Search results for: learning satisfaction
4870 In the Spirit of Open Educational Resources: Library Resources and Fashion Merchandising
Authors: Lizhu Y. Davis, Gretchen Higginbottom, Vang Vang
Abstract:
This presentation explores the adoption of library resources to engage students in a Visual Merchandising course during the 2016 spring semester. This study was a cross-disciplinary collaboration between the Fashion Merchandising Program and the Madden Library at California State University, Fresno. The goal of the project was to explore and assess the students’ use of library resources as a part of the Affordable Learning Solutions Initiative, a California State University (CSU) Office of the Chancellor Program that enables faculty to choose and provide high-quality, free or low-cost educational materials for their students. Students were interviewed afterwards and the results were generally favorable and provided insight into how students perceive and use library resources to support their research needs. This study reveals an important step in examining how open educational resources impact student learning.Keywords: collaboration, library resources, open educational resources, visual merchandising
Procedia PDF Downloads 3134869 Applying Quadrant Analysis in Identifying Business-to-Business Customer-Driven Improvement Opportunities in Third Party Logistics Industry
Authors: Luay Jum'a
Abstract:
Many challenges are facing third-party logistics (3PL) providers in the domestic and global markets which create a volatile decision making environment. All these challenges such as managing changes in consumer behaviour, demanding expectations from customers and time compressions have turned into complex problems for 3PL providers. Since the movement towards increased outsourcing outpaces movement towards insourcing, the need to achieve a competitive advantage over competitors in 3PL market increases. This trend continues to grow over the years and as a result, areas of strengths and improvements are highlighted through the analysis of the LSQ factors that lead to B2B customers’ satisfaction which become a priority for 3PL companies. Consequently, 3PL companies are increasingly focusing on the most important issues from the perspective of their customers and relying more on this value of information in making their managerial decisions. Therefore, this study is concerned with providing guidance for improving logistics service quality (LSQ) levels in the context of 3PL industry in Jordan. The study focused on the most important factors in LSQ and used a managerial tool that guides 3PL companies in making LSQ improvements based on a quadrant analysis of two main dimensions: LSQ declared importance and LSQ inferred importance. Although, a considerable amount of research has been conducted to investigate the relationship between logistics service quality (LSQ) and customer satisfaction, there remains a lack of developing managerial tools to aid in the process of LSQ improvement decision-making. Moreover, the main advantage for the companies to use 3PL service providers as a trend is due to the realised percentage of cost reduction on the total cost of logistics operations and the incremental improvement in customer service. In this regard, having a managerial tool that help 3PL service providers in managing the LSQ factors portfolio effectively and efficiently would be a great investment for service providers. One way of suggesting LSQ improvement actions for 3PL service providers is via the adoption of analysis tools that perform attribute categorisation such as Importance–Performance matrix. In mind of the above, it can be stated that the use of quadrant analysis will provide a valuable opportunity for 3PL service providers to identify improvement opportunities as customer service attributes or factors importance are identified in two different techniques that complete each other. Moreover, the data were collected through conducting a survey and 293 questionnaires were returned from business-to-business (B2B) customers of 3PL companies in Jordan. The results showed that the LSQ factors vary in their importance and 3PL companies should focus on some LSQ factors more than other factors. Moreover, ordering procedures, timeliness/responsiveness LSQ factors considered being crucial in 3PL businesses and therefore they need to have more focus and development by 3PL service providers in the Jordanian market.Keywords: logistics service quality, managerial decisions, quadrant analysis, third party logistics service provider
Procedia PDF Downloads 1274868 A Scoping Review of the Relationship Between Oral Health and Wellbeing: The Myth and Reality
Authors: Heba Salama, Barry Gibson, Jennifer Burr
Abstract:
