rotation enhancement of frequency-detuning laser which induces two beams intensity difference increase as the atomic polarization increases. Therefore, AM and FM-AM noise in two beams are common-mode and can be almost entirely canceled by differential detection. We have carried out an experiment to study our scheme. The experiment reveals that the noise in the differential signal is obviously smaller than that in each beam. The scheme is promising to be applied for developing more sensitive chip-scale magnetometer.

Keywords: atomic magnetometer, chip scale, differential detection, spin-exchange relaxation free

Procedia PDF Downloads 170