Search results for: e2e reliability prediction
336 Case Study of Human Factors and Ergonomics in the Design and Use of Harness-Embedded Costumes in the Entertainment Industry
Authors: Marielle Hanley, Brandon Takahashi, Gerry Hanley, Gabriella Hancock
Abstract:
Safety harnesses and their protocols are very common within the construction industry, and the Occupational Safety and Health Administration has provided extensive guidelines with protocols being constantly updated to ensure the highest level of safety within construction sites. There is also extensive research on harnesses that are meant to keep people in place in moving vehicles, such as seatbelts. Though this research is comprehensive in these areas, the findings and recommendations are not generally applicable to other industry sectors where harnesses are used, such as the entertainment industry. The focus of this case study is on the design and use of harnesses used by theme park employees wearing elaborate costumes in parades and performances. The key factors of posture, kinesthetic factors, and harness engineering interact in significantly different ways when the user is performing repetitive choreography with 20 to 40 lbs. of apparatus connected to harnesses that need to be hidden from the audience’s view. Human factors and ergonomic analysis take into account the required performers’ behaviors, the physical and mental preparation and posture of the performer, the design of the harness-embedded costume, and the environmental conditions during the performance (e.g., wind) that can determine the physical stresses placed on the harness and performer. The uniqueness and expense of elaborate costumes frequently result in one or two costumes created for production, and a variety of different performers need to fit into the same costume. Consequently, the harnesses should be adjustable if they are to minimize the physical and cognitive loads on the performer, but they are frequently more a “one-size fits all”. The complexity of human and technology interactions produces a range of detrimental outcomes, from muscle strains to nerve damage, mental and physical fatigue, and reduced motivation to perform at peak levels. Based on observations conducted over four years for this case study, a number of recommendations to institutionalize the human factors and ergonomic analyses can significantly improve the safety, reliability, and quality of performances with harness-embedded costumes in the entertainment industry. Human factors and ergonomic analyses can be integrated into the engineering design of the performance costumes with embedded harnesses, the conditioning and training of the performers using the costumes, the choreography of the performances within the staged setting and the maintenance of the harness-embedded costumes. By applying human factors and ergonomic methodologies in the entertainment industry, the industry management and support staff can significantly reduce the risks of injury, improve the longevity of unique performers, increase the longevity of the harness-embedded costumes, and produce the desired entertainment value for audiences.Keywords: ergonomics in entertainment industry, harness-embedded costumes, performer safety, injury prevention
Procedia PDF Downloads 94335 Rain Gauges Network Optimization in Southern Peninsular Malaysia
Authors: Mohd Khairul Bazli Mohd Aziz, Fadhilah Yusof, Zulkifli Yusop, Zalina Mohd Daud, Mohammad Afif Kasno
Abstract:
Recent developed rainfall network design techniques have been discussed and compared by many researchers worldwide due to the demand of acquiring higher levels of accuracy from collected data. In many studies, rain-gauge networks are designed to provide good estimation for areal rainfall and for flood modelling and prediction. In a certain study, even using lumped models for flood forecasting, a proper gauge network can significantly improve the results. Therefore existing rainfall network in Johor must be optimized and redesigned in order to meet the required level of accuracy preset by rainfall data users. The well-known geostatistics method (variance-reduction method) that is combined with simulated annealing was used as an algorithm of optimization in this study to obtain the optimal number and locations of the rain gauges. Rain gauge network structure is not only dependent on the station density; station location also plays an important role in determining whether information is acquired accurately. The existing network of 84 rain gauges in Johor is optimized and redesigned by using rainfall, humidity, solar radiation, temperature and wind speed data during monsoon season (November – February) for the period of 1975 – 2008. Three different semivariogram models which are Spherical, Gaussian and Exponential were used and their performances were also compared in this study. Cross validation technique was applied to compute the errors and the result showed that exponential model is the best semivariogram. It was found that the proposed method was satisfied by a network of 64 rain gauges with the minimum estimated variance and 20 of the existing ones were removed and relocated. An existing network may consist of redundant stations that may make little or no contribution to the network performance for providing quality data. Therefore, two different cases were considered in this study. The first case considered the removed stations that were optimally relocated into new locations to investigate their influence in the calculated estimated variance and the second case explored the possibility to relocate all 84 existing stations into new locations to determine the optimal position. The relocations of the stations in both cases have shown that the new optimal locations have managed to reduce the estimated variance and it has proven that locations played an important role in determining the optimal network.Keywords: geostatistics, simulated annealing, semivariogram, optimization
Procedia PDF Downloads 304334 Comprehensive Analysis of Electrohysterography Signal Features in Term and Preterm Labor