Introduction: It is often argued that better oral health leads to better wellbeing, and the goal of dental care is to improve wellbeing. Notwithstanding, to our best knowledge, there is a lack of evidence to support the relationship between oral health and wellbeing. Aim: The scoping review aims to examine current definitions of health and wellbeing as well as map the evidence to examine the relationship between oral health and wellbeing. Methods: The scoping review followed the Preferred Reporting Items for Systematic Reviews Extension for Scoping Review (PRISMA-ScR). A two-phase search strategy was followed because of the unmanageable number of hits returned. The first phase was to identify how well-being was conceptualised in oral health literacy, and the second phase was to search for extracted keywords. The extracted keywords were searched in four databases: PubMed, CINAHL, PsycINFO, and Web of Science. To limit the number of studies to a manageable amount, the search was limited to the open-access studies that have been published in the last five years (from 2018 to 2022). Results: Only eight studies (0.1%) of the 5455 results met the review inclusion criteria. Most of the included studies defined wellbeing based on the hedonic theory. And the Satisfaction with Life Scale is the most used. Although the research results are inconsistent, it has generally been shown that there is a weak or no association between oral health and wellbeing. Interpretation: The review revealed a very important point about how oral health literature uses loose definitions that have significant implications for empirical research. That results in misleading evidence-based conclusions. According to the review results, improving oral health is not a key factor in improving wellbeing. It appears that investing in oral health care to improve wellbeing is not a top priority to tell policymakers about. This does not imply that there should be no investment in oral health care to improve oral health. That could have an indirect link to wellbeing by eliminating the potential oral health-related barriers to quality of life that could represent the foundation of wellbeing. Limitation: Only the most recent five years (2018–2022), peer-reviewed English-language literature, and four electronic databases were included in the search. These restrictions were put in place to keep the volume of literature at a manageable level. This suggests that some significant studies might have been omitted. Furthermore, the study used a definition of wellbeing that is currently being evolved and might not everyone agrees with it. Conclusion: Whilst it is a ubiquitous argument that oral health is related to wellbeing, and this seems logical, there is little empirical evidence to support this claim. This question, therefore, requires much more detailed consideration. Funding: This project was funded by the Ministry of Higher Education and Scientific Research in Libya and Tripoli University.Keywords: oral health, wellbeing, satisfaction, emotion, quality of life, oral health related quality of life
Procedia PDF Downloads 1194867 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System
Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García
Abstract:
In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.Keywords: Intelligent Transportation Systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning
Procedia PDF Downloads 4724866 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model
Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson
Abstract:
The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania
Procedia PDF Downloads 1064865 Participation of Students and Lecturers in Social Networking for Teaching and Learning in Public Universities in Rivers State, Nigeria
Authors: Nkeiruka Queendarline Nwaizugbu
Abstract:
The use of social media and mobile devices has become acceptable in virtually all areas of today’s world. Hence, this study is a survey that was carried out to find out if students and lecturers in public universities in Rivers State use social networking for educational purposes. The sample of the study comprised of 240 students and 99 lecturers from the University of Port Harcourt and the Rivers State University of science and Technology. The study had five research questions, two hypotheses and the instrument for data collection was a 4-point Likert-type rating scale questionnaire. The data was analysed using mean, standard deviation and z-test. The findings gotten from the analysed data shows that students participate in social networking using different types of web applications but they hardly use them for educational purposes. Some recommendations were also made.Keywords: internet access, mobile learning, participation, social media, social networking, technology
Procedia PDF Downloads 4234864 Theoretical and ML-Driven Identification of a Mispriced Credit Risk
Authors: Yuri Katz, Kun Liu, Arunram Atmacharan
Abstract:
Due to illiquidity, mispricing on Credit Markets is inevitable. This creates huge challenges to banks and investors as they seek to find new ways of risk valuation and portfolio management in a post-credit crisis world. Here, we analyze the difference in behavior of the spread-to-maturity in investment and high-yield categories of US corporate bonds between 2014 and 2023. Deviation from the theoretical dependency of this measure in the universe under study allows to identify multiple cases of mispriced credit risk. Remarkably, we observe mispriced bonds in both categories of credit ratings. This identification is supported by the application of the state-of-the-art machine learning model in more than 90% of cases. Noticeably, the ML-driven model-based forecasting of a category of bond’s credit ratings demonstrate an excellent out-of-sample accuracy (AUC = 98%). We believe that these results can augment conventional valuations of credit portfolios.Keywords: credit risk, credit ratings, bond pricing, spread-to-maturity, machine learning
Procedia PDF Downloads 804863 Innovating Translation Pedagogy: Maximizing Teaching Effectiveness by Focusing on Cognitive Study
Authors: Dawn Tsang
Abstract:
This paper aims at synthesizing the difficulties in cognitive processes faced by translation majors in mainland China. The purpose is to develop possible solutions and innovation in terms of translation pedagogy, curriculum reform, and syllabus design. This research will base its analysis on students’ instant feedback and interview after training in translation and interpreting courses, and translation faculty’s teaching experiences. This research will take our translation majors as the starting point, who will be one of the focus groups. At present, our Applied Translation Studies Programme is offering translation courses in the following areas: practical translation and interpreting, translation theories, culture and translation, and internship. It is a four-year translation programme, and our students would start their introductory courses since Semester 1 of Year 1. The medium of instruction of our College is solely in English. In general, our students’ competency in English is strong. Yet in translation and especially interpreting classes, no matter it is students’ first attempt or students who have taken university English courses, students find class practices very challenging, if not mission impossible. Their biggest learning problem seems to be weakening cognitive processes in terms of lack of intercultural competence, incomprehension of English language and foreign cultures, inadequate aptitude and slow reaction, and inapt to utilize one’s vocabulary bank etc. This being so, the research questions include: (1) What specific and common cognitive difficulties are students facing while learning translation and interpreting? (2) How to deal with such difficulties, and what implications can be drawn on curriculum reform and syllabus design in translation? (3) How significant should cognitive study be placed on translation curriculum, i.e., the proportion of cognitive study in translation/interpreting courses and in translation major curriculum? and (4) What can we as translation educators do to maximize teaching and learning effectiveness by incorporating the latest development of cognitive study?. We have collected translation students’ instant feedback and conduct interviews with both students and teaching staff, in order to draw parallels as well as distinguishing from our own current teaching practices at United International College (UIC). We have collected 500 questionnaires for now. The main learning difficulties include: poor vocabulary bank, lack of listening and reading comprehension skills in terms of not fully understanding the subtext, aptitude in translation and interpreting etc. This being so, we propose to reform and revitalize translation curriculum and syllabi to address to these difficulties. The aim is to maximize teaching effectiveness in translation by addressing the above-mentioned questions with a special focus on cognitive difficulties faced by translation majors.Keywords: cognitive difficulties, teaching and learning effectiveness, translation curriculum reform, translation pedagogy
Procedia PDF Downloads 3194862 Exploration of Competitive Athletes’ Superstition in Taiwan: "Miracle" and "Coincidence"
Authors: Shieh Shiow-fang
Abstract:
Superstitious thoughts or actions often occur during athletic competitions. Often "superstitious rituals" have a positive impact on the performance of competitive athletes. Athletes affirm the many psychological benefits of religious beliefs mostly in a positive way. Method: By snowball sampling, we recruited 10 experienced competitive athletes as participants. We used in-person and online one-to-one in-depth interview to collect their experiences about sport superstition. The total interview time was 795 minutes. We analyzed the raw data with the grounded theory processes suggested by Strauss and Corbin (1990). Results: The factors affecting athlete performance are ritual beliefs, taboo awareness, learning norms, and spontaneous attribution behaviors. Conclusion: We concluded that sports superstition reflects several psychological implications. The analysis results of this paper can provide another research perspective for the future study of sports superstition behavior.Keywords: superstition, taboo awareness, learning norms, competitive athlete
Procedia PDF Downloads 864861 Collaborative Platform for Learning Basic Programming (Algorinfo)
Authors: Edgar Mauricio Ruiz Osuna, Claudia Yaneth Herrera Bolivar, Sandra Liliana Gomez Vasquez
Abstract:
The increasing needs of professionals with skills in software development in industry are incremental, therefore, the relevance of an educational process in line with the strengthening of these competencies, are part of the responsibilities of universities with careers related to the area of Informatics and Systems. In this sense, it is important to consider that in the National Science, Technology and Innovation Plan for the development of the Electronics, Information Technologies and Communications (2013) sectors, it is established as a weakness in the SWOT Analysis of the Software sector and Services, Deficiencies in training and professional training. Accordingly, UNIMINUTO's Computer Technology Program has addressed the analysis of students' performance in software development, identifying various problems such as dropout in programming subjects, academic averages, as well as deficiencies in strategies and competencies developed in the area of programming. As a result of this analysis, it was determined to design a collaborative learning platform in basic programming using heat maps as a tool to support didactic feedback. The pilot phase allows to evaluate in a programming course the ALGORINFO platform as a didactic resource, through an interactive and collaborative environment where students can develop basic programming practices and in turn, are fed back through the analysis of time patterns and difficulties frequent in certain segments or program cycles, by means of heat maps. The result allows the teacher to have tools to reinforce and advise critical points generated on the map, so that students and graduates improve their skills as software developers.Keywords: collaborative platform, learning, feedback, programming, heat maps
Procedia PDF Downloads 1624860 The Relationship between Romantic Relationship Beliefs and Ego Identity Process
Authors: Betül Demirbağ, Nesrin Demir
Abstract:
As a developmental period, early adulthood has a vital role in romantic relationships in young adult's life. lt's known that in this period, satisfaction of individual needs such as affiliation is essential for well-functioning and to be succeeded in sequent developmental task. Romantic relationships have an expected association with attachment style. But it's needed to get more information about indicators of romantic relationships in different cultural backgrounds. in this research it's aimed to investigate whether there is a relationship between romantic relationship beliefs and Ego identity status and also other possible indicators such as gender, age, socioeconomic status. Participants were undergraduate students training in various programs in Education Faculty in Adiyaman University. As data collection tool, Romantic Relationship Beliefs scale and Ego Identity Process Questionnaire which was adapted into Turkish were used. Results were discussed in the relevant literature.Keywords: ego identity, romantic relationships, university counseling
Procedia PDF Downloads 5604859 A Genetic Algorithm Approach for Multi Constraint Team Orienteering Problem with Time Windows
Authors: Uyanga Sukhbaatar, Ahmed Lbath, Mendamar Majig
Abstract:
The Orienteering Problem is the most known example to start modeling tourist trip design problem. In order to meet tourist’s interest and constraint the OP is becoming more and more complicate to solve. The Multi Constraint Team Orienteering Problem with Time Windows is the last extension of the OP which differentiates from other extensions by including more extra associated constraints. The goal of the MCTOPTW is maximizing tourist’s satisfaction score in same time not to violate any of these constraints. This paper presents a genetic algorithmic approach to tackle the MCTOPTW. The benchmark data from literature is tested by our algorithm and the performance results are compared.Keywords: multi constraint team orienteering problem with time windows, genetic algorithm, tour planning system
Procedia PDF Downloads 6264858 Adult and Non Formal Education for the Attainment of Enterprenuerial Skills in Nigeria
Authors: Zulaiha Maluma Ahmad
Abstract:
This paper attempted to examine adult and non formal education for the attainment of entrepreneurial skills in empowering the citizens with entrepreneurial skills, for Nigeria’s socioeconomic development. This paper highlighted the meaning of education in the context of skill acquisition, entrepreneurial education, adult and non formal education. It also examined the objectives, issues and challenges as well as prospects of this type of education. It further discussed the role of adult and non formal education for the attainment of socioeconomic development of a growing nation like Nigeria. The paper equally proffered some recommendations and eventually concluded that adult and non formal education can indeed make self reliance, personal satisfaction and the attainment of entrepreneurial education for the socioeconomic development of any nation, possible.Keywords: entrepreneurial education, adult education, non formal education skills, Nigeria
Procedia PDF Downloads 5974857 ESL Material Evaluation: The Missing Link in Nigerian Classrooms
Authors: Abdulkabir Abdullahi
Abstract:
The paper is a pre-use evaluation of grammar activities in three primary English course books (two of which are international primary English course books and the other a popular Nigerian primary English course book). The titles are - Cambridge Global English, Collins International Primary English, and Nigeria Primary English – Primary English. Grammar points and grammar activities in the three-course books were identified, grouped, and evaluated. The grammar activity which was most common in the course books, simple past tense, was chosen for evaluation, and the units which present simple past tense activities were selected to evaluate the extent to which the treatment of simple past tense in each of the course books help the young learners of English as a second language in Nigeria, aged 8 – 11, level A1 to A2, who lack the basic grammatical knowledge, to know grammar/communicate effectively. A bespoke checklist was devised, through the modification of existing checklists for the purpose of the evaluation, to evaluate the extent to which the grammar activities promote the communicative effectiveness of Nigerian learners of English as a second language. The results of the evaluation and the analysis of the data reveal that the treatment of grammar, especially the treatment of the simple past tense, is evidently insufficient. While Cambridge Global English’s, and Collins International Primary English’s treatment of grammar, the simple past tense, is underpinned by state-of-the-art theories of learning, language learning theories, second language learning principles, second language curriculum-syllabus design principles, grammar learning and teaching theories, the grammar load is insignificantly low, and the grammar tasks do not promote creative grammar practice sufficiently. Nigeria Primary English – Primary English, on the other hand, treats grammar, the simple past tense, in the old-fashioned direct way. The book does not favour the communicative language teaching approach; no opportunity for learners to notice and discover grammar rules for themselves, and the book lacks the potency to promote creative grammar practice. The research and its findings, therefore, underscore the need to improve grammar contents and increase grammar activity types which engage learners effectively and promote sufficient creative grammar practice in EFL and ESL material design and development.Keywords: evaluation, activity, second language, activity-types, creative grammar practice
Procedia PDF Downloads 814856 Knowing Where the Learning is a Shift from Summative to Formative Assessment
Authors: Eric Ho
Abstract:
Pedagogical approaches in Asia nowadays are imported from the West. In Confucian Heritage Culture (CHC), however, there is a dichotomy between the perceived benefits of Western pedagogies and the real classroom practices in Chinese societies. The success of Hong Kong students in large-scale international assessments has proved that both the strengths of both Western pedagogies and CHC educational approaches should be integrated for the sake of the students. University students aim to equip themselves with employability skills upon graduation. Formative assessments allow students to receive detailed, positive, and timely feedback and they can identify their strengths and weaknesses before they start working. However, there remains a question of whether university year 1 students who come from an examination-driven secondary education background are ready to respond to more formative assessments. The findings show that year 1 students are less concerned about competition in the university and more open to new teaching approaches that will allow them to improve as professionals in their major study areas.Keywords: formative assessment, higher education, learning styles, Confucian heritage cultures
Procedia PDF Downloads 3344855 Microgrid Design Under Optimal Control With Batch Reinforcement Learning
Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion
Abstract:
Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.Keywords: batch-constrained reinforcement learning, control, design, optimal
Procedia PDF Downloads 1234854 Student Researchers and Industry Partnerships Improve Health Management with Data Driven Decisions
Authors: Carole A. South-Winter
Abstract:
Research-based learning gives students the opportunity to experience problems that require critical thinking and idea development. The skills they gain in working through these problems 'hands-on,' develop into attributes that benefit their careers in the professional field. The partnerships developed between students and industries give advantages to both sides. The students gain knowledge and skills that will increase their likelihood of success in the future and the industries are given research on new advancements that will give them a competitive advantage in their given field of work. The future of these partnerships is dependent on the success of current programs, enabling the enhancement and improvement of the research efforts. Once more students can complete research, there will be an increase in reliability of the results for each industry. The overall goal is to continue the support for research-based learning and the partnerships formed between students and industries.Keywords: global healthcare, industry partnerships, research-driven decisions, short-term study abroad
Procedia PDF Downloads 1264853 Using Dynamic Bayesian Networks to Characterize and Predict Job Placement
Authors: Xupin Zhang, Maria Caterina Bramati, Enrest Fokoue
Abstract:
Understanding the career placement of graduates from the university is crucial for both the qualities of education and ultimate satisfaction of students. In this research, we adapt the capabilities of dynamic Bayesian networks to characterize and predict students’ job placement using data from various universities. We also provide elements of the estimation of the indicator (score) of the strength of the network. The research focuses on overall findings as well as specific student groups including international and STEM students and their insight on the career path and what changes need to be made. The derived Bayesian network has the potential to be used as a tool for simulating the career path for students and ultimately helps universities in both academic advising and career counseling.Keywords: dynamic bayesian networks, indicator estimation, job placement, social networks
Procedia PDF Downloads 3794852 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System
Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko
Abstract:
Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic
Procedia PDF Downloads 614851 Why Trust Matters for Women Entrepreneurs: Insights from Malaysia
Authors: Suraini Mohd Rhouse, Noor Lela Ahmad, Nek Kamal Yeop Yunus, Rosfizah Md Taib
Abstract:
This article aims to explore the importance of trust to women entrepreneurs. In particular, the research uses a social constructionist lens to examine ways in which women entrepreneurs construct trust in relation to their various stakeholders. A semi-structured interview was used to gather the data. The findings suggest women highlight the importance of trust in order to establish customer satisfaction that can further develop customer loyalty. In addition, aspect of trust with the employees is seen as vital for building organizational commitment to the business organization. Women also see the trust dimension in terms of their relationships with financial providers in order to gain approval for financial resources. This article contributes to the literature on the value of trust to women’s business environments.Keywords: qualitative, social constructionist, trust, women entrepreneurship
Procedia PDF Downloads 5604850 The Reality of Teaching Arabic for Specific Purposes in Educational Institutions
Authors: Mohammad Anwarul Kabir, Fayezul Islam
Abstract:
Language invariably is learned / taught to be used primarily as means of communications. Teaching a language for its native audience differs from teaching it to non-native audience. Moreover, teaching a language for communication only is different from teaching it for specific purposes. Arabic language is primarily regarded as the language of the Quran and the Sunnah (Prophetic tradition). Arabic is, therefore, learnt and spread all over the globe. However, Arabic is also a cultural heritage shared by all Islamic nations which has used Arabic for a long period to record the contributions of Muslim thinkers made in the field of wide spectrum of knowledge and scholarship. That is why the phenomenon of teaching Arabic by different educational institutes became quite rife, and the idea of teaching Arabic for specific purposes is heavily discussed in the academic sphere. Although the number of learners of Arabic is increasing consistently, yet their purposes vary. These include religious purpose, international trade, diplomatic purpose, better livelihood in the Arab world extra. By virtue of this high demand for learning Arabic, numerous institutes have been established all over the world including Bangladesh. This paper aims at focusing on the current status of the language institutes which has been established for learning Arabic for specific purposes in Bangladesh including teaching methodology, curriculum, and teachers’ quality. Such curricula and using its materials resulted in a lot of problems. The least, it confused teachers and students as well. Islamic educationalists have been working hard to professionally meet the need. They are following a systematic approach of stating clear and achievable goals, building suitable content, and applying new technology to present these learning experiences and evaluate them. It also suggests a model for designing instructional systems that responds to the need of non-Arabic speaking Islamic communities and provide the knowledge needed in both linguistic and cultural aspects. It also puts forward a number of suggestions for the improvement of the teaching / learning Arabic for specific purposes in Bangladesh after a detailed investigation in the following areas: curriculum, teachers’ skills, method of teaching and assessment policy.Keywords: communication, Quran, sunnah, educational institutes, specific purposes, curriculum, method of teaching
Procedia PDF Downloads 2824849 Investigating Teaching and Learning to Meet the Needs of Deaf Children in Physical Education
Authors: Matthew Fleet, Savannah Elliott
Abstract:
Background: This study investigates the use of teaching and learning to meet the needs of deaf children in the UK PE curriculum. Research has illustrated that deaf students in mainstream schools do not receive sufficient support from teachers in lessons. This research examines the impact of different types of hearing loss and its implications within Physical Education (PE) in secondary schools. Purpose: The purpose of this study is to highlight challenges PE teachers face and make recommendations for more inclusive learning environments for deaf students. The aims and objectives of this research are: to critically analyse the current situation for deaf students accessing the PE curriculum, by identifying barriers deaf students face; to identify the challenges for PE teachers in providing appropriate support for deaf students; to provide recommendations for deaf awareness training, to enhance PE teachers’ understanding and knowledge. Method: Semi-structured interviews collected data from both PE teachers and deaf students, to examine: the support available and coping mechanisms deaf students use when they do not receive support; strategies PE teachers use to provide support for deaf students; areas for improvement and potential strategies PE teachers can apply to their practice. Results & Conclusion: The findings from the study concluded that PE teachers were inconsistent in providing appropriate support for deaf students in PE lessons. Evidence illustrated that PE teachers had limited exposure to deaf awareness training. This impacted on their ability to support deaf students effectively. Communication was a frequent barrier for deaf students, affecting their ability to retain and learn information. Also, the use of assistive technology was found to be compromised in practical PE lessons.Keywords: physical education, deaf, inclusion, education
Procedia PDF Downloads 1554848 Investigating the Dynamics of Knowledge Acquisition in Undergraduate Mathematics Students Using Differential Equations
Authors: Gilbert Makanda
Abstract:
The problem of the teaching of mathematics is studied using differential equations. A mathematical model for knowledge acquisition in mathematics is developed. In this study we adopt the mathematical model that is normally used for disease modelling in the teaching of mathematics. It is assumed that teaching is 'infecting' students with knowledge thereby spreading this knowledge to the students. It is also assumed that students who gain this knowledge spread it to other students making disease model appropriate to adopt for this problem. The results of this study show that increasing recruitment rates, learning contact with teachers and learning materials improves the number of knowledgeable students. High dropout rates and forgetting taught concepts also negatively affect the number of knowledgeable students. The developed model is then solved using Matlab ODE45 and \verb"lsqnonlin" to estimate parameters for the actual data.Keywords: differential equations, knowledge acquisition, least squares, dynamical systems
Procedia PDF Downloads 4234847 Study of the Use of Artificial Neural Networks in Islamic Finance
Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi
Abstract:
The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning
Procedia PDF Downloads 2374846 Examination of Public Hospital Unions Technical Efficiencies Using Data Envelopment Analysis and Machine Learning Techniques
Authors: Songul Cinaroglu
Abstract:
Regional planning in health has gained speed for developing countries in recent years. In Turkey, 89 different Public Hospital Unions (PHUs) were conducted based on provincial levels. In this study technical efficiencies of 89 PHUs were examined by using Data Envelopment Analysis (DEA) and machine learning techniques by dividing them into two clusters in terms of similarities of input and output indicators. Number of beds, physicians and nurses determined as input variables and number of outpatients, inpatients and surgical operations determined as output indicators. Before performing DEA, PHUs were grouped into two clusters. It is seen that the first cluster represents PHUs which have higher population, demand and service density than the others. The difference between clusters was statistically significant in terms of all study variables (p ˂ 0.001). After clustering, DEA was performed for general and for two clusters separately. It was found that 11% of PHUs were efficient in general, additionally 21% and 17% of them were efficient for the first and second clusters respectively. It is seen that PHUs, which are representing urban parts of the country and have higher population and service density, are more efficient than others. Random forest decision tree graph shows that number of inpatients is a determinative factor of efficiency of PHUs, which is a measure of service density. It is advisable for public health policy makers to use statistical learning methods in resource planning decisions to improve efficiency in health care.Keywords: public hospital unions, efficiency, data envelopment analysis, random forest
Procedia PDF Downloads 1264845 Learning Example of a Biomedical Project from a Real Problem of Muscle Fatigue
Authors: M. Rezki, A. Belaidi
Abstract:
This paper deals with a method of learning to solve a real problem in biomedical engineering from a technical study of muscle fatigue. Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles (viewpoint: anatomical and physiological). EMG is used as a diagnostics tool for identifying neuromuscular diseases, assessing low-back pain and muscle fatigue in general. In order to study the EMG signal for detecting fatigue in a muscle, we have taken a real problem which touches the tramway conductor the handle bar. For the study, we have used a typical autonomous platform in order to get signals at real time. In our case study, we were confronted with complex problem to do our experiments in a tram. This type of problem is recurring among students. To teach our students the method to solve this kind of problem, we built a similar system. Through this study, we realized a lot of objectives such as making the equipment for simulation, the study of detection of muscle fatigue and especially how to manage a study of biomedical looking.Keywords: EMG, health platform, conductor’s tram, muscle fatigue
Procedia PDF Downloads 3134844 Technology Impact in Learning and Teaching English Language Writing
Authors: Laura Naka
Abstract:
The invention of computer writing programs has changed the way of teaching second language writing. This artificial intelligence engine can provide students with feedback on their essays, on their grammatical and spelling errors, convenient writing and editing tools to facilitate student’s writing process. However, it is not yet proved if this technology is helping students to improve their writing skills. There are several programs that are of great assistance for students concerning their writing skills. New technology provides students with different software programs which enable them to be more creative, to express their opinions and ideas in words, pictures and sounds, but at the end main and most correct feedback should be given by their teachers. No matter how new technology affects in writing skills, always comes from their teachers. This research will try to present some of the advantages and disadvantages that new technology has in writing process for students. The research takes place in the University of Gjakova ‘’Fehmi Agani’’ Faculty of Education-Preschool Program. The research aims to provide random sample response by using questionnaires and observation.Keywords: English language learning, technology, academic writing, teaching L2.
Procedia PDF Downloads 5724843 Provisional Settlements and Urban Resilience: The Transformation of Refugee Camps into Cities
Authors: Hind Alshoubaki
Abstract:
The world is now confronting a widespread urban phenomenon: refugee camps, which have mostly been established in ‘rushing mode,’ pointing toward affording temporary settlements for refugees that provide them with minimum levels of safety, security and protection from harsh weather conditions within a very short time period. In fact, those emergency settlements are transforming into permanent ones since time is a decisive factor in terms of construction and camps’ age. These play an essential role in transforming their temporary character into a permanent one that generates deep modifications to the city’s territorial structure, shaping a new identity and creating a contentious change in the city’s form and history. To achieve a better understanding for the transformation of refugee camps, this study is based on a mixed-methods approach: the qualitative approach explores different refugee camps and analyzes their transformation process in terms of population density and the changes to the city’s territorial structure and urban features. The quantitative approach employs a statistical regression analysis as a reliable prediction of refugees’ satisfaction within the Zaatari camp in order to predict its future transformation. Obviously, refugees’ perceptions of their current conditions will affect their satisfaction, which plays an essential role in transforming emergency settlements into permanent cities over time. The test basically discusses five main themes: the access and readiness of schools, the dispersion of clinics and shopping centers; the camp infrastructure, the construction materials, and the street networks. The statistical analysis showed that Syrian refugees were not satisfied with their current conditions inside the Zaatari refugee camp and that they had started implementing changes according to their needs, desires, and aspirations because they are conscious about the fact of their prolonged stay in this settlement. Also, the case study analyses showed that neglecting the fact that construction takes time leads settlements being created with below-minimum standards that are deteriorating and creating ‘slums,’ which lead to increased crime rates, suicide, drug use and diseases and deeply affect cities’ urban tissues. For this reason, recognizing the ‘temporary-eternal’ character of those settlements is the fundamental concept to consider refugee camps from the beginning as definite permanent cities. This is the key factor to minimize the trauma of displacement on both refugees and the hosting countries. Since providing emergency settlements within a short time period does not mean using temporary materials, having a provisional character or creating ‘makeshift cities.’Keywords: refugee, refugee camp, temporary, Zaatari
Procedia PDF Downloads 1334842 The Video Database for Teaching and Learning in Football Refereeing
Authors: M. Armenteros, A. Domínguez, M. Fernández, A. J. Benítez
Abstract:
The following paper describes the video database tool used by the Fédération Internationale de Football Association (FIFA) as part of the research project developed in collaboration with the Carlos III University of Madrid. The database project began in 2012, with the aim of creating an educational tool for the training of instructors, referees and assistant referees, and it has been used in all FUTURO III courses since 2013. The platform now contains 3,135 video clips of different match situations from FIFA competitions. It has 1,835 users (FIFA instructors, referees and assistant referees). In this work, the main features of the database are described, such as the use of a search tool and the creation of multimedia presentations and video quizzes. The database has been developed in MySQL, ActionScript, Ruby on Rails and HTML. This tool has been rated by users as "very good" in all courses, which prompt us to introduce it as an ideal tool for any other sport that requires the use of video analysis.Keywords: assistants referees, cloud computing, e-learning, instructors, FIFA, referees, soccer, video database
Procedia PDF Downloads 4404841 A Review of Intelligent Fire Management Systems to Reduce Wildfires
Authors: Nomfundo Ngombane, Topside E. Mathonsi
Abstract:
Remote sensing and satellite imaging have been widely used to detect wildfires; nevertheless, the technologies present some limitations in terms of early wildfire detection as the technologies are greatly influenced by weather conditions and can miss small fires. The fires need to have spread a few kilometers for the technologies to provide accurate detection. The South African Advanced Fire Information System uses MODIS (Moderate Resolution Imaging Spectroradiometer) as satellite imaging. MODIS has limitations as it can exclude small fires and can fall short in validating fire vulnerability. Thus in the future, a Machine Learning algorithm will be designed and implemented for the early detection of wildfires. A simulator will be used to evaluate the effectiveness of the proposed solution, and the results of the simulation will be presented.Keywords: moderate resolution imaging spectroradiometer, advanced fire information system, machine learning algorithm, detection of wildfires
Procedia PDF Downloads 78