Search results for: sustainable building materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13624

Search results for: sustainable building materials

9844 Numerical Investigation of Thermal Energy Storage System with Phase Change Materials

Authors: Mrityunjay Kumar Sinha, Mayank Srivastava

Abstract:

The position of interface and temperature variation of phase change thermal energy storage system under constant heat injection and radiative heat injection is analysed during charging/discharging process by Heat balance integral method. The charging/discharging process is solely governed by conduction. Phase change material is kept inside a rectangular cavity. Time-dependent fixed temperature and radiative boundary condition applied on one wall, all other walls are thermally insulated. Interface location and temperature variation are analysed by using MATLAB.

Keywords: conduction, melting/solidification, phase change materials, Stefan’s number

Procedia PDF Downloads 387
9843 Experimental and Numerical Evaluation of a Shaft Failure Behaviour Using Three-Point Bending Test

Authors: Bernd Engel, Sara Salman Hassan Al-Maeeni

Abstract:

A substantial amount of natural resources are nowadays consumed at a growing rate, as humans all over the world used materials obtained from the Earth. Machinery manufacturing industry is one of the major resource consumers on a global scale. Even though the incessant finding out of the new material, metals, and resources, it is urgent for the industry to develop methods to use the Earth's resources intelligently and more sustainable than before. Re-engineering of machine tools regarding design and failure analysis is an approach whereby out-of-date machines are upgraded and returned to useful life. To ensure the reliable future performance of the used machine components, it is essential to investigate the machine component failure through the material, design, and surface examinations. This paper presents an experimental approach aimed at inspecting the shaft of the rotary draw bending machine as a case to study. The testing methodology, which is based on the principle of the three-point bending test, allows assessing the shaft elastic behavior under loading. Furthermore, the shaft elastic characteristics include the maximum linear deflection, and maximum bending stress was determined by using an analytical approach and finite element (FE) analysis approach. In the end, the results were compared with the ones obtained by the experimental approach. In conclusion, it is seen that the measured bending deflection and bending stress were well close to the permissible design value. Therefore, the shaft can work in the second life cycle. However, based on previous surface tests conducted, the shaft needs surface treatments include re-carburizing and refining processes to ensure the reliable surface performance.

Keywords: deflection, FE analysis, shaft, stress, three-point bending

Procedia PDF Downloads 151
9842 Balancing Aesthetics, Sustainability, and Safety in Handmade Fabric Face Masks: A Testimony of Creativity and Adaptability

Authors: Anne Mastamet-Mason, Oluwatosin Onakoya, Karla Tissiman

Abstract:

The COVID-19 pandemic that ravaged the world in 2020 brought about the need for handmade fabric face masks in South Africa and beyond. These masks showcased individuality and environmental responsibility and effectively aided our battle against the virus. These practical masks held significant meaning, representing human creativity, resilience, and commitment to sustainability in adversity. This paper examines how aesthetics, sustainability, and safety were achieved in the Handmade Fabric Face Masks. It analyses how their integration signified human agility and resilience to the pandemic while promoting dignity and environmental welfare. The research conducted a qualitative analysis to choose handmade fabric face masks and assess their aesthetic, sustainable, and safety features. The study involved interviewing a group of mask designers and users who evaluated the masks' efficacy in providing protection, aesthetics, and environmental sustainability. Although the designers demonstrated a high level of knowledge in the design aspects, the results indicated a need for more information regarding the functional safety measures and some environmental factors in mask selection and production. The mask analysis also revealed that the masks available in the market combined aesthetics and environmental protection but had limited safety measures. Despite the lack of balance of aesthetics, sustainability, and safety among the designers and the users of hand-fabric masks, functional aspects of fabrics and sustainability literacy are essential

Keywords: sustainable fashion, fabric mask, aesthetics, safety measures

Procedia PDF Downloads 57
9841 Supply Chain Optimization for Silica Sand in a Glass Manufacturing Company

Authors: Ramon Erasmo Verdin Rodriguez

Abstract:

Many has been the ways that historically the managers and gurus has been trying to get closer to the perfect supply chain, but since this topic is so vast and very complex the bigger the companies are, the duty has not been certainly easy. On this research, you are going to see thru the entrails of the logistics that happens at a glass manufacturing company with the number one raw material of the process that is the silica sand. After a very quick passage thru the supply chain, this document is going to focus on the way that raw materials flow thru the system, so after that, an analysis and research can take place to improve the logistics. Thru Operations Research techniques, it will be analyzed the current scheme of distribution and inventories of raw materials at a glass company’s plants, so after a mathematical conceptualization process, the supply chain could be optimized with the purpose of reducing the uncertainty of supply and obtaining an economic benefit at the very end of this research.

Keywords: inventory management, operations research, optimization, supply chain

Procedia PDF Downloads 322
9840 Carbon Nanocomposites : Structure, Characterization and Environmental Application

Authors: Bensacia Nabila, Hadj-Ziane Amel, Sefah Karima

Abstract:

Carbon nanocomposites have received more attention in the last years in view of their special properties such as low density, high specific surface area, and thermal and mechanical stability. Taking into account the importance of these materials, many studies aimed at improving the synthesis process have been conducted. However, the presence of impurities could affect significantly the properties of these materials, and the characterization of these compounds is an important challenge to assure the quality of the new carbon nanocomposites. The present study aims to develop a new recyclable decontaminating material for dyes removal. This new material consists of an active element based on carbon nanotubes wrapped in a microcapsule of iron oxide. The adsorbent is characterized by Transmission electron microscopy, X-ray diffraction and the surface area was measured by the BET method.