Authors: Zhihui Liu, Dongmei Hao, Qian Qiu, Yang An, Lin Yang, Song Zhang, Yimin Yang, Xuwen Li, Dingchang Zheng
Abstract:
Premature birth, defined as birth before 37 completed weeks of gestation is a leading cause of neonatal morbidity and mortality and has long-term adverse consequences for health. It has recently been reported that the worldwide preterm birth rate is around 10%. The existing measurement techniques for diagnosing preterm delivery include tocodynamometer, ultrasound and fetal fibronectin. However, they are subjective, or suffer from high measurement variability and inaccurate diagnosis and prediction of preterm labor. Electrohysterography (EHG) method based on recording of uterine electrical activity by electrodes attached to maternal abdomen, is a promising method to assess uterine activity and diagnose preterm labor. The purpose of this study is to analyze the difference of EHG signal features between term labor and preterm labor. Free access database was used with 300 signals acquired in two groups of pregnant women who delivered at term (262 cases) and preterm (38 cases). Among them, EHG signals from 38 term labor and 38 preterm labor were preprocessed with band-pass Butterworth filters of 0.08–4Hz. Then, EHG signal features were extracted, which comprised classical time domain description including root mean square and zero-crossing number, spectral parameters including peak frequency, mean frequency and median frequency, wavelet packet coefficients, autoregression (AR) model coefficients, and nonlinear measures including maximal Lyapunov exponent, sample entropy and correlation dimension. Their statistical significance for recognition of two groups of recordings was provided. The results showed that mean frequency of preterm labor was significantly smaller than term labor (p < 0.05). 5 coefficients of AR model showed significant difference between term labor and preterm labor. The maximal Lyapunov exponent of early preterm (time of recording < the 26th week of gestation) was significantly smaller than early term. The sample entropy of late preterm (time of recording > the 26th week of gestation) was significantly smaller than late term. There was no significant difference for other features between the term labor and preterm labor groups. Any future work regarding classification should therefore focus on using multiple techniques, with the mean frequency, AR coefficients, maximal Lyapunov exponent and the sample entropy being among the prime candidates. Even if these methods are not yet useful for clinical practice, they do bring the most promising indicators for the preterm labor.Keywords: electrohysterogram, feature, preterm labor, term labor
Procedia PDF Downloads 572333 Capacity of Cold-Formed Steel Warping-Restrained Members Subjected to Combined Axial Compressive Load and Bending
Authors: Maryam Hasanali, Syed Mohammad Mojtabaei, Iman Hajirasouliha, G. Charles Clifton, James B. P. Lim
Abstract:
Cold-formed steel (CFS) elements are increasingly being used as main load-bearing components in the modern construction industry, including low- to mid-rise buildings. In typical multi-storey buildings, CFS structural members act as beam-column elements since they are exposed to combined axial compression and bending actions, both in moment-resisting frames and stud wall systems. Current design specifications, including the American Iron and Steel Institute (AISI S100) and the Australian/New Zealand Standard (AS/NZS 4600), neglect the beneficial effects of warping-restrained boundary conditions in the design of beam-column elements. Furthermore, while a non-linear relationship governs the interaction of axial compression and bending, the combined effect of these actions is taken into account through a simplified linear expression combining pure axial and flexural strengths. This paper aims to evaluate the reliability of the well-known Direct Strength Method (DSM) as well as design proposals found in the literature to provide a better understanding of the efficiency of the code-prescribed linear interaction equation in the strength predictions of CFS beam columns and the effects of warping-restrained boundary conditions on their behavior. To this end, the experimentally validated finite element (FE) models of CFS elements under compression and bending were developed in ABAQUS software, which accounts for both non-linear material properties and geometric imperfections. The validated models were then used for a comprehensive parametric study containing 270 FE models, covering a wide range of key design parameters, such as length (i.e., 0.5, 1.5, and 3 m), thickness (i.e., 1, 2, and 4 mm) and cross-sectional dimensions under ten different load eccentricity levels. The results of this parametric study demonstrated that using the DSM led to the most conservative strength predictions for beam-column members by up to 55%, depending on the element’s length and thickness. This can be sourced by the errors associated with (i) the absence of warping-restrained boundary condition effects, (ii) equations for the calculations of buckling loads, and (iii) the linear interaction equation. While the influence of warping restraint is generally less than 6%, the code suggested interaction equation led to an average error of 4% to 22%, based on the element lengths. This paper highlights the need to provide more reliable design solutions for CFS beam-column elements for practical design purposes.Keywords: beam-columns, cold-formed steel, finite element model, interaction equation, warping-restrained boundary conditions
Procedia PDF Downloads 105332 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method
Authors: Dangut Maren David, Skaf Zakwan
Abstract:
Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.Keywords: prognostics, data-driven, imbalance classification, deep learning
Procedia PDF Downloads 175331 Sustainable Wood Harvesting from Juniperus procera Trees Managed under a Participatory Forest Management Scheme in Ethiopia
Authors: Mindaye Teshome, Evaldo Muñoz Braz, Carlos M. M. Eleto Torres, Patricia Mattos
