Search results for: multiple equations
2668 Web-Based Cognitive Writing Instruction (WeCWI): A Hybrid e-Framework for Instructional Design
Authors: Boon Yih Mah
Abstract:
Web-based Cognitive Writing Instruction (WeCWI) is a hybrid e-framework that consolidates instructional design and language development towards the development of a web-based instruction (WBI). WeCWI divides instructional design into macro and micro perspectives. In macro perspective, a 21st century educator is encouraged to disseminate knowledge and share ideas with in-class and global learners. By leveraging the virtue of technology, WeCWI aims to transform the educator into an aggregator, curator, publisher, social networker and finally, a web-based instructor. Since the most notable contribution of integrating technology is being a tool of teaching as well as a stimulus for learning, WeCWI focuses on the use of contemporary web tools based on the multiple roles played by the 21st century educator. The micro perspective draws attention to the pedagogical approaches focussing on three main aspects: reading, discussion, and writing. With the effective use of pedagogical approaches, technology adds new dimensions and expands the bounds of learning capacity. Lastly, WeCWI also imparts the fundamental theoretical concepts for web-based instructors’ awareness such as interactionism, e-learning interactional-based model, computer-mediated communication (CMC), cognitive theories, and learning style model.Keywords: web-based cognitive writing instruction, WeCWI, instructional design, e-framework, web-based instructor
Procedia PDF Downloads 4402667 Predictive Factors of Nasal Continuous Positive Airway Pressure (NCPAP) Therapy Success in Preterm Neonates with Hyaline Membrane Disease (HMD)
Authors: Novutry Siregar, Afdal, Emilzon Taslim
Abstract:
Hyaline Membrane Disease (HMD) is the main cause of respiratory failure in preterm neonates caused by surfactant deficiency. Nasal Continuous Positive Airway Pressure (NCPAP) is the therapy for HMD. The success of therapy is determined by gestational age, birth weight, HMD grade, time of NCAP administration, and time of breathing frequency recovery. The aim of this research is to identify the predictive factor of NCPAP therapy success in preterm neonates with HMD. This study used a cross-sectional design by using medical records of patients who were treated in the Perinatology of the Pediatric Department of Dr. M. Djamil Padang Central Hospital from January 2015 to December 2017. The samples were eighty-two neonates that were selected by using the total sampling technique. Data analysis was done by using the Chi-Square Test and the Multiple Logistic Regression Prediction Model. The results showed the success rate of NCPAP therapy reached 53.7%. Birth weight (p = 0.048, OR = 3.34 95% CI 1.01-11.07), HMD grade I (p = 0.018, OR = 4.95 CI 95% 1.31-18.68), HMD grade II (p = 0.044, OR = 5.52 95% CI 1.04-29.15), and time of breathing frequency recovery (p = 0,000, OR = 13.50 95% CI 3.58-50, 83) are the predictive factors of NCPAP therapy success in preterm neonates with HMD. The most significant predictive factor is the time of breathing frequency recovery.Keywords: predictive factors, the success of therapy, NCPAP, preterm neonates, HMD
Procedia PDF Downloads 642666 Prospects of Acellular Organ Scaffolds for Drug Discovery
Authors: Inna Kornienko, Svetlana Guryeva, Natalia Danilova, Elena Petersen
Abstract:
Drug toxicity often goes undetected until clinical trials, the most expensive and dangerous phase of drug development. Both human cell culture and animal studies have limitations that cannot be overcome by improvements in drug testing protocols. Tissue engineering is an emerging alternative approach to creating models of human malignant tumors for experimental oncology, personalized medicine, and drug discovery studies. This new generation of bioengineered tumors provides an opportunity to control and explore the role of every component of the model system including cell populations, supportive scaffolds, and signaling molecules. An area that could greatly benefit from these models is cancer research. Recent advances in tissue engineering demonstrated that decellularized tissue is an excellent scaffold for tissue engineering. Decellularization of donor organs such as heart, liver, and lung can provide an acellular, naturally occurring three-dimensional biologic scaffold material that can then be seeded with selected cell populations. Preliminary studies in animal models have provided encouraging results for the proof of concept. Decellularized Organs preserve organ microenvironment, which is critical for cancer metastasis. Utilizing 3D tumor models results greater proximity of cell culture morphological characteristics in a model to its in vivo counterpart, allows more accurate simulation of the processes within a functioning tumor and its pathogenesis. 3D models allow study of migration processes and cell proliferation with higher reliability as well. Moreover, cancer cells in a 3D model bear closer resemblance to living conditions in terms of gene expression, cell surface receptor expression, and signaling. 2D cell monolayers do not provide the geometrical and mechanical cues of tissues in vivo and are, therefore, not suitable to accurately predict the responses of living organisms. 3D models can provide several levels of complexity from simple monocultures of cancer cell lines in liquid environment comprised of oxygen and nutrient gradients and cell-cell interaction to more advanced models, which include co-culturing with other cell types, such as endothelial and immune cells. Following this reasoning, spheroids cultivated from one or multiple patient-derived cell lines can be utilized to seed the matrix rather than monolayer cells. This approach furthers the progress towards personalized medicine. As an initial step to create a new ex vivo tissue engineered model of a cancer tumor, optimized protocols have been designed to obtain organ-specific acellular matrices and evaluate their potential as tissue engineered scaffolds for cultures of normal and tumor cells. Decellularized biomatrix was prepared from animals’ kidneys, urethra, lungs, heart, and liver by two decellularization methods: perfusion in a bioreactor system and immersion-agitation on an orbital shaker with the use of various detergents (SDS, Triton X-100) in different concentrations and freezing. Acellular scaffolds and tissue engineered constructs have been characterized and compared using morphological methods. Models using decellularized matrix have certain advantages, such as maintaining native extracellular matrix properties and biomimetic microenvironment for cancer cells; compatibility with multiple cell types for cell culture and drug screening; utilization to culture patient-derived cells in vitro to evaluate different anticancer therapeutics for developing personalized medicines.Keywords: 3D models, decellularization, drug discovery, drug toxicity, scaffolds, spheroids, tissue engineering
Procedia PDF Downloads 3012665 Neural Network Modelling for Turkey Railway Load Carrying Demand
Authors: Humeyra Bolakar Tosun
Abstract:
The transport sector has an undisputed place in human life. People need transport access to continuous increase day by day with growing population. The number of rail network, urban transport planning, infrastructure improvements, transportation management and other related areas is a key factor affecting our country made it quite necessary to improve the work of transportation. In this context, it plays an important role in domestic rail freight demand planning. Alternatives that the increase in the transportation field and has made it mandatory requirements such as the demand for improving transport quality. In this study generally is known and used in studies by the definition, rail freight transport, railway line length, population, energy consumption. In this study, Iron Road Load Net Demand was modeled by multiple regression and ANN methods. In this study, model dependent variable (Output) is Iron Road Load Net demand and 6 entries variable was determined. These outcome values extracted from the model using ANN and regression model results. In the regression model, some parameters are considered as determinative parameters, and the coefficients of the determinants give meaningful results. As a result, ANN model has been shown to be more successful than traditional regression model.Keywords: railway load carrying, neural network, modelling transport, transportation
Procedia PDF Downloads 1452664 Virtual Approach to Simulating Geotechnical Problems under Both Static and Dynamic Conditions
Authors: Varvara Roubtsova, Mohamed Chekired
Abstract:
Recent studies on the numerical simulation of geotechnical problems show the importance of considering the soil micro-structure. At this scale, soil is a discrete particle medium where the particles can interact with each other and with water flow under external forces, structure loads or natural events. This paper presents research conducted in a virtual laboratory named SiGran, developed at IREQ (Institut de recherche d’Hydro-Quebec) for the purpose of investigating a broad range of problems encountered in geotechnics. Using Discrete Element Method (DEM), SiGran simulated granular materials directly by applying Newton’s laws to each particle. The water flow was simulated by using Marker and Cell method (MAC) to solve the full form of Navier-Stokes’s equation for non-compressible viscous liquid. In this paper, examples of numerical simulation and their comparisons with real experiments have been selected to show the complexity of geotechnical research at the micro level. These examples describe transient flows into a porous medium, interaction of particles in a viscous flow, compacting of saturated and unsaturated soils and the phenomenon of liquefaction under seismic load. They also provide an opportunity to present SiGran’s capacity to compute the distribution and evolution of energy by type (particle kinetic energy, particle internal elastic energy, energy dissipated by friction or as a result of viscous interaction into flow, and so on). This work also includes the first attempts to apply micro discrete results on a macro continuum level where the Smoothed Particle Hydrodynamics (SPH) method was used to resolve the system of governing equations. The material behavior equation is based on the results of simulations carried out at a micro level. The possibility of combining three methods (DEM, MAC and SPH) is discussed.Keywords: discrete element method, marker and cell method, numerical simulation, multi-scale simulations, smoothed particle hydrodynamics
Procedia PDF Downloads 3032663 Route Planning for Optimization Approach PSO_GA Sharing System (Scooter Sharing-Public Transportation) with Hybrid Optimization Approach PSO_GA
Authors: Mohammad Ali Farrokhpour
Abstract:
In the current decade and sustainable transportation systems, scooter sharing has attracted widespread attention as an environmentally-friendly means of public transportation which can help develop public transportation. The combination of scooters and subway in the area of sustainable transportation systems can provide a great many opportunities for developing access to public transportation. Of the challenges which have arisen and initiated discussions of interest about the implementation of a scooter-subway system to replace personal vehicles is the issue of routing in the aforementioned system. This has been chosen as the main subject of the present paper. Thus, the present paper provides an account for routing in this system. Because the issue of routing includes multiple factors such as time, costs, traffic, green spaces, etc., the above-mentioned problem is considered to be a multi-objective NP-hard optimization problem. For this purpose, the hybrid optimization approach of PSO-GA has been put forward in the present paper for the provided answers to be of higher accuracy and validity than those of normal optimization methods. The results obtained from modeling and problem solving for the case study in the MATLAB software are indicative of the efficiency and desirability of the model and the proposed approach for solving the modelKeywords: route planning, scooter sharing, public transportation, sharing system
Procedia PDF Downloads 862662 Peripheral Inflammation and Neurodegeneration; A Potential for Therapeutic Intervention in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis
Authors: Lourdes Hanna, Edward Poluyi, Chibuikem Ikwuegbuenyi, Eghosa Morgan, Grace Imaguezegie
Abstract:
Background: Degeneration of the central nervous system (CNS), also known as neurodegeneration, describes an age-associated progressive loss of the structure and function of neuronal materials, leading to functional and mental impairments. Main body: Neuroinflammation contributes to the continuous worsening of neurodegenerative states which are characterised by functional and mental impairments due to the progressive loss of the structure and function of neu-ronal materials. Some of the most common neurodegenerative diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). Whilst neuroinflammation is a key contributor to the progression of such disease states, it is not the single cause as there are multiple factors which contribute. Theoretically, non-steroidal anti-inflammatory drugs (NSAIDs) have potential to target neuroinflammation to reduce the severity of disease states. Whilst some animal models investigating the effects of NSAIDs on the risk of neurodegenerative diseases have shown a beneficial effect, this is not the same finding. Conclusion: Further investigation using more advanced research methods is required to better understand neuroinflammatory pathways and understand if there is still a potential window for NSAID efficacy.Keywords: intervention, central nervous system, neurodegeneration, neuroinflammation
Procedia PDF Downloads 832661 Diversity, Phyto Beneficial Activities and Agrobiotechnolody of Plant Growth Promoting Bacillus and Paenibacillus
Authors: Cheba Ben Amar
Abstract:
Bacillus and Paenibacillus are Gram-positive aerobic endospore-forming bacteria (AEFB) and most abundant in the rhizosphere, they mediated plant growth promotion and disease protection by several complex and interrelated processes involving direct and indirect mechanisms that include nitrogen fixation, phosphate solubilization, siderophores production, phytohormones production and plant diseases control. In addition to their multiple PGPR properties, high secretory capacity, spore forming ability and spore resistance to unfavorable conditions enabling their extended commercial applications for long shelf-life. Due to these unique advantages, Bacillus species were the most an ideal candidate for developing efficient PGPR products such as biopesticides, fungicides and fertilizers. This review list all studied and reported plant growth promoting Bacillus species and strains, discuss their capacities to enhance plant growth and protection with special focusing on the most frequent species Bacillus subtilis, B. pumilus ,B. megaterium, B. amyloliquefaciens , B. licheniformis and B. sphaericus, furthermore we recapitulate the beneficial activities and mechanisms of several species and strains of the genus Paenibacillus involved in plant growth stimulation and plant disease control.Keywords: bacillus, paenibacillus, PGPR, beneficial activities, mechanisms, growth promotion, disease control, agrobiotechnology
Procedia PDF Downloads 4002660 Group Boundaries against and Due to Identity Threat
Authors: Anna Siegler, Sara Bigazzi, Sara Serdult, Ildiko Bokretas
Abstract:
Social identity emerging from group membership defines the representational processes of our social reality. Based on our theoretical assumption the subjective perception of identity threat leads to an instable identity structure. The need to re-establish the positive identity will lead us to strengthen group boundaries. Prejudice in our perspective offer psychological security those who thinking in exclusive barriers, and we suggest that those who identify highly with their ingroup/national identity and less with superordinate identities take distance from others and this is related to their perception of threat. In our study we used a newly developed questionnaire, the Multiple Threat and Prejudice Questionnaire (MTPQ) which measure identity threat at different dimensions of identification (national, existential, gender, religious) and the distancing of different outgroups, over and above we worked with Social Dominance Orientation (SDO) and Identification with All Humanity Scale (IWAH). We conduct one data collection (N=1482) in a Hungarian sample to examine the connection between national threat and distance-taking, and this survey includes the investigation (N=218) of identification with different group categories. Our findings confirmed that those who feel themselves threatened in their national identity aspects are less likely to identify themselves with superordinate groups and this correlation is much stronger when they think about the nation as a bio-cultural unit, while if nation defined as a social-economy entity this connection is less powerful and has just the opposite direction.Keywords: group boundaries, identity threat, prejudice, superordinate groups
Procedia PDF Downloads 4122659 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks
Authors: Yao-Hong Tsai
Abstract:
Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance
Procedia PDF Downloads 1622658 Active Noise Cancellation in the Rectangular Enclosure Systems
Authors: D. Shakirah Shukor, A. Aminudin, Hashim U. A., Waziralilah N. Fathiah, T. Vikneshvaran
Abstract:
The interior noise control is essential to be explored due to the interior acoustic analysis is significant in the systems such as automobiles, aircraft, air-handling system and diesel engine exhausts system. In this research, experimental work was undertaken for canceling an active noise in the rectangular enclosure. The rectangular enclosure was fabricated with multiple speakers and microphones inside the enclosure. A software program using digital signal processing is implemented to evaluate the proposed method. Experimental work was conducted to obtain the acoustic behavior and characteristics of the rectangular enclosure and noise cancellation based on active noise control in low-frequency range. Noise is generated by using multispeaker inside the enclosure and microphones are used for noise measurements. The technique for noise cancellation relies on the principle of destructive interference between two sound fields in the rectangular enclosure. One field is generated by the original or primary sound source, the other by a secondary sound source set up to interfere with, and cancel, that unwanted primary sound. At the end of this research, the result of output noise before and after cancellation are presented and discussed. On the basis of the findings presented in this research, an active noise cancellation in the rectangular enclosure is worth exploring in order to improve the noise control technologies.Keywords: active noise control, digital signal processing, noise cancellation, rectangular enclosure
Procedia PDF Downloads 2732657 Achieving Competitive Advantage Through Internal Resources and Competences
Authors: Ibrahim Alkandi
Abstract:
This study aims at understanding how banks can utilize their resources and capabilities to achieve a competitive advantage. The resource-based approach has been applied to assess the resources and capabilities as well as how the management perceives them as sources of competitive advantages. A quantitative approach was implemented using cross-sectional data. The research population consisted of Top managers in financial companies in Saudi Arabia, and the sample comprised 79 managers. The resources were sub divided into tangible and intangible. Among the variables that will be assessed in the research include propriety rights, trademark which is the brand, communication as well as organizational culture. To achieve the objective of the research, Multivariate analysis through multiple regression was used. The research tool used is a questionnaire whose validity is also assessed. According to the results of the study, there is a significant relationship between bank’s performance and the strategic management of propriety rights, trademark, administrative and financial skills as well as bank culture. Therefore, the research assessed four aspects, among the variables in the model, in relation to the strategic performance of these banks. The aspects considered were trademark, communication, administrative and leadership style as well as the company’s culture. Hence, this paper contributes to the body of literature by providing empirical evidence of the resources influencing both banks’ market and economic performance.Keywords: competitive advantage, Saudi banks, strategic management, RBV
Procedia PDF Downloads 772656 A Stochastic Model to Predict Earthquake Ground Motion Duration Recorded in Soft Soils Based on Nonlinear Regression
Authors: Issam Aouari, Abdelmalek Abdelhamid
Abstract:
For seismologists, the characterization of seismic demand should include the amplitude and duration of strong shaking in the system. The duration of ground shaking is one of the key parameters in earthquake resistant design of structures. This paper proposes a nonlinear statistical model to estimate earthquake ground motion duration in soft soils using multiple seismicity indicators. Three definitions of ground motion duration proposed by literature have been applied. With a comparative study, we select the most significant definition to use for predict the duration. A stochastic model is presented for the McCann and Shah Method using nonlinear regression analysis based on a data set for moment magnitude, source to site distance and site conditions. The data set applied is taken from PEER strong motion databank and contains shallow earthquakes from different regions in the world; America, Turkey, London, China, Italy, Chili, Mexico...etc. Main emphasis is placed on soft site condition. The predictive relationship has been developed based on 600 records and three input indicators. Results have been compared with others published models. It has been found that the proposed model can predict earthquake ground motion duration in soft soils for different regions and sites conditions.Keywords: duration, earthquake, prediction, regression, soft soil
Procedia PDF Downloads 1542655 An In-Depth Definition of the 24 Levels of Consciousness and Its Relationship to Buddhism and Artificial Intelligence
Authors: James V. Luisi
Abstract:
Understanding consciousness requires a synthesis of ideas from multiple disciplines, including obvious ones like psychology, biology, evolution, neurology, and neuroscience, as well as less obvious ones like protozoology, botany, entomology, carcinology, herpetology, mammalogy, and computer sciences. Furthermore, to incorporate the necessary backdrop, it is best presented in a theme of Eastern philosophy, specifically leveraging the teachings of Buddhism for its relevance to early thought on consciousness. These ideas are presented as a multi-level framework that illustrates the various aspects of consciousness within a tapestry of foundational and dependent building blocks as to how living organisms evolved to understand elements of their reality sufficiently to survive, and in the case of Homo sapiens, eventually move beyond meeting the basic needs of survival, but to also achieve survival of the species beyond the eventual fate of our planet. This is not a complete system of thought, but just a framework of consciousness gathering some of the key elements regarding the evolution of consciousness and the advent of free will, and presenting them in a unique way that encourages readers to continue the dialog and thought process as an experience to enjoy long after reading the last page. Readers are encouraged to think for themselves about the issues raised herein and to question every facet presented, as much further exploration is needed. Needless to say, this subject will remain a rapidly evolving one for quite some time to come, and it is probably in the interests of everyone to at least consider attaining both an ability and willingness to participate in the dialog.Keywords: consciousness, sentience, intelligence, artificial intelligence, Buddhism
Procedia PDF Downloads 1102654 Characterization and Predictors of Community Integration of People with Psychiatric Problems: Comparisons with the General Population
Authors: J. Cabral, C. Barreto Carvalho, C. da Motta, M. Sousa
Abstract:
Community integration is a construct that an increasing body of research has shown to have a significant impact in well-being and recovery of people with psychiatric problems. However, there are few studies that explore which factors can be associated and predict community integration. Moreover, community integration has been mostly studied in minority groups, and currently literature on the definition and manifestation of community integration in the more general population is scarce. Thus, the current study aims to characterize community integration and explore possible predictor variables in a sample of participants with psychiatric problems (PP, N=183) and a sample of participants from the general population (GP, N=211). Results show that people with psychiatric problems present above average values of community integration, but are significantly lower than their healthy counterparts. It was also possible to observe that community integration does not vary in terms of the socio-demographic characteristics of both groups in this study. Correlation and multiple regression showed that, among several variables that literature present as relevant in the community integration process, only three variables emerged as having the most explanatory value in community integration of both groups: sense of community, basic needs satisfaction and submission. These results also shown that those variables have increased explanatory power in the PP sample, which leads us to emphasize the need to address this issue in future studies and increase the understanding of the factors that can be involved in the promotion of community integration, in order to devise more effective interventions in this field.Keywords: community integration, mental illness, predictors, psychiatric problems
Procedia PDF Downloads 4882653 Piping Fragility Composed of Different Materials by Using OpenSees Software
Authors: Woo Young Jung, Min Ho Kwon, Bu Seog Ju
Abstract:
A failure of the non-structural component can cause significant damages in critical facilities such as nuclear power plants and hospitals. Historically, it was reported that the damage from the leakage of sprinkler systems, resulted in the shutdown of hospitals for several weeks by the 1971 San Fernando and 1994 North Ridge earthquakes. In most cases, water leakages were observed at the cross joints, sprinkler heads, and T-joint connections in piping systems during and after the seismic events. Hence, the primary objective of this study was to understand the seismic performance of T-joint connections and to develop an analytical Finite Element (FE) model for the T-joint systems of 2-inch fire protection piping system in hospitals subjected to seismic ground motions. In order to evaluate the FE models of the piping systems using OpenSees, two types of materials were used: 1) Steel 02 materials and 2) Pinching 4 materials. Results of the current study revealed that the nonlinear moment-rotation FE models for the threaded T-joint reconciled well with the experimental results in both FE material models. However, the system-level fragility determined from multiple nonlinear time history analyses at the threaded T-joint was slightly different. The system-level fragility at the T-joint, determined by Pinching 4 material was more conservative than that of using Steel 02 material in the piping system.Keywords: fragility, t-joint, piping, leakage, sprinkler
Procedia PDF Downloads 3052652 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments
Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard
Abstract:
With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home
Procedia PDF Downloads 3582651 Optimal Design of Step-Stress Partially Life Test Using Multiply Censored Exponential Data with Random Removals
Authors: Showkat Ahmad Lone, Ahmadur Rahman, Ariful Islam
Abstract:
The major assumption in accelerated life tests (ALT) is that the mathematical model relating the lifetime of a test unit and the stress are known or can be assumed. In some cases, such life–stress relationships are not known and cannot be assumed, i.e. ALT data cannot be extrapolated to use condition. So, in such cases, partially accelerated life test (PALT) is a more suitable test to be performed for which tested units are subjected to both normal and accelerated conditions. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests using progressive failure-censored hybrid data with random removals. The life data of the units under test is considered to follow exponential life distribution. The removals from the test are assumed to have binomial distributions. The point and interval maximum likelihood estimations are obtained for unknown distribution parameters and tampering coefficient. An optimum test plan is developed using the D-optimality criterion. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.Keywords: binomial distribution, d-optimality, multiple censoring, optimal design, partially accelerated life testing, simulation study
Procedia PDF Downloads 3232650 Study on Resource Allocation of Cloud Operating System Based on Multi-Tenant Data Resource Sharing Technology
Authors: Lin Yunuo, Seow Xing Quan, Burra Venkata Durga Kumar
Abstract:
In this modern era, the cloud operating system is the world trend applied in various industries such as business, healthy, etc. In order to deal with the large capacity of requirements in cloud computing, research come up with multi-tenant cloud computing to maximize the benefits of server providers and clients. However, there are still issues in multi-tenant cloud computing especially regarding resource allocation. Issues such as inefficient resource utilization, large latency, lack of scalability and elasticity and poor data isolation had caused inefficient resource allocation in multi-tenant cloud computing. Without a doubt, these issues prevent multitenancy reaches its best condition. In fact, there are multiple studies conducted to determine the optimal resource allocation to solve these problems these days. This article will briefly introduce the cloud operating system, Multi-tenant cloud computing and resource allocation in cloud computing. It then discusses resource allocation in multi-tenant cloud computing and the current challenges it faces. According to the issue ‘ineffective resource utilization’, we will discuss an efficient dynamic scheduling technique for multitenancy, namely Multi-tenant Dynamic Resource Scheduling Model (MTDRSM). Moreover, there also have some recommendations to improve the shortcoming of this model in this paper’s final section.Keywords: cloud computing, cloud operation system, multitenancy, resource allocation, utilization of cloud resources
Procedia PDF Downloads 892649 The Impact of Perception of Transformational Leadership and Factors of Innovation Culture on Innovative Work Behavior in Junior High School's Teacher
Authors: Galih Mediana
Abstract:
Boarding school can helps students to turn all good qualities into habits. The process of forming one's personality can be done in various ways. In addition to gaining general knowledge at school during learning hours, teachers can instill values in students which can be done while in the dormitory when the learning process has ended. This shows the important role that must be played by boarding school’s teachers. Transformational leadership and a culture of innovation are things that can instill innovative behavior in teachers. This study aims to determine the effect of perceptions of transformational leadership and a culture of innovation on innovative work behavior among Islamic boarding school teachers. Respondents in this study amounted to 70 teachers. To measure transformational leadership, a modified measuring tool is used, namely the Multifactor Leadership Questionnaire (MLQ) by Bass (1985). To measure innovative work behavior, a measurement tool based on dimensions from Janssen (2000) is used. The innovation culture in this study will be measured using the innovation culture factor from Dobni (2008). This study uses multiple regression analysis to test the hypothesis. The results of this study indicate that there is an influence of perceptions of transformational leadership and innovation culture factors on innovative work behavior in Islamic boarding school’s teachers by 57.7%.Keywords: transformational leadership, innovative work behavior, innovation culture, boarding school, teacher
Procedia PDF Downloads 1112648 Study of the Design and Simulation Work for an Artificial Heart
Authors: Mohammed Eltayeb Salih Elamin
Abstract:
This study discusses the concept of the artificial heart using engineering concepts, of the fluid mechanics and the characteristics of the non-Newtonian fluid. For the purpose to serve heart patients and improve aspects of their lives and since the Statistics review according to world health organization (WHO) says that heart disease and blood vessels are the first cause of death in the world. Statistics shows that 30% of the death cases in the world by the heart disease, so simply we can consider it as the number one leading cause of death in the entire world is heart failure. And since the heart implantation become a very difficult and not always available, the idea of the artificial heart become very essential. So it’s important that we participate in the developing this idea by searching and finding the weakness point in the earlier designs and hoping for improving it for the best of humanity. In this study a pump was designed in order to pump blood to the human body and taking into account all the factors that allows it to replace the human heart, in order to work at the same characteristics and the efficiency of the human heart. The pump was designed on the idea of the diaphragm pump. Three models of blood obtained from the blood real characteristics and all of these models were simulated in order to study the effect of the pumping work on the fluid. After that, we study the properties of this pump by using Ansys15 software to simulate blood flow inside the pump and the amount of stress that it will go under. The 3D geometries modeling was done using SOLID WORKS and the geometries then imported to Ansys design modeler which is used during the pre-processing procedure. The solver used throughout the study is Ansys FLUENT. This is a tool used to analysis the fluid flow troubles and the general well-known term used for this branch of science is known as Computational Fluid Dynamics (CFD). Basically, Design Modeler used during the pre-processing procedure which is a crucial step before the start of the fluid flow problem. Some of the key operations are the geometry creations which specify the domain of the fluid flow problem. Next is mesh generation which means discretization of the domain to solve governing equations at each cell and later, specify the boundary zones to apply boundary conditions for the problem. Finally, the pre–processed work will be saved at the Ansys workbench for future work continuation.Keywords: Artificial heart, computational fluid dynamic heart chamber, design, pump
Procedia PDF Downloads 4612647 Mobility-Aware Relay Selection in Two Hop Unmanned Aerial Vehicles Network
Authors: Tayyaba Hussain, Sobia Jangsher, Saqib Ali, Saqib Ejaz
Abstract:
Unmanned Aerial vehicles (UAV’s) have gained great popularity due to their remoteness, ease of deployment and high maneuverability in different applications like real-time surveillance, image capturing, weather atmospheric studies, disaster site monitoring and mapping. These applications can involve a real-time communication with the ground station. However, altitude and mobility possess a few challenges for the communication. UAV’s at high altitude usually require more transmit power. One possible solution can be with the use of multi hops (UAV’s acting as relays) and exploiting the mobility pattern of the UAV’s. In this paper, we studied a relay (UAV’s acting as relays) selection for a reliable transmission to a destination UAV. We exploit the mobility information of the UAV’s to propose a Mobility-Aware Relay Selection (MARS) algorithm with the objective of giving improved data rates. The results are compared with Non Mobility-Aware relay selection scheme and optimal values. Numerical results show that our proposed MARS algorithm gives 6% better achievable data rates for the mobile UAV’s as compared with Non MobilityAware relay selection scheme. On average a decrease of 20.2% in data rate is achieved with MARS as compared with SDP solver in Yalmip.Keywords: mobility aware, relay selection, time division multiple acess, unmanned aerial vehicle
Procedia PDF Downloads 2392646 English and Information and Communication Technology: Zones of Exclusion in Education in Low-Income Countries
Authors: Ram A. Giri, Amna Bedri, Abdou Niane
Abstract:
Exclusion in education on the basis of language in multilingual contexts operates at multiple levels. Learners of diverse ethnolinguistic backgrounds are often expected to learn through English and are pushed further down the learning ladder if they also have to access education through Information and Communication Technology (ICT). The paper explores marginalized children’s lived experiences in accessing technology and English in four low-income countries in Africa and Asia. Based on the findings of the first phase of a multinational qualitative research study, we report on the factors or barriers that affect children’s access, opportunities and motivation for learning through technology and English. ICT and English - the language of ICT and education - can enhance learning and can even be essential. However, these two important keys to education can also function as barriers to accessing quality education, and therefore as zones of exclusion. This paper looks into how marginalized children (aged 13-15) engage in learning through ICT and English and to what extent the restrictive access and opportunities contribute to the widening of the already existing gap in education. By applying the conceptual frameworks of “access and accessibility of learning” and “zones of exclusion,” the paper elucidates how the barriers prevent children’s effective engagement with learning and addresses such questions as to how marginalized children access technology and English for learning; whether the children value English, and what their motivation and opportunity to learn it are. In addition, the paper will point out policy and pedagogic implications.Keywords: exclusion, inclusion, inclusive education, marginalization
Procedia PDF Downloads 2312645 Formulation of Aggregates Based on Dredged Sand and Sediments
Authors: Nor-Edine Abriak, Ilyas Ennahal, Abdeljalil Zri, Mahfoud Benzerzour
Abstract:
Nord Pas de Calais is one of the French regions that records a large volume of dredged sediment in harbors and waterways. To ensure navigation within ports and waterways, harbor and river managers are forced to find solutions to remove sediment that contamination levels exceed levels established by regulations. Therefore, this non- submersible sediment must be managed on land and will be subject to the waste regulation. In this paper, some examples of concrete achievements and experiments of reusing dredged sediment in civil engineering and sector will be illustrated. These achievements are alternative solutions to sediment landfilling and guarantee the reuse of this material in a logic of circular economy and ecological transition. It permits to preserve the natural resources increasingly scarce and resolve issues related to the accumulation of sediments in the harbor basins, rivers, dams, and lakes, etc. Examples of beneficial use of dredged material illustrated in this paper are the result of different projects reusing harbor and waterways sediments in several applications. These projects were funded under the national SEDIMATERIAUX approach. Thus the technical and environmental feasibility of the reuse of dredged sediment is demonstrated and verified; the dredged sediment reusing would meet multiple challenges of sustainable development in relation to environmental, economic, social and societal.Keywords: circular economy, sediment, SEDIMATERIAUX, waterways
Procedia PDF Downloads 1582644 Simulation of Elastic Bodies through Discrete Element Method, Coupled with a Nested Overlapping Grid Fluid Flow Solver
Authors: Paolo Sassi, Jorge Freiria, Gabriel Usera
Abstract:
In this work, a finite volume fluid flow solver is coupled with a discrete element method module for the simulation of the dynamics of free and elastic bodies in interaction with the fluid and between themselves. The open source fluid flow solver, caffa3d.MBRi, includes the capability to work with nested overlapping grids in order to easily refine the grid in the region where the bodies are moving. To do so, it is necessary to implement a recognition function able to identify the specific mesh block in which the device is moving in. The set of overlapping finer grids might be displaced along with the set of bodies being simulated. The interaction between the bodies and the fluid is computed through a two-way coupling. The velocity field of the fluid is first interpolated to determine the drag force on each object. After solving the objects displacements, subject to the elastic bonding among them, the force is applied back onto the fluid through a Gaussian smoothing considering the cells near the position of each object. The fishnet is represented as lumped masses connected by elastic lines. The internal forces are derived from the elasticity of these lines, and the external forces are due to drag, gravity, buoyancy and the load acting on each element of the system. When solving the ordinary differential equations system, that represents the motion of the elastic and flexible bodies, it was found that the Runge Kutta solver of fourth order is the best tool in terms of performance, but requires a finer grid than the fluid solver to make the system converge, which demands greater computing power. The coupled solver is demonstrated by simulating the interaction between the fluid, an elastic fishnet and a set of free bodies being captured by the net as they are dragged by the fluid. The deformation of the net, as well as the wake produced in the fluid stream are well captured by the method, without requiring the fluid solver mesh to adapt for the evolving geometry. Application of the same strategy to the simulation of elastic structures subject to the action of wind is also possible with the method presented, and one such application is currently under development.Keywords: computational fluid dynamics, discrete element method, fishnets, nested overlapping grids
Procedia PDF Downloads 4182643 Ecosystem Carbon Stocks Vary in Reference to the Models Used, Socioecological Factors and Agroforestry Practices in Central Ethiopia
Authors: Gadisa Demie, Mesele Negash, Zerihun Asrat, Lojka Bohdan
Abstract:
Deforestation and forest degradation in the tropics have led to significant carbon (C) emissions. Agroforestry (AF) is a suitable land-use option for tackling such declines in ecosystem services, including climate change mitigation. However, it is unclear how biomass models, AF practices, and socio-ecological factors determine these roles, which hinders the implementation of climate change mitigation initiatives. This study aimed to estimate the ecosystem C stocks of the studied AF practices in relation to socio-ecological variables in central Ethiopia. Out of 243 AF farms inventoried, 108 were chosen at random from three AF practices to estimate their biomass and soil organic carbon. A total of 432 soil samples were collected from 0–30 and 30–60 cm soil depths; 216 samples were taken for each soil organic carbon fraction (%C) and bulk density computation. The study found that the currently developed allometric equations were the most accurate to estimate biomass C for trees growing in the landscape when compared to previous models. The study found higher overall biomass C in woodlots (165.62 Mg ha-¹) than in homegardens (134.07 Mg ha-¹) and parklands (19.98 Mg ha-¹). Conversely, overall, SOC was higher for homegardens (143.88 Mg ha-¹), but lower for parklands (53.42 Mg ha-¹). The ecosystem C stock was comparable between homegardens (277.95 Mg ha-¹) and woodlots (275.44 Mg ha-¹). The study found that elevation, wealthy levels, AF farm age, and size have a positive and significant (P < 0.05) effect on overall biomass and ecosystem C stocks but non-significant with slope (P > 0.05). Similarly, SOC increased with increasing elevation, AF farm age, and wealthy status but decreased with slope and non-significant with AF farm size. The study also showed that species diversity had a positive (P <0.05) effect on overall biomass C stocks in homegardens. The overall study highlights that AF practices have a great potential to lock up more carbon in biomass and soils; however, these potentials were determined by socioecological variables. Thus, these factors should be considered in management strategies that preserve trees in agricultural landscapes in order to mitigate climate change and support the livelihoods of farmers.Keywords: agricultural landscape, biomass, climate change, soil organic carbon
Procedia PDF Downloads 522642 The Impact of Resource-oriented Music Listening on Oversea Dispatch Employees Work Stress Relief
Authors: Wei Yaming
Abstract:
Objective: In order to compare the stress of employees sent overseas with (GRAS) before and after, we used the resource-oriented music listening intervention in this study. We also collected pertinent experimental data. Methods: The experiment involved 47 employees who were sent abroad by the Chinese side. They completed the stress scale test and documented it before the intervention. They tested for stress after five interventions and performed one-on-one interviews. Quantitative data and SPSS software were used to analyze relationships between stress reduction and resource-oriented music listening, as well as Pearson's correlation, multiple regression levels, and ANOVA. For the qualitative analysis, content analysis of one-on-one interviews was performed. Results: A comparison of data from before and after demonstrates how resource-focused music listening activities can lessen and relieve stress in remote workers. In the qualitative study, stress is broken down into six categories: relationship stress, health stress, emotional stress, and frustration stress. External pressures include work pressure and cultural stress. And it has been determined that listening to music that is resource-oriented can better ease internal stress (health, emotion, and dissatisfaction). Conclusion: The Guide Resource-oriented Music Listening (GROML) Program appears to have had some effect on the participants' stress levels. The resources that the participants encountered while listening to music are bravery, calm, letting go, and relaxing.Keywords: resource-oriented, music listening, oversea dispatch employees, work stress
Procedia PDF Downloads 1002641 Feeling Ambivalence Towards Values
Authors: Aysheh Maslemani, Ruth Mayo, Greg Maio, Ariel Knafo-Noam
Abstract:
Values are abstract ideals that serve as guiding principles in one's life. As inherently positive and desirable concepts, values are seen as motivators for actions and behaviors. However, research has largely ignored the possibility that values may elicit negative feelings despite being explicitly important to us. In the current study, we aim to examine this possibility. Four hundred participants over 18 years(M=41.6, SD=13.7, Female=178) from the UK completed a questionnaire in which they were asked to indicate their level of positive/negative feelings towards a comprehensive list of values and then report the importance of these values to them. The results support our argument by showing that people can have negative feelings towards their values and that people can feel both positive and negative emotions towards their values simultaneously, which means feeling ambivalence. We ran a mixed-effect model with ambivalence, value type, and their interaction as fixed effects, with by subject random intercept and by subject random slope for ambivalence. The results reveal that values that elicit less ambivalence predicted higher ratings for value importance. This research contributes to the field of values on multiple levels. Theoretically, it will uncover new insights about values, such as the existence of negative emotions towards them and the presence of ambivalence towards values. These findings may inspire future studies to explore the effects of ambivalence on people's well-being, behaviors, cognition, and their affect. We discuss the findings and consider their implications for understanding the social psychological mechanisms underpinning value ambivalence.Keywords: emotion, social cognition, values., ambivalence
Procedia PDF Downloads 692640 Feeling Ambivalence Towards Yours Values
Authors: Aysheh Maslemani, Ruth Mayo, Greg Maio, Ariel Knafo-Noam
Abstract:
Values are abstract ideals that serve as guiding principles in one's life. As inherently positive and desirable concepts, values are seen as motivators for actions and behaviors. However, research has largely ignored the possibility that values may elicit negative feelings despite being explicitly important to us. In the current study we aim to examine this possibility. Four hundred participants over 18 years(M=41.6,SD=13.7,Female=178) from the UK completed a questionnaire in which they were asked to indicate their level of positive/negative feelings towards a comprehensive list of values and then report the importance of these values to them. The results support our argument by showing that people can have negative feelings towards their values and that people can feel both positive and negative emotions towards their values simultaneously, which means feeling ambivalence. We ran a mixed-effect model with ambivalence, value type, and their interaction as fixed effects, with by subject random intercept, and by subject random slope for ambivalence. The results reveal that values that elicit less ambivalence predicted higher ratings for value importance. This research contributes to the field of values on multiple levels. Theoretically, it will uncover new insights about values, such as the existence of negative emotions towards them, the presence of ambivalence towards values. These findings may inspire future studies to explore the effects of ambivalence on people's well-being, behaviors, cognition, and their affect. We discuss the findings and consider their implications for understanding the social psychological mechanisms underpinning value ambivalence.Keywords: ambivalence, emotion, social cognition, values
Procedia PDF Downloads 682639 Maximizing Bidirectional Green Waves for Major Road Axes
Authors: Christian Liebchen
Abstract:
Both from an environmental perspective and with respect to road traffic flow quality, planning so-called green waves along major road axes is a well-established target for traffic engineers. For one-way road axes (e.g. the Avenues in Manhattan), this is a trivial downstream task. For bidirectional arterials, the well-known necessary condition for establishing a green wave in both directions is that the driving times between two subsequent crossings must be an integer multiple of half of the cycle time of the signal programs at the nodes. In this paper, we propose an integer linear optimization model to establish fixed-time green waves in both directions that are as long and as wide as possible, even in the situation where the driving time condition is not fulfilled. In particular, we are considering an arterial along whose nodes separate left-turn signal groups are realized. In our computational results, we show that scheduling left-turn phases before or after the straight phases can reduce waiting times along the arterial. Moreover, we show that there is always a solution with green waves in both directions that are as long and as wide as possible, where absolute priority is put on just one direction. Compared to optimizing both directions together, establishing an ideal green wave into one direction can only provide suboptimal quality when considering prioritized parts of a green band (e.g., first few seconds).Keywords: traffic light coordination, synchronization, phase sequencing, green waves, integer programming
Procedia PDF Downloads 118