Keywords: carbon nanocomposite, chitozen, elimination, dyes

Procedia PDF Downloads 317
9839 Hydro Solidarity and Turkey’s Role as a Waterpower in the Middle East: The Peace Water Pipeline Project

Authors: Filippo Verre

Abstract:

This paper explores Turkey’s role as an influential waterpower in the Middle East, emphasizing the Peace Water Pipeline Project (PWPP) as a paradigm of hydro solidarity rather than conventional water diplomacy. Hydro solidarity transcends the strategic and often competitive nature of water diplomacy, highlighting cooperative, inclusive, and mutually beneficial approaches to water resource management. The PWPP, which aimed to transport freshwater from Turkey’s Manavgat River to several water-scarce nations in the Middle East, exemplifies this ethos. By providing a reliable water supply to address the chronic shortages in the region, the project underscored Turkey’s commitment to fostering regional cooperation, stability, and collective well-being through shared water resources. This paper provides an in-depth analysis of the Peace Water Pipeline Project, examining its technical specifications, environmental impact, and political implications. It discusses how the project’s foundation on principles of hydro solidarity could facilitate stronger regional ties, mitigate water-related conflicts, and promote sustainable development. By prioritizing collective benefits over unilateral gains, Turkey’s approach exemplified a transformative model of resource sharing that could inspire similar initiatives globally. This paper argues that the Peace Water Pipeline Project serves as a crucial case study in demonstrating how shared natural resources can be leveraged to build trust, enhance cooperation, and achieve common goals in a geopolitically volatile region. The findings emphasize the importance of adopting hydro solidarity as a guiding principle for future transboundary water projects, showcasing how collaborative water management can play a pivotal role in fostering peace, security, and sustainable development in the Middle East and beyond. This research is based on a mixed methodological approach combining qualitative and quantitative methods. The most relevant qualitative methods will involve Case Studies and Content Analysis. Concretely, the Friendship Dam Project (FDP) between Turkey and Syria will be mentioned to underline the importance of hydro solidarity approaches as opposed to water diplomacy. Analyzing this case aims to identify factors that contribute to successful hydro solidarity agreements, such as effective communication channels, trust-building measures, and adaptive management practices. Concerning Content Analysis, reviewing and analyzing policy documents, treaties, media reports, and public statements will help identify the official narratives and discourses surrounding the PWPP. This method fully comprehends how different stakeholders frame the issues and what solutions they propose. The quantitative methodology used in this research, which complements the qualitative approaches, involves economic valuation, which quantifies the PWPP’s economic impacts on Turkey and the Middle Eastern region. This includes assessing the cost of construction and maintenance and the financial benefits derived from improved water access and reduced conflict. Hydrological modelling will also be used as a quantitative research method. Using hydrological models to simulate the water flow and distribution scenarios helps quantify the pipeline’s potential impacts on water resources. By assessing the sustainability of water extraction and predicting how changes in water availability might affect different regions, these models play a crucial role in this research, shedding light on the impact of transboundary infrastructures on water management.

Keywords: hydro-solidarity, Middle East, transboundary water management, peace water pipeline project, water scarcity

Procedia PDF Downloads 33
9838 Tourism and Sport: The Acknowledgment of a Strong Relationship for the Environment Framed in a Literature Review

Authors: Rute Martins, Margarida Mascarenhas, Elsa Pereira

Abstract:

The importance between sport and the natural environment was researched through a systematic literature in order to analyse the available scientific articles on the association of sport -angling also the physical activity, active leisure and recreation- and environmental behaviour. The collected data were gathered within the last five years (from 2013 to April 2018) in the Scopus, Web of Science, ScienceDirect, Sage, Green Leaf Online Library, GreenFile (EBSCO) and Wiley online Library databases. The content analysis based on the qualitative methods employed in this study was made with Nvivo software. Regarding only the inclusion of scientific articles, more than half of the collected papers highlighted tourism as the main area where sports is being researched with regard to the environmental theme. Thus, it is possible to extract a perspective of the orientations of the ecological concerns in the sports tourism industry. As such, in the winter sports, the climate change is already an identified issue, wondering about the impact of the environment on the sports practice. In this context, there is a focus on the possible adaptative strategies, researching the characteristics of the sports tourist and the winter sports industry. Regarding the natural parks and protected areas (such as reefs), most of the research is on the environmental impact of the sports tourism, choosing the conservation and the protection of nature as the core topics. The research of the sports tourist profile is addressed by many articles, where the motives for practice and the environmental values are being scanned, and relations to the recreation specialization, environmental responsibility, environmental education, and place-attachment concepts are being made. Regarding the sustainable management, the sports tourism study area is approaching the research in a more holistic way; exploring the stakeholder’s interconnection, focusing on landscape planning and environmentally sustainable practices of sport tourism organizations. The natural parks, protected areas, coral reefs, and snow areas serve as the preferred case-studies for investigating the environmental impact and the ecotourism, in particular, studied through hiking and diving in the great majority. The results of the study are a valuable resource to understand the importance of the sports tourism in the environmental and sustainable action along with the need of embracing all stakeholders within the relationship between the sport and the natural environment.

Keywords: ecotourism, environmental behaviour, outdoor recreation, sport tourism

Procedia PDF Downloads 155
9837 Hibiscus Sabdariffa Extracts: A Sustainable and Eco-Friendly Resource for Multifunctional Cellulosic Fibers

Authors: Mohamed Rehan, Gamil E. Ibrahim, Mohamed S. Abdel-Aziz, Shaimaa R. Ibrahim, Tawfik A. Khattab

Abstract:

The utilization of natural products in finishing textiles toward multifunctional applications without side effects is an extremely motivating goal. Hibiscus sabdariffa usually has been used for many traditional medicine applications. To develop an additional use for Hibiscus sabdariffa, an extraction of bioactive compounds from Hibiscus sabdariffa followed by finishing on cellulosic fibers was designed to cleaner production of the value-added textiles fibers with multifunctional applications. The objective of this study is to explore, identify, and evaluate the bioactive compound extracted from Hibiscus sabdariffa by different solvent via ultrasonic technique as a potential eco-friendly agent for multifunctional cellulosic fabrics via two approaches. In the first approach, Hibiscus sabdariffa extract was used as a source of sustainable eco-friendly for simultaneous coloration and multi-finishing of cotton fabrics via in situ incorporations of nanoparticles (silver and metal oxide). In the second approach, the micro-capsulation of Hibiscus sabdariffa extracts was followed by coating onto cotton gauze to introduce multifunctional healthcare applications. The effect of the solvent type was accelerated by ultrasonic on the phytochemical, antioxidant, and volatile compounds of Hibiscus sabdariffa. The surface morphology and elemental content of the treated fabrics were explored using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). The multifunctional properties of treated fabrics, including coloration, sensor properties and protective properties against pathogenic microorganisms and UV radiation as well as wound healing property were evaluated. The results showed that the water, as well as ethanol/water, was selected as a solvent for the extraction of natural compounds from Hibiscus Sabdariffa with high in extract yield, total phenolic contents, flavonoid contents, and antioxidant activity. These natural compounds were utilized to enhance cellulosic fibers functionalization by imparting faint/dark red color, antimicrobial against different organisms, and antioxidants as well as UV protection properties. The encapsulation of Hibiscus Sabdariffa extracts, as well as wound healing, is under consideration and evaluation. As a result, the current study presents a sustainable and eco-friendly approach to design cellulosic fabrics for multifunctional medical and healthcare applications.

Keywords: cellulosic fibers, Hibiscus sabdariffa extract, multifunctional application, nanoparticles

Procedia PDF Downloads 142
9836 The Use of Software and Internet Search Engines to Develop the Encoding and Decoding Skills of a Dyslexic Learner: A Case Study

Authors: Rabih Joseph Nabhan

Abstract:

This case study explores the impact of two major computer software programs Learn to Speak English and Learn English Spelling and Pronunciation, and some Internet search engines such as Google on mending the decoding and spelling deficiency of Simon X, a dyslexic student. The improvement in decoding and spelling may result in better reading comprehension and composition writing. Some computer programs and Internet materials can help regain the missing awareness and consequently restore his self-confidence and self-esteem. In addition, this study provides a systematic plan comprising a set of activities (four computer programs and Internet materials) which address the problem from the lowest to the highest levels of phoneme and phonological awareness. Four methods of data collection (accounts, observations, published tests, and interviews) create the triangulation to validly and reliably collect data before the plan, during the plan, and after the plan. The data collected are analyzed quantitatively and qualitatively. Sometimes the analysis is either quantitative or qualitative, and some other times a combination of both. Tables and figures are utilized to provide a clear and uncomplicated illustration of some data. The improvement in the decoding, spelling, reading comprehension, and composition writing skills that occurred is proved through the use of authentic materials performed by the student under study. Such materials are a comparison between two sample passages written by the learner before and after the plan, a genuine computer chat conversation, and the scores of the academic year that followed the execution of the plan. Based on these results, the researcher recommends further studies on other Lebanese dyslexic learners using the computer to mend their language problem in order to design and make a most reliable software program that can address this disability more efficiently and successfully.

Keywords: analysis, awareness, dyslexic, software

Procedia PDF Downloads 218
9835 An Economic and Technological Analysis of Green Hydrogen Production for the Toulouse-Blagnac Airport

Authors: Badr Eddine Lebrouhi, Melissa Lopez Viveros, Silvia De Los Santos, Kolthoum Missaoui, Pamela Ramirez Vidal

Abstract:

Since the Paris Climate Agreement, numerous countries, including France, have committed to achieving carbon neutrality by 2050 by enhancing renewable energy capacity and decarbonizing various sectors, including aviation. In this way, the Occitanie region aspires to become a renewable energy pioneer and has focused on Toulouse's Blagnac airport—a prominent hub characterized by high-energy demands. As part of a holistic strategy to reduce the airport's energy dependency, green hydrogen has emerged as a promising alternative fuel, offering the potential to significantly enhance aviation's environmental sustainability. This study assesses the technical and economic aspects of green hydrogen production, particularly its potential to replace fossil kerosene in aviation at Toulouse-Blagnac airport. It analyzes future liquid hydrogen fuel demand, calculates energy requirements for electrolysis and liquefaction, considers diverse renewable energy scenarios, and assesses the Levelized Cost of Hydrogen (LCOH) for economic viability. The research also projects LCOH evolution from 2023 to 2050, offering a comprehensive view of green hydrogen's feasibility as a sustainable aviation fuel, aligning with the region's renewable energy and sustainable aviation objectives.

Keywords: Toulouse-Blagnac Airport, green hydrogen, aviation decarbonization, electrolysis, renewable energy, technical-economic feasibility

Procedia PDF Downloads 54
9834 Mitigation of Size Effects in Woven Fabric Composites Using Finite Element Analysis Approach

Authors: Azeez Shaik, Yagnik Kalariya, Amit Salvi

Abstract:

High-performance requirements and emission norms were forcing the automobile industry to opt for lightweight materials which improve the fuel efficiency and absorb energy during crash applications. In such scenario, the woven fabric composites are providing better energy absorption compared to metals. Woven fabric composites have a repetitive unit cell (RUC) and the mechanical properties of these materials are highly dependent on RUC. This work investigates the importance of detailed modelling of the RUC, the size effects associated and the mitigation techniques to avoid them using Finite element analysis approach.

Keywords: repetitive unit cell, representative volume element, size effects, cohesive zone, finite element analysis

Procedia PDF Downloads 247
9833 Synthesis of Antibacterial Bone Cement from Re-Cycle Biowaste Containing Methylmethacrylate (MMA) Matrix

Authors: Sungging Pintowantoro, Yuli Setiyorini, Rochman Rochim, Agung Purniawan

Abstract:

The bacterial infections are frequent and undesired occurrences after bone fracture treatment. One approach to reduce the incidence of bone fracture infection is the additional of microbial agents into bone cement. In this study, the synthesis of bone cement from re-cycles biowaste was successfully conducted completed with anti-bacterial function. The re-cycle of biowaste using microwave assisted was done in our previous studies in order to produce some of powder (calcium carbonate, carbonated-hydroxyapatite and chitosan). The ratio of these powder combined with methylmethacrylate (MMA) as the matrix in bone cement were investigated using XRD, FTIR, SEM-EDX, hardness test and anti-bacterial test, respectively. From the XRD, FTIR and EDX were resulted the formation of carbonated-hydroxyapatite, calcium carbonate and chitosan. The morphology was revealed porous structure both C2H3K1L and C2H1K3L, respectively. The antibacterial activity was tested against Staphylococcus aureus (S. aureus) for 24 hours. The inhibition of S. aureus was clearly shown, the hollow zone was resulted in various distance 14.2mm, 7.5mm, and 7.7mm, respectively. The hardness test was depicted in various results, however, C2H1K3L can be achived 36.84HV which is closed to dry cancelous bone 35HV. In general, this study results was promising materials to use as bone cement materials.

Keywords: biomaterials, biowaste recycling, materials processing, microwave processing

Procedia PDF Downloads 349
9832 Ergonomics Sallow Recharge Well for Sustainable Ground Water Resources

Authors: Lilik Sudiajeng, Wiraga Wayan, Lanang Parwita I Gusti

Abstract:

This is the ongoing research started in 2013 with the final aim is to design the recharge wells both for housing and industry for ground water conservation in Bali - Indonesia. The research started in Denpasar Regency, one of the strategic areas in Bali. The research showed that there is some critical area of ground water resources, especially in north and west part of Denpasar Regency. It driven by the rapid increase of the tourism industry which is followed by the high rate of population, change of land use that leads to the decreasing of rain water catchment areas, and less awareness on preserve natural resources, including ground water. Focus Group Discussion concluded that in order to solve the problem of groundwater crisis, requires the contribution of all parties, started from making simple recharge well for housing. Because of the availability of land is limited and expensive, it is necessary to present an ergonomic shallow recharge well in accordance with the ability of the family or community. The ergonomics shallow recharge well is designed based on the data of hydrology and the characteristics of soil. The design is very flexible depending on the availability of land, environmentally friendly, energy efficient, culture-based, and affordable. To meet the recommended standard of ground water quality, then it equipped with a filtration and sedimentation ponds. Before design recharge wells is disseminated to the public, it is necessary to analyze the effectiveness of the wells to harvest and absorb rainwater into the ground.

Keywords: ergonomics, ground water resources, recharge well, sustainable

Procedia PDF Downloads 248
9831 A Higher Order Shear and Normal Deformation Theory for Functionally Graded Sandwich Beam

Authors: R. Bennai, H. Ait Atmane, Jr., A. Tounsi

Abstract:

In this work, a new analytical approach using a refined theory of hyperbolic shear deformation of a beam was developed to study the free vibration of graduated sandwiches beams under different boundary conditions. The effects of transverse shear strains and the transverse normal deformation are considered. The constituent materials of the beam are supposed gradually variable depending the height direction based on a simple power distribution law in terms of the volume fractions of the constituents; the two materials with which we worked are metals and ceramics. The core layer is taken homogeneous and made of an isotropic material; while the banks layers consist of FGM materials with a homogeneous fraction compared to the middle layer. Movement equations are obtained by the energy minimization principle. Analytical solutions of free vibration and buckling are obtained for sandwich beams under different support conditions; these conditions are taken into account by incorporating new form functions. In the end, illustrative examples are presented to show the effects of changes in different parameters such as (material graduation, the stretching effect of the thickness, boundary conditions and thickness ratio - length) on the vibration free and buckling of an FGM sandwich beams.

Keywords: functionally graded sandwich beam, refined shear deformation theory, stretching effect, free vibration

Procedia PDF Downloads 241
9830 How Vernacular Attributes of Traditional Buildings Can Be Integrated Into Modern Designs - A Case Study of Thirumayilai, Mylapore

Authors: Divya Ramaseshan

Abstract:

The indigenous beauty of a space supported by its local context is unmatchable. India, known to be a hub for varied cultural significance, has one of the best uses of vernacularism. This paper focuses on the traditional houses present in Thirumayilai, Mylapore, one of the oldest and most populous cities in Chennai. The Mylapore houses are known for their Agraharam style with thinnai, courtyard, and sloping roof characteristics. These homes had a combined influence of Indian, Islamic as well as Neo-classical architecture in their design. The design of the houses reflects the lives of Brahmin communities which have almost vanished from sight now. According to the growing demands of local residents as well as urbanization, many houses have been renovated. Some of those structures have been conserved in certain streets showcasing their historical identity. Other structures have either been demolished or redesigned based on people’s needs. Those structures have been identified and studied to understand the comparative features that have been changed. Many of those were in direct relevance to the city’s climate, family size, socializing habits, and local materials. Being a temple town, Mylapore has contour variations sloping towards various water bodies. These factors have been considered for building homes as well. The study aims to list down the possible design guidelines that could be effective in today’s construction field. The pros and cons are analyzed, and the respective methodologies are framed. Our modern construction technologies have brought in the best visual aesthetics in a short frame of time, but the serene touch of teak wood, walking through paved stones, daydreaming in the sunlit courtyards, and chitchatting in porticos are always cherished. Architects around the world are trying hard to achieve such appreciated design elements in upcoming projects with the best use of modern technology. This will also improvise people’s mental health in the comfort of their homes.

Keywords: Agraharam, Mylapore, traditional, vernacularism

Procedia PDF Downloads 97
9829 Rejuvenating a Space into World Class Environment through Conservation of Heritage Architecture

Authors: Abhimanyu Sharma

Abstract:

India is known for its cultural heritage. As the country is rich in diversity along its length and breadth, the state of Jammu & Kashmir is world famous for the beautiful tourist destinations in the Kashmir region of the state. However, equally destined destinations are also located in Jammu region of the said state. For most of the time in last 50-60 years, the prime focus of development was centered around Kashmir region. But now due to an ever increase in globalization, the focus is decentralizing throughout the country. Pertinently, the potential of Jammu Region needs to be incorporated into the world tourist map in particular. One such spot in the Jammu region of the state is a place called ‘Mubarak Mandi’ – the palace with the royal residence of the Maharaja of Jammu & Kashmir from the Dogra Dynasty, is located in the heart of Jammu city (the winter capital of the state). Since the place is destined with a heritage importance but yet lack the supporting infrastructure to attract the national tourist in general and worldwide tourist at large. For such places, conservation and restoration of the existing structures are the potential tools to overcome the present limiting nature of the place. The rejuvenation of this place through potential and dynamic conservation techniques is targeted through this paper. This paper deals with developing and restoring the areas within the whole campus with appropriate building materials, conservation techniques, etc. to promote a great number of visitors by developing it into a prioritised tourist attraction point. Major thrust shall be on studying the criteria’s for developing the place considering the psychological effect needed to create a socially interactive environment. Additionally, thrust shall be on the spatial elements that will aid in creating a common platform for all kinds of tourists. Accordingly, different conservation guidelines (or model) shall be targeted through this paper so that this Jammu region shall also be an equally contributor to the tourist graph of the country as the Kashmir part is.

Keywords: conservation, heritage architecture, rejuvenating, restoration

Procedia PDF Downloads 291
9828 Electrochemical Study of Copper–Tin Alloy Nucleation Mechanisms onto Different Substrates

Authors: Meriem Hamla, Mohamed Benaicha, Sabrine Derbal

Abstract:

In the present work, several materials such as M/glass (M = Pt, Mo) were investigated to test their suitability for studying the early nucleation stages and growth of copper-tin clusters. It was found that most of these materials stand as good substrates to be used in the study of the nucleation and growth of electrodeposited Cu-Sn alloys from aqueous solution containing CuCl2, SnCl2 as electroactive species and Na3C6H5O7 as complexing agent. Among these substrates, Pt shows instantaneous models followed by 3D diffusion-limited growth. On the other hand, the electrodeposited copper-tin thin films onto Mo substrate followed progressive nucleation. The deposition mechanism of the Cu-Sn films has been studied using stationary electrochemical techniques (cyclic voltammetery (CV) and chronoamperometry (CA). The structural, morphological and compositional of characterization have been studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and EDAX techniques respectively.

Keywords: electrodeposition, CuSn, nucleation, mechanism

Procedia PDF Downloads 392
9827 Salinity Effects on Germination of Malaysian Rice Varieties and Weedy Rice Biotypes

Authors: M. Kamal Uddin, H. Mohd Dandan, Ame H. Alidin

Abstract:

Germination and seedling growth of plant species are reduced in saline due to an external osmotic potential. An experiment was conducted at the laboratory, Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, to compare the salt effect on seed germination and growth of weedy rice and cultivated rice. Seeds (10 in each) were placed in petri dishes. Five salinity levels 0 (distilled water), 4, 8, 12 and 16 dSm-1 (NaCl) were applied. The number of germinated seeds was recorded daily. The final germination percentage, germination index (GI), seedling vigour index (SVI) mean germination time (MGT), shoot and root dry weight were estimated. At highest salinity (16 dSm-1) germination percentage was higher (100%) in weedy rice awn and weedy rice compact. Lowest germination percentage was in MR219 and TQR-8 (50-60%). Mean germination time (MGT) was found higher in all weedy rice biotypes compared to cultivated rice. At highest salinity (16dSm-1) weedy rice open produced the highest MGT (9.92) followed by weedy rice compact (9.73) while lowest MGT was in MR219 (9.48). At highest salinity (16dSm-1) germination index was higher in weedy rice awn (11.71) and compact type (9.62). Lowest germination index was in MR219 (5.90) and TQR-8 (8.94). At the highest salinity (16 dSm−1), seedling vigor index was highest in weedy rice awn (6.06) followed by weedy rice compact (5.26); while lowest was in MR219 (2.11) followed by MR269 (3.82).On the basis of Germination index, seedling vigor index and growth related results it could be concluded that weedy rice awn, compact and open biotypes were more salt tolerant compared to other cultivated rice MR219, MR269, and TQR-8.

Keywords: germination, salinity, rice and weedy rice, sustainable agriculture

Procedia PDF Downloads 484
9826 Universal Design Implementation in a Private University; Investment, Decision Making, Perceptions and the Value of Social Capital

Authors: Sridara Tipian, Henry Skates Jr., Antika Sawadsri

Abstract:

It is widely recognized that universal design should be implemented as broadly as possible to benefit as many groups and sub groups of people within a society. In Thailand, public buildings such as public universities are obvious places where the benefits of universal design principles are easily appreciated and applied, but there are other building types such as private universities where the benefits may not be just as obvious. In these buildings, the implementation of universal design is not always achieved. There are many reasons given for this among which is the perceived additional cost of implementation. This paper argues that social capital should be taken into consideration when such decisions are being made. The paper investigates the background, principles and theories pertaining to universal design and using a case study of a private university, investigates the implementation of universal design against the background of current legislation and the perceptions of the private university administrators. The study examines the physical facilities of the case study university in the context of current theories and principles of universal design alongside the legal requirements for same. A survey of building users evaluates knowledge of and attitudes to universal design. The research shows that although administrators perceive the initial cost of investment to be prohibitive in the short term, in the long term, changes in societal values in relation to social inclusiveness are changing and that the social capital of investing in universal design should not be underestimated. The results of this study should provide greater incentive for the enforcement of the legal requirements for universal design in Thailand.

Keywords: public buildings, physical facilities, social capital private university, investment, decision making, value, enforcement, legal requirements

Procedia PDF Downloads 271
9825 Thermosalient Effect of an Organic Aminonitrile and its Derivatives

Authors: Lukman O. Alimi, Vincent J. Smith, Leonard J. Barbour

Abstract:

The thermosalient effect is an extremely rare propensity of certain crystalline solids for self-actuation by elastic deformation or a ballistic event1. Thermosalient compounds, colloquially known as ‘jumping crystals’ are promising materials for fabrication of actuators that are also being considered as materials for clean energy conversion because of their capabilities to convert thermal energy into mechanical motion directly. Herein, an organic aminonitrile and its derivatives have been probed by a combination of structural, microscopic and thermoanalytical techniques. Crystals of these compounds were analysed by means of single crystal XRD and hotstage microscopy in the temperature range of 100 to 298 K and found to exhibit the thermosalient effect. We also carried out differential scanning calorimetric analysis at the temperature corresponding to that at which the crystal jumps as observed under a hotstage microscope.

Keywords: aminonitrile, jumping crystal, self actuation, thermosalient effect

Procedia PDF Downloads 428
9824 Electrochemical Properties of Li-Ion Batteries Anode Material: Li₃.₈Cu₀.₁Ni₀.₁Ti₅O₁₂

Authors: D. Olszewska, J. Niewiedzial

Abstract:

In some types of Li-ion batteries carbon in the form of graphite is used. Unfortunately, carbon materials, in particular graphite, have very good electrochemical properties, but increase their volume during charge/discharge cycles, which may even lead to an explosion of the cell. The cell element may be replaced by a composite material consisting of lithium-titanium oxide Li4Ti5O12 (LTO) modified with copper and nickel ions and carbon derived from sucrose. This way you can improve the conductivity of the material. LTO is appropriate only for applications which do not require high energy density because of its high operating voltage (ca. 1.5 V vs. Li/Li+). Specific capacity of Li4Ti5O12 is high enough for utilization in Li-ion batteries (theoretical capacity 175 mAh·g-1) but it is lower than capacity of graphite anodes. Materials based on Li4Ti5O12 do not change their volume during charging/discharging cycles, however, LTO has low conductivity. Another positive aspect of the use of sucrose in the carbon composite material is to eliminate the addition of carbon black from the anode of the battery. Therefore, the proposed materials contribute significantly to environmental protection and safety of selected lithium cells. New anode materials in order to obtain Li3.8Cu0.1Ni0.1Ti5O12 have been prepared by solid state synthesis using three-way: i) stoichiometric composition of Li2CO3, TiO2, CuO, NiO (A- Li3.8Cu0.1Ni0.1Ti5O12); ii) stoichiometric composition of Li2CO3, TiO2, Cu(NO3)2, Ni(NO3)2 (B-Li3.8Cu0.1Ni0.1Ti5O12); and iii) stoichiometric composition of Li2CO3, TiO2, CuO, NiO calcined with 10% of saccharose (Li3.8Cu0.1Ni0.1Ti5O12-C). Structure of materials was studied by X-ray diffraction (XRD). The electrochemical properties were performed using appropriately prepared cell Li|Li+|Li3.8Cu0.1Ni0.1Ti5O12 for cyclic voltammetry and discharge/charge measurements. The cells were periodically charged and discharged in the voltage range from 1.3 to 2.0 V applying constant charge/discharge current in order to determine the specific capacity of each electrode. Measurements at various values of the charge/discharge current (from C/10 to 5C) were carried out. Cyclic voltammetry investigation was carried out by applying to the cells a voltage linearly changing over time at a rate of 0.1 mV·s-1 (in the range from 2.0 to 1.3 V and from 1.3 to 2.0 V). The XRD method analyzes show that composite powders were obtained containing, in addition to the main phase, 4.78% and 4% TiO2 in A-Li3.8Cu0.1Ni0.1O12 and B-Li3.8Cu0.1Ni0.1O12, respectively. However, Li3.8Cu0.1Ni0.1O12-C material is three-phase: 63.84% of the main phase, 17.49 TiO2 and 18.67 Li2TiO3. Voltammograms of electrodes containing materials A-Li3.8Cu0.1Ni0.1O12 and B-Li3.8Cu0.1Ni0.1O12 are correct and repeatable. Peak cathode occurs for both samples at a potential approx. 1.52±0.01 V relative to a lithium electrode, while the anodic peak at potential approx. 1.65±0.05 V relative to a lithium electrode. Voltammogram of Li3.8Cu0.1Ni0.1Ti5O12-C (especially for the first measurement cycle) is not correct. There are large variations in values of specific current, which are not characteristic for materials LTO. From the point of view of safety and environmentally friendly production of Li-ion cells eliminating soot and applying Li3.8Cu0.1Ni0.1Ti5O12-C as an active material of an anode in lithium-ion batteries seems to be a good alternative to currently used materials.

Keywords: anode, Li-ion batteries, Li₄O₅O₁₂, spinel

Procedia PDF Downloads 146
9823 Assessment of Environmental Impacts and Determination of Sustainability Level of BOOG Granite Mine Using a Mathematical Model

Authors: Gholamhassan Kakha, Mohsen Jami, Daniel Alex Merino Natorce

Abstract:

Sustainable development refers to the creation of a balance between the development and the environment too; it consists of three key principles namely environment, society and economy. These three parameters are related to each other and the imbalance occurs in each will lead to the disparity of the other parts. Mining is one of the most important tools of the economic growth and social welfare in many countries. Meanwhile, assessment of the environmental impacts has directed to the attention of planners toward the natural environment of the areas surrounded by mines and allowing for monitoring and controlling of the current situation by the designers. In this look upon, a semi-quantitative model using a matrix method is presented for assessing the environmental impacts in the BOOG Granite Mine located in Sistan and Balouchestan, one of the provinces of Iran for determining the effective factors and environmental components. For accomplishing this purpose, the initial data are collected by the experts at the next stage; the effect of the factors affects each environmental component is determined by specifying the qualitative viewpoints. Based on the results, factors including air quality, ecology, human health and safety along with the environmental damages resulted from mining activities in that area. Finally, the results gained from the assessment of the environmental impact are used to evaluate the sustainability by using Philips mathematical model. The results show that the sustainability of this area is weak, so environmental preventive measures are recommended to reduce the environmental damages to its components.

Keywords: sustainable development, environmental impacts' assessment, BOOG granite, Philips mathematical model

Procedia PDF Downloads 194
9822 Optimization of Horticultural Crops by Using the Peats from Rawa Pening Lake as Soil Conditioner

Authors: Addharu Eri, Ningsih P. Lestari, Setyorini Adheliya, Syaiputri Khaidifah

Abstract:

Rawa Pening is a lake at the Ambarawa Basin in Central Java, Indonesia. It serves as a source of power (hydroelectricity), irrigation, and flood control. The potential of this lake is getting worse by the presence of aquatic plants (Eichhornia crassipes) that grows wild, and it can make the lake covered by the cumulation of rotten E. crassipes. This cumulation causes the sediment formation which has high organic material composition. Sediment formation will be lead into a shallowing of the lake and affect water’s quality. The deposition of organic material produces methane gas and hydrogen sulfide, which in rain would turn the water muddy and decompose. Decomposition occuring in the water due to microbe activity in lake's water. The shallowing of Rawa Pening Lake not only will physically can reduce water discharge, but it also has ecologically major impact on water organism. The condition of Rawa Pening Lake peats can not be considered as unimportant issue. One of the solutions that can be applied is by using the peats as a compound materials on growing horticultural crops because the organic materials content on the mineral soil is low, particularly on an old soils. The horticultural crops required organic materials for growth promoting. The horticultural crops that use in this research is mustard cabbage (Brassica sp.). Using Rawa Pening's peats as the medium of plants with high organic materials that also can ameliorate soil’s physical properties, and indirectly serves as soil conditioner. Research will be focus on the peat’s contents and mustard cabbage product’s content. The contents that will be examined is the N-available, Ca, Mg, K, P, and C-organic. The analysis of Ca, Mg, and K is use soil base saturation measurement method and extracting soil is use NH4OAC solution. The aim of this study is to use the peats of Rawa Pening Lake as soil conditioner and increase the productivity of Brassica sp.

Keywords: Brassica sp., peats, rawa pening lake, soil conditioner

Procedia PDF Downloads 245
9821 Optimization of Territorial Spatial Functional Partitioning in Coal Resource-based Cities Based on Ecosystem Service Clusters - The Case of Gujiao City in Shanxi Province

Authors: Gu Sihao

Abstract:

The coordinated development of "ecology-production-life" in cities has been highly concerned by the country, and the transformation development and sustainable development of resource-based cities have become a hot research topic at present. As an important part of China's resource-based cities, coal resource-based cities have the characteristics of large number and wide distribution. However, due to the adjustment of national energy structure and the gradual exhaustion of urban coal resources, the development vitality of coal resource-based cities is gradually reduced. In many studies, the deterioration of ecological environment in coal resource-based cities has become the main problem restricting their urban transformation and sustainable development due to the "emphasis on economy and neglect of ecology". Since the 18th National Congress of the Communist Party of China (CPC), the Central Government has been deepening territorial space planning and development. On the premise of optimizing territorial space development pattern, it has completed the demarcation of ecological protection red lines, carried out ecological zoning and ecosystem evaluation, which have become an important basis and scientific guarantee for ecological modernization and ecological civilization construction. Grasp the regional multiple ecosystem services is the precondition of the ecosystem management, and the relationship between the multiple ecosystem services study, ecosystem services cluster can identify the interactions between multiple ecosystem services, and on the basis of the characteristics of the clusters on regional ecological function zoning, to better Social-Ecological system management. Based on this cognition, this study optimizes the spatial function zoning of Gujiao, a coal resource-based city, in order to provide a new theoretical basis for its sustainable development. This study is based on the detailed analysis of characteristics and utilization of Gujiao city land space, using SOFM neural networks to identify local ecosystem service clusters, according to the cluster scope and function of ecological function zoning of space partition balance and coordination between different ecosystem services strength, establish a relationship between clusters and land use, and adjust the functions of territorial space within each zone. Then, according to the characteristics of coal resources city and national spatial function zoning characteristics, as the driving factors of land change, by cellular automata simulation program, such as simulation under different restoration strategy situation of urban future development trend, and provides relevant theories and technical methods for the "third-line" demarcations of Gujiao's territorial space planning, optimizes territorial space functions, and puts forward targeted strategies for the promotion of regional ecosystem services, providing theoretical support for the improvement of human well-being and sustainable development of resource-based cities.

Keywords: coal resource-based city, territorial spatial planning, ecosystem service cluster, gmop model, geosos-FLUS model, functional zoning optimization and upgrading

Procedia PDF Downloads 54
9820 The Design of English Materials to Communicate the Identity of Mueang Distict, Samut Songkram for Ecotourism

Authors: Kitda Praraththajariya

Abstract:

The main purpose of this research was to study how to communicate the identity of the Mueang district, Samut Songkram province for ecotourism. The qualitative data was collected through studying related materials, exploring the area, in-depth interviews with three groups of people: three directly responsible officers who were key informants of the district, twenty foreign tourists and five Thai tourist guides. A content analysis was used to analyze the qualitative data. The two main findings of the study were as follows: 1. The identity of Amphur (District) Mueang, Samut Songkram province. This establishment was near the Mouth of Maekong River for normal people and tourists, consisting of rest accommodations. There are restaurants where food and drinks are served, rich mangrove forests, Hoy Lod (Razor Clam) and mangrove trees. Don Hoy Lod, is characterized by muddy beaches, is a coastal wetland for Ramsar Site. It is at 1099th ranging where the greatest number of Hoy Lod (Razor Clam) can be seen from March to May each year. 2. The communication of the identity of Amphur Mueang, Samut Songkram province which the researcher could find and design to present in English materials can be summed up in 4 items: 1) The history of Amphur Mueang, Samut Songkram province 2) Wat Phet Samut Worrawihan 3) The Learning source of Ecotourism: Don Hoy Lod and Mangrove forest 4) How to keep Amphur Mueang, Samut Songkram province for ecotourism.

Keywords: foreigner tourists, signified, semiotics, ecotourism

Procedia PDF Downloads 236
9819 Production and Mechanical Characterization of Ballistic Thermoplastic Composite Materials

Authors: D. Korsacilar, C. Atas

Abstract:

In this study, first thermoplastic composite materials/plates that have high ballistic impact resistance were produced. For this purpose, the thermoplastic prepreg and the vacuum bagging technique were used to produce a composite material. Thermoplastic prepregs (resin-impregnated fiber) that are supplied ready to be used, namely high-density polyethylene (HDPE) was chosen as matrix and unidirectional glass fiber was used as reinforcement. In order to compare the fiber configuration effect on mechanical properties, unidirectional and biaxial prepregs were used. Then the microstructural properties of the composites were investigated with scanning electron microscopy (SEM) analysis. Impact properties of the composites were examined by Charpy impact test and tensile mechanical tests and then the effects of ultraviolet irradiation were investigated on mechanical performance.

Keywords: ballistic, composite, thermoplastic, prepreg

Procedia PDF Downloads 438
9818 Hydrogen Storage in Carbonized Coconut Meat (Kernel)

Authors: Viney Dixit, Rohit R. Shahi, Ashish Bhatnagar, P. Jain, T. P. Yadav, O. N. Srivastava

Abstract:

Carbons are being widely investigated as hydrogen storage material owing to their light weight, fast hydrogen absorption kinetics and low cost. However, these materials suffer from low hydrogen storage capacity at room temperature. The aim of the present study is to synthesize carbon based material which shows moderate hydrogen storage at room temperature. For this purpose, hydrogenation characteristics of natural precursor coconut kernel is studied in this work. The hydrogen storage measurement reveals that the as-synthesized materials have good hydrogen adsorption and desorption capacity with fast kinetics. The synthesized material absorbs 8 wt.% of hydrogen at liquid nitrogen temperature and 2.3 wt.% at room temperature. This could be due to the presence of certain elements (KCl, Mg, Ca) which are confirmed by TEM.

Keywords: coconut kernel, carbonization, hydrogenation, KCl, Mg, Ca

Procedia PDF Downloads 415
9817 Sustainability of Ecotourism Related Activities in the Town of Yercaud: A Modeling Study

Authors: Manoj Gupta Charan Pushparaj

Abstract:

Tourism related activities are getting popular day by day and tourism has become an integral part of everyone’s life. Ecotourism initiatives have grown enormously in the past decade, and the concept of ecotourism has shown to bring great benefits in terms of environment conservation and to improve the livelihood of local people. However, the potential of ecotourism to sustain improving the livelihood of the local population in the remote future is a topic of active debate. A primary challenge that exists in this regard is the enormous costs of limiting the impacts of tourism related activities on the environment. Here we employed systems modeling approach using computer simulations to determine if ecotourism activities in the small hill town of Yercaud (Tamil Nadu, India) can be sustained over years in improving the livelihood of the local population. Increasing damage to the natural environment as a result of tourism-related activities have plagued the pristine hill station of Yercaud. Though ecotourism efforts can help conserve the environment and enrich local population, questions remain if this can be sustained in the distant future. The vital state variables in the model are the existing tourism foundation (labor, services available to tourists, etc.,) in the town of Yercaud and its natural environment (water, flora and fauna). Another state variable is the textile industry that drives the local economy. Our results would help to understand if environment conservation efforts are sustainable in Yercaud and would also offer suggestions to make it sustainable over the course of several years.

Keywords: ecotourism, simulations, modeling, Yercaud

Procedia PDF Downloads 267
9816 Material Supply Mechanisms for Contemporary Assembly Systems

Authors: Rajiv Kumar Srivastava

Abstract:

Manufacturing of complex products such as automobiles and computers requires a very large number of parts and sub-assemblies. The design of mechanisms for delivery of these materials to the point of assembly is an important manufacturing system and supply chain challenge. Different approaches to this problem have been evolved for assembly lines designed to make large volumes of standardized products. However, contemporary assembly systems are required to concurrently produce a variety of products using approaches such as mixed model production, and at times even mass customization. In this paper we examine the material supply approaches for variety production in moderate to large volumes. The conventional approach for material delivery to high volume assembly lines is to supply and stock materials line-side. However for certain materials, especially when the same or similar items are used along the line, it is more convenient to supply materials in kits. Kitting becomes more preferable when lines concurrently produce multiple products in mixed model mode, since space requirements could increase as product/ part variety increases. At times such kits may travel along with the product, while in some situations it may be better to have delivery and station-specific kits rather than product-based kits. Further, in some mass customization situations it may even be better to have a single delivery and assembly station, to which an entire kit is delivered for fitment, rather than a normal assembly line. Finally, in low-moderate volume assembly such as in engineered machinery, it may be logistically more economical to gather materials in an order-specific kit prior to launching final assembly. We have studied material supply mechanisms to support assembly systems as observed in case studies of firms with different combinations of volume and variety/ customization. It is found that the appropriate approach tends to be a hybrid between direct line supply and different kitting modes, with the best mix being a function of the manufacturing and supply chain environment, as well as space and handling considerations. In our continuing work we are studying these scenarios further, through the use of descriptive models and progressing towards prescriptive models to help achieve the optimal approach, capturing the trade-offs between inventory, material handling, space, and efficient line supply.

Keywords: assembly systems, kitting, material supply, variety production

Procedia PDF Downloads 219
9815 Characterization of Sintered Fe-Cr-Mn Powder Mixtures Containing Intermetallics

Authors: A. Yonetken, A. Erol, M. Cakmakkaya

Abstract:

Intermetallic materials are among advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %88Ni-%10Cr and %2Mn powders were investigated using specimens produced by tube furnace sintering at 900-1300°C temperature. A composite consisting of ternary additions, a metallic phase, Fe ,Cr and Mn have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %88Ni-%10Cr and %2Mn at 1300°C suggest that the best properties as 138,80HV and 6,269/cm3 density were obtained at 1300°C.

Keywords: composite, high temperature, intermetallic, sintering

Procedia PDF Downloads 404