Abstract:
Sustainable forest management planning requires up-to-date information on the structure, standing volume, biomass, and growth rate of trees from a given forest. This kind of information is lacking in many forests in Ethiopia. The objective of this study was to quantify the population structure, diameter growth rate, and standing volume of wood from Juniperus procera trees in the Chilimo forest. A total of 163 sample plots were set up in the forest to collect the relevant vegetation data. Growth ring measurements were conducted on stem disc samples collected from 12 J. procera trees. Diameter and height measurements were recorded from a total of 1399 individual trees with dbh ≥ 2 cm. The growth rate, maximum current and mean annual increments, minimum logging diameter, and cutting cycle were estimated, and alternative cutting cycles were established. Using these data, the harvestable volume of wood was projected by alternating four minimum logging diameters and five cutting cycles following the stand table projection method. The results show that J. procera trees have an average density of 183 stems ha⁻¹, a total basal area of 12.1 m² ha⁻¹, and a standing volume of 98.9 m³ ha⁻¹. The mean annual diameter growth ranges between 0.50 and 0.65 cm year⁻¹ with an overall mean of 0.59 cm year⁻¹. The population of J. procera tree followed a reverse J-shape diameter distribution pattern. The maximum current annual increment in volume (CAI) occurred at around 49 years when trees reached 30 cm in diameter. Trees showed the maximum mean annual increment in volume (MAI) around 91 years, with a diameter size of 50 cm. The simulation analysis revealed that 40 cm MLD and a 15-year cutting cycle are the best minimum logging diameter and cutting cycle. This combination showed the largest harvestable volume of wood potential, volume increments, and a 35% recovery of the initially harvested volume. It is concluded that the forest is well stocked and has a large amount of harvestable volume of wood from J. procera trees. This will enable the country to partly meet the national wood demand through domestic wood production. The use of the current population structure and diameter growth data from tree ring analysis enables the exact prediction of the harvestable volume of wood. The developed model supplied an idea about the productivity of the J. procera tree population and enables policymakers to develop specific management criteria for wood harvesting.Keywords: logging, growth model, cutting cycle, minimum logging diameter
Procedia PDF Downloads 89330 Evaluation of Soil Erosion Risk and Prioritization for Implementation of Management Strategies in Morocco
Authors: Lahcen Daoudi, Fatima Zahra Omdi, Abldelali Gourfi
Abstract:
In Morocco, as in most Mediterranean countries, water scarcity is a common situation because of low and unevenly distributed rainfall. The expansions of irrigated lands, as well as the growth of urban and industrial areas and tourist resorts, contribute to an increase of water demand. Therefore in the 1960s Morocco embarked on an ambitious program to increase the number of dams to boost water retention capacity. However, the decrease in the capacity of these reservoirs caused by sedimentation is a major problem; it is estimated at 75 million m3/year. Dams and reservoirs became unusable for their intended purposes due to sedimentation in large rivers that result from soil erosion. Soil erosion presents an important driving force in the process affecting the landscape. It has become one of the most serious environmental problems that raised much interest throughout the world. Monitoring soil erosion risk is an important part of soil conservation practices. The estimation of soil loss risk is the first step for a successful control of water erosion. The aim of this study is to estimate the soil loss risk and its spatial distribution in the different fields of Morocco and to prioritize areas for soil conservation interventions. The approach followed is the Revised Universal Soil Loss Equation (RUSLE) using remote sensing and GIS, which is the most popular empirically based model used globally for erosion prediction and control. This model has been tested in many agricultural watersheds in the world, particularly for large-scale basins due to the simplicity of the model formulation and easy availability of the dataset. The spatial distribution of the annual soil loss was elaborated by the combination of several factors: rainfall erosivity, soil erodability, topography, and land cover. The average annual soil loss estimated in several basins watershed of Morocco varies from 0 to 50t/ha/year. Watersheds characterized by high-erosion-vulnerability are located in the North (Rif Mountains) and more particularly in the Central part of Morocco (High Atlas Mountains). This variation of vulnerability is highly correlated to slope variation which indicates that the topography factor is the main agent of soil erosion within these basin catchments. These results could be helpful for the planning of natural resources management and for implementing sustainable long-term management strategies which are necessary for soil conservation and for increasing over the projected economic life of the dam implemented.Keywords: soil loss, RUSLE, GIS-remote sensing, watershed, Morocco
Procedia PDF Downloads 464329 Hybrid Manufacturing System to Produce 3D Structures for Osteochondral Tissue Regeneration
Authors: Pedro G. Morouço
Abstract:
One utmost challenge in Tissue Engineering is the production of 3D constructs capable of mimicking the functional hierarchy of native tissues. This is well stated for osteochondral tissue due to the complex mechanical functional unit based on the junction of articular cartilage and bone. Thus, the aim of the present study was to develop a new additive manufacturing system coupling micro-extrusion with hydrogels printing. An integrated system was developed with 2 main features: (i) the printing of up to three distinct hydrogels; (ii) in coordination with the printing of a thermoplastic structural support. The hydrogel printing module was projected with a ‘revolver-like’ system, where the hydrogel selection was made by a rotating mechanism. The hydrogel deposition was then controlled by pressured air input. The use of specific components approved for medical use was incorporated in the material dispensing system (Nordson EDF Optimum® fluid dispensing system). The thermoplastic extrusion modulus enabled the control of required extrusion temperature through electric resistances in the polymer reservoir and the extrusion system. After testing and upgrades, a hydrogel modulus with 3 syringes (3cm3 capacity each), with a pressure range of 0-2.5bar, a rotational speed of 0-5rpm, and working with needles from 200-800µm was obtained. This modulus was successfully coupled to the extrusion system that presented a temperature up to 300˚C, a pressure range of 0-12bar, and working with nozzles from 200-500µm. The applied motor could provide a velocity range 0-2000mm/min. Although, there are distinct printing requirements for hydrogels and polymers, the novel system could develop hybrid scaffolds, combining the 2 moduli. The morphological analysis showed high reliability (n=5) between the theoretical and obtained filament and pore size (350µm and 300µm vs. 342±4µm and 302±3µm, p>0.05, respectively) of the polymer; and multi-material 3D constructs were successfully obtained. Human tissues present very distinct and complex structures regarding their mechanical properties, organization, composition and dimensions. For osteochondral regenerative medicine, a multiphasic scaffold is required as subchondral bone and overlying cartilage must regenerate at the same time. Thus, a scaffold with 3 layers (bone, intermediate and cartilage parts) can be a promising approach. The developed system may give a suitable solution to construct those hybrid scaffolds with enhanced properties. The present novel system is a step-forward regarding osteochondral tissue engineering due to its ability to generate layered mechanically stable implants through the double-printing of hydrogels with thermoplastics.Keywords: 3D bioprinting, bone regeneration, cartilage regeneration, regenerative medicine, tissue engineering
Procedia PDF Downloads 167328 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification
Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens
Abstract:
Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage
Procedia PDF Downloads 190327 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves
Authors: Shengnan Chen, Shuhua Wang
Abstract:
Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves
Procedia PDF Downloads 285326 Translation and Validation of the Pain Resilience Scale in a French Population Suffering from Chronic Pain
Authors: Angeliki Gkiouzeli, Christine Rotonda, Elise Eby, Claire Touchet, Marie-Jo Brennstuhl, Cyril Tarquinio
Abstract:
Resilience is a psychological concept of possible relevance to the development and maintenance of chronic pain (CP). It refers to the ability of individuals to maintain reasonably healthy levels of physical and psychological functioning when exposed to an isolated and potentially highly disruptive event. Extensive research in recent years has supported the importance of this concept in the CP literature. Increased levels of resilience were associated with lower levels of perceived pain intensity and better mental health outcomes in adults with persistent pain. The ongoing project seeks to include the concept of pain-specific resilience in the French literature in order to provide more appropriate measures for assessing and understanding the complexities of CP in the near future. To the best of our knowledge, there is currently no validated version of the pain-specific resilience measure, the Pain Resilience scale (PRS), for French-speaking populations. Therefore, the present work aims to address this gap, firstly by performing a linguistic and cultural translation of the scale into French and secondly by studying the internal validity and reliability of the PRS for French CP populations. The forward-translation-back translation methodology was used to achieve as perfect a cultural and linguistic translation as possible according to the recommendations of the COSMIN (Consensus-based Standards for the selection of health Measurement Instruments) group, and an online survey is currently conducted among a representative sample of the French population suffering from CP. To date, the survey has involved one hundred respondents, with a total target of around three hundred participants at its completion. We further seek to study the metric properties of the French version of the PRS, ''L’Echelle de Résilience à la Douleur spécifique pour les Douleurs Chroniques'' (ERD-DC), in French patients suffering from CP, assessing the level of pain resilience in the context of CP. Finally, we will explore the relationship between the level of pain resilience in the context of CP and other variables of interest commonly assessed in pain research and treatment (i.e., general resilience, self-efficacy, pain catastrophising, and quality of life). This study will provide an overview of the methodology used to address our research objectives. We will also present for the first time the main findings and further discuss the validity of the scale in the field of CP research and pain management. We hope that this tool will provide a better understanding of how CP-specific resilience processes can influence the development and maintenance of this disease. This could ultimately result in better treatment strategies specifically tailored to individual needs, thus leading to reduced healthcare costs and improved patient well-being.Keywords: chronic pain, pain measure, pain resilience, questionnaire adaptation
Procedia PDF Downloads 90325 Creative Radio Advertising in Turkey
Authors: Mehmet Sinan Erguven
Abstract:
A number of authorities argue that radio is an outdated medium for advertising and does not have the same impact on consumers as it did in the past. This grim outlook on the future of radio has its basis in the audio-visual world that consumers now live in and the popularity of Internet-based marketing tools among advertising professionals. Nonetheless, consumers still appear to overwhelmingly prefer radio as an entertainment tool. Today, in Canada, 90% of all adults (18+) tune into the radio on a weekly basis, and they listen for 17 hours. Teens are the most challenging group for radio to capture as an audience, but still, almost 75% tune in weekly. One online radio station reaches more than 250 million registered listeners worldwide, and revenues from radio advertising in Australia are expected to grow at an annual rate of 3% for the foreseeable future. Radio is also starting to become popular again in Turkey, with a 5% increase in the listening rates compared to 2014. A major matter of concern always affecting radio advertising is creativity. As radio generally serves as a background medium for listeners, the creativity of the radio commercials is important in terms of attracting the attention of the listener and directing their focus on the advertising message. This cannot simply be done by using audio tools like sound effects and jingles. This study aims to identify the creative elements (execution formats appeals and approaches) and creativity factors of radio commercials in Turkey. As part of the study, all of the award winning radio commercials produced throughout the history of the Kristal Elma Advertising Festival were analyzed using the content analysis technique. Two judges (an advertising agency copywriter and an academic) coded the commercials. The reliability was measured according to the proportional agreement. The results showed that sound effects, jingles, testimonials, slices of life and announcements were the most common execution formats in creative Turkish radio ads. Humor and excitement were the most commonly used creative appeals while award-winning ads featured various approaches, such as surprise musical performances, audio wallpaper, product voice, and theater of the mind. Some ads, however, were found to not contain any creativity factors. In order to be accepted as creative, an ad must have at least one divergence factor, such as originality, flexibility, unusual/empathic perspective, and provocative questions. These findings, as well as others from the study, hold great value for the history of creative radio advertising in Turkey. Today, the nature of radio and its listeners is changing. As more and more people are tuning into online radio channels, brands will need to focus more on this relatively cheap advertising medium in the very near future. This new development will require that advertising agencies focus their attention on creativity in order to produce radio commercials for their customers that will differentiate them from their competitors.Keywords: advertising, creativity, radio, Turkey
Procedia PDF Downloads 396324 Home Environment and Peer Pressure as Predictors of Disruptive Behaviour and Risky Sexual Behaviour of Secondary School Class Two Adolescents in Enugu State, Nigeria
Authors: Dorothy Ebere Adimora
Abstract:
The study investigated the predictive power of home environment and peer pressure on disruptive behaviour and risky sexual behaviour of Secondary School Class Two Adolescents in Enugu State, Nigeria. The design of the study is a cross sectional survey of correlational study. The study was carried out in the six Education zones in Enugu state, Nigeria. Enugu State is divided into six education zones, namely Agbani, Awgu, Enugu, Nsukka, Obollo-Afor and Udi. The population for the study was all the 31,680 senior secondary class two adolescents in 285 secondary schools in Enugu State, Nigeria in 2014/2015 academic session. The target population was students in SSS.2 senior secondary class two. They constitute one-sixth of the entire student population in the state. The sample of the study was 528, a multi stage sampling technique was employed to draw the sample. Four research questions and four null hypotheses guided the study. The instruments for data collection were an interview session and a structured questionnaire of four clusters, they are; home environment, peer pressure, risky sexual behaviour and disruptive behaviour disorder questionnaires. The instruments were validated by 3 experts, two in psychology and one in measurement and Evaluation in Faculty of Education, University of Nigeria, Nsukka. The reliability coefficient of the instruments was ascertained by subjection to field trial. The adolescents were asked to complete the questionnaire on their home environment, peer pressure, disruptive behaviour disorder and risky sexual behaviours. The risky sexual behaviours were ascertained based on interview conducted on their actual sexual practice within the past 12 months. The research questions were analyzed using Pearson r and R-square, while the hypotheses were tested using ANOVA and multiple regression analysis at 0.05 level of significance. The results of this survey revealed that the adolescents are sexually active in very young ages. The mean age at sexual debut for the adolescents covered in this survey is a pointer to the fact that some of them started engaging in sexual activities long ago. It was also found that the adolescents engage in disruptive behaviour as a result of their poor home environment factors and association with negative peers. Based on the findings, it was recommended that the adolescents should be exposed to enhanced home environment such as parents’ responsiveness, organization of the environment, availability of appropriate learning materials, opportunities for daily stimulation and to offer a proper guidance to these adolescents to avoid negative peer influence which could result in risky sexual behaviour and disruptive behaviour disorder.Keywords: parenting, peer group, adolescents, sexuality, conduct disorder
Procedia PDF Downloads 482323 Stuttering Persistence in Children: Effectiveness of the Psicodizione Method in a Small Italian Cohort
Authors: Corinna Zeli, Silvia Calati, Marco Simeoni, Chiara Comastri
Abstract:
Developmental stuttering affects about 10% of preschool children; although the high percentage of natural recovery, a quarter of them will become an adult who stutters. An effective early intervention should help those children with high persistence risk for the future. The Psicodizione method for early stuttering is an Italian behavior indirect treatment for preschool children who stutter in which method parents act as good guides for communication, modeling their own fluency. In this study, we give a preliminary measure to evaluate the long-term effectiveness of Psicodizione method on stuttering preschool children with a high persistence risk. Among all Italian children treated with the Psicodizione method between 2018 and 2019, we selected 8 kids with at least 3 high risk persistence factors from the Illinois Prediction Criteria proposed by Yairi and Seery. The factors chosen for the selection were: one parent who stutters (1pt mother; 1.5pt father), male gender, ≥ 4 years old at onset; ≥ 12 months from onset of symptoms before treatment. For this study, the families were contacted after an average period of time of 14,7 months (range 3 - 26 months). Parental reports were gathered with a standard online questionnaire in order to obtain data reflecting fluency from a wide range of the children’s life situations. The minimum worthwhile outcome was set at "mild evidence" in a 5 point Likert scale (1 mild evidence- 5 high severity evidence). A second group of 6 children, among those treated with the Piscodizione method, was selected as high potential for spontaneous remission (low persistence risk). The children in this group had to fulfill all the following criteria: female gender, symptoms for less than 12 months (before treatment), age of onset <4 years old, none of the parents with persistent stuttering. At the time of this follow-up, the children were aged 6–9 years, with a mean of 15 months post-treatment. Among the children in the high persistence risk group, 2 (25%) hadn’t had stutter anymore, and 3 (37,5%) had mild stutter based on parental reports. In the low persistency risk group, the children were aged 4–6 years, with a mean of 14 months post-treatment, and 5 (84%) hadn’t had stutter anymore (for the past 16 months on average).62,5% of children at high risk of persistence after Psicodizione treatment showed mild evidence of stutter at most. 75% of parents confirmed a better fluency than before the treatment. The low persistence risk group seemed to be representative of spontaneous recovery. This study’s design could help to better evaluate the success of the proposed interventions for stuttering preschool children and provides a preliminary measure of the effectiveness of the Psicodizione method on high persistence risk children.Keywords: early treatment, fluency, preschool children, stuttering
Procedia PDF Downloads 219322 Efforts to Revitalize Piipaash Language: An Explorative Study to Develop Culturally Appropriate and Contextually Relevant Teaching Materials for Preschoolers
Authors: Shahzadi Laibah Burq, Gina Scarpete Walters
Abstract:
Piipaash, representing one large family of North American languages, Yuman, is reported as one of the seriously endangered languages in the Salt River Pima-Maricopa Indian Community of Arizona. In a collaborative venture between Arizona State University (ASU) and Salt River Pima-Maricopa Indian Community (SRPMIC), efforts have been made to revitalize and preserve the Piipaash language and its cultural heritage. The present study is one example of several other language documentation and revitalization initiatives that Humanities Lab ASU has taken. This study was approved to receive a “Beyond the lab” grant after the researchers successfully created a Teaching Guide for Early Childhood Piipaash storybook during their time working in the Humanities Lab. The current research is an extension of the previous project and focuses on creating customized teaching materials and tools for the teachers and parents of the students of the Early Enrichment Program at SRPMIC. However, to determine and maximize the usefulness of the teaching materials with regards to their reliability, validity, and practicality in the given context, this research aims to conduct Environmental Analysis and Need Analysis. Environmental Analysis seeks to evaluate the Early Enrichment Program situation and Need Analysis to investigate the specific and situated requirements of the teachers to assist students in building target language skills. The study employs a qualitative methods approach for the collection of the data. Multiple data collection strategies are used concurrently to gather information from the participants. The research tools include semi-structured interviews with the program administrators and teachers, classroom observations, and teacher shadowing. The researchers utilize triangulation of the data to maintain validity in the process of data interpretation. The preliminary results of the study show a need for culturally appropriate materials that can further the learning of students of the target language as well as the culture, i.e., clay pots and basket-making materials. It was found that the course and teachers focus on developing the Listening and Speaking skills of the students. Moreover, to assist the young learners beyond the classroom, the teachers could make use of send-home teaching materials to reinforce the learning (i.e., coloring books, including illustrations of culturally relevant animals, food, and places). Audio language resources are also identified as helpful additional materials for the parents to assist the learning of the kids.Keywords: indigenous education, materials development, need analysis, piipaash language revitalizaton
Procedia PDF Downloads 90321 Insights into Child Malnutrition Dynamics with the Lens of Women’s Empowerment in India
Authors: Bharti Singh, Shri K. Singh
Abstract:
Child malnutrition is a multifaceted issue that transcends geographical boundaries. Malnutrition not only stunts physical growth but also leads to a spectrum of morbidities and child mortality. It is one of the leading causes of death (~50 %) among children under age five. Despite economic progress and advancements in healthcare, child malnutrition remains a formidable challenge for India. The objective is to investigate the impact of women's empowerment on child nutrition outcomes in India from 2006 to 2021. A composite index of women's empowerment was constructed using Confirmatory Factor Analysis (CFA), a rigorous technique that validates the measurement model by assessing how well-observed variables represent latent constructs. This approach ensures the reliability and validity of the empowerment index. Secondly, kernel density plots were utilised to visualise the distribution of key nutritional indicators, such as stunting, wasting, and overweight. These plots offer insights into the shape and spread of data distributions, aiding in understanding the prevalence and severity of malnutrition. Thirdly, linear polynomial graphs were employed to analyse how nutritional parameters evolved with the child's age. This technique enables the visualisation of trends and patterns over time, allowing for a deeper understanding of nutritional dynamics during different stages of childhood. Lastly, multilevel analysis was conducted to identify vulnerable levels, including State-level, PSU-level, and household-level factors impacting undernutrition. This approach accounts for hierarchical data structures and allows for the examination of factors at multiple levels, providing a comprehensive understanding of the determinants of child malnutrition. Overall, the utilisation of these statistical methodologies enhances the transparency and replicability of the study by providing clear and robust analytical frameworks for data analysis and interpretation. Our study reveals that NFHS-4 and NFHS-5 exhibit an equal density of severely stunted cases. NFHS-5 indicates a limited decline in wasting among children aged five, while the density of severely wasted children remains consistent across NFHS-3, 4, and 5. In 2019-21, women with higher empowerment had a lower risk of their children being undernourished (Regression coefficient= -0.10***; Confidence Interval [-0.18, -0.04]). Gender dynamics also play a significant role, with male children exhibiting a higher susceptibility to undernourishment. Multilevel analysis suggests household-level vulnerability (intra-class correlation=0.21), highlighting the need to address child undernutrition at the household level.Keywords: child nutrition, India, NFHS, women’s empowerment
Procedia PDF Downloads 34320 High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements
Authors: Alexander Buhr, Klaus Ehrenfried
Abstract:
Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in Göttingen, the so called tunnel simulation facility Göttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium.Keywords: boundary layer, high-speed PIV, ICE3, moving train model, roughness elements
Procedia PDF Downloads 307319 Social and Economic Challenges of Adopting Sustainable Urban Development in Developing Economy: A Stakeholder's Perception
Authors: Raed Fawzi Mohammed Ameen, Haider I. Alyasari, Maryam Altaweel
Abstract:
Due to rapid urbanization, developing countries faced significant urban challenges that accompanied the population growth such as the inability to provide adequate housing; sustain human and community's health and wellbeing; ensure the safety in urban areas; the prevalence corruption; lack of jobs; and a shortage of investment. The destruction, degradation, and lack of planning are acute in countries such as Iraq that have suffered for more than four decades because of war and international sanctions, resulting in severe damages to the ecology sector, social utilities, housing, infrastructure, as well as the disruption of the economic sector. Many of significant urban development, housing, and regeneration projects are currently underway in different regions in Iraq, labelled as a means to reform the environmental, social, and economic sectors. However, most often with absence of public participation. Hence, there is an urgent need for understanding public perception, especially of urban socio-economic challenges, which represents a crucial concern for many planners, designers, and policy-makers in order to develop effective policies in addition to increasing their participation. The aim of this study is to investigate stakeholder perceptions of the socio-economic challenges of urban development and their priorities in the all Iraqi provinces. A nationwide questionnaire has been conducted (N = 643) across Iraq, using 19- item structured questionnaire where the stakeholder’s perspectives were collected on a 5-point Likert-type scale. The indicators were identified through deep investigation in previous studies. Principal component analysis (PCA) and statistical tests were utilized to the collected responses in order to investigate the linkage between the perceptions of socio- economic challenges and demographic factors. A high value of internal consistency and reliability of the instrument has been achieved (Cronbach’s alpha= 0.867). Five principal components have been identified, namely: economic, cultural aspects, design context, employment, security and housing demands. The item ‘safety of public places' was ranked as the most important, followed by the items 'minimize unplanned housing', and ‘provision of affordable housing’, respectively. Promote high-rise housing from the housing demands group, was ranked the lowest component between all indicators. 'Using sustainable local materials in construction' item had the second lowest mean score. The results also illustrate a link between deficiencies in the social and economic infrastructure because of the destruction and degradation caused by political instability in Iraq in the last few decades.Keywords: public participation in development, socio-economic challenges, urban development, urban sustainability
Procedia PDF Downloads 138318 Variation of Carbon Isotope Ratio (δ13C) and Leaf-Productivity Traits in Aquilaria Species (Thymelaeceae)
Authors: Arlene López-Sampson, Tony Page, Betsy Jackes
Abstract:
Aquilaria genus produces a highly valuable fragrant oleoresin known as agarwood. Agarwood forms in a few trees in the wild as a response to injure or pathogen attack. The resin is used in perfume and incense industry and medicine. Cultivation of Aquilaria species as a sustainable source of the resin is now a common strategy. Physiological traits are frequently used as a proxy of crop and tree productivity. Aquilaria species growing in Queensland, Australia were studied to investigate relationship between leaf-productivity traits with tree growth. Specifically, 28 trees, representing 12 plus trees and 16 trees from yield plots, were selected to conduct carbon isotope analysis (δ13C) and monitor six leaf attributes. Trees were grouped on four diametric classes (diameter at 150 mm above ground level) ensuring the variability in growth of the whole population was sampled. Model averaging technique based on the Akaike’s information criterion (AIC) was computed to identify whether leaf traits could assist in diameter prediction. Carbon isotope values were correlated with height classes and leaf traits to determine any relationship. In average four leaves per shoot were recorded. Approximately one new leaf per week is produced by a shoot. Rate of leaf expansion was estimated in 1.45 mm day-1. There were no statistical differences between diametric classes and leaf expansion rate and number of new leaves per week (p > 0.05). Range of δ13C values in leaves of Aquilaria species was from -25.5 ‰ to -31 ‰ with an average of -28.4 ‰ (± 1.5 ‰). Only 39% of the variability in height can be explained by δ13C in leaf. Leaf δ13C and nitrogen content values were positively correlated. This relationship implies that leaves with higher photosynthetic capacities also had lower intercellular carbon dioxide concentrations (ci/ca) and less depleted values of 13C. Most of the predictor variables have a weak correlation with diameter (D). However, analysis of the 95% confidence of best-ranked regression models indicated that the predictors that could likely explain growth in Aquilaria species are petiole length (PeLen), values of δ13C (true13C) and δ15N (true15N), leaf area (LA), specific leaf area (SLA) and number of new leaf produced per week (NL.week). The model constructed with PeLen, true13C, true15N, LA, SLA and NL.week could explain 45% (R2 0.4573) of the variability in D. The leaf traits studied gave a better understanding of the leaf attributes that could assist in the selection of high-productivity trees in Aquilaria.Keywords: 13C, petiole length, specific leaf area, tree growth
Procedia PDF Downloads 512317 Spatial Direct Numerical Simulation of Instability Waves in Hypersonic Boundary Layers
Authors: Jayahar Sivasubramanian
Abstract:
Understanding laminar-turbulent transition process in hyper-sonic boundary layers is crucial for designing viable high speed flight vehicles. The study of transition becomes particularly important in the high speed regime due to the effect of transition on aerodynamic performance and heat transfer. However, even after many years of research, the transition process in hyper-sonic boundary layers is still not understood. This lack of understanding of the physics of the transition process is a major impediment to the development of reliable transition prediction methods. Towards this end, spatial Direct Numerical Simulations are conducted to investigate the instability waves generated by a localized disturbance in a hyper-sonic flat plate boundary layer. In order to model a natural transition scenario, the boundary layer was forced by a short duration (localized) pulse through a hole on the surface of the flat plate. The pulse disturbance developed into a three-dimensional instability wave packet which consisted of a wide range of disturbance frequencies and wave numbers. First, the linear development of the wave packet was studied by forcing the flow with low amplitude (0.001% of the free-stream velocity). The dominant waves within the resulting wave packet were identified as two-dimensional second mode disturbance waves. Hence the wall-pressure disturbance spectrum exhibited a maximum at the span wise mode number k = 0. The spectrum broadened in downstream direction and the lower frequency first mode oblique waves were also identified in the spectrum. However, the peak amplitude remained at k = 0 which shifted to lower frequencies in the downstream direction. In order to investigate the nonlinear transition regime, the flow was forced with a higher amplitude disturbance (5% of the free-stream velocity). The developing wave packet grows linearly at first before reaching the nonlinear regime. The wall pressure disturbance spectrum confirmed that the wave packet developed linearly at first. The response of the flow to the high amplitude pulse disturbance indicated the presence of a fundamental resonance mechanism. Lower amplitude secondary peaks were also identified in the disturbance wave spectrum at approximately half the frequency of the high amplitude frequency band, which would be an indication of a sub-harmonic resonance mechanism. The disturbance spectrum indicates, however, that fundamental resonance is much stronger than sub-harmonic resonance.Keywords: boundary layer, DNS, hyper sonic flow, instability waves, wave packet
Procedia PDF Downloads 183316 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine
Procedia PDF Downloads 12315 Requirement Engineering for Intrusion Detection Systems in Wireless Sensor Networks
Authors: Afnan Al-Romi, Iman Al-Momani
Abstract:
The urge of applying the Software Engineering (SE) processes is both of vital importance and a key feature in critical, complex large-scale systems, for example, safety systems, security service systems, and network systems. Inevitably, associated with this are risks, such as system vulnerabilities and security threats. The probability of those risks increases in unsecured environments, such as wireless networks in general and in Wireless Sensor Networks (WSNs) in particular. WSN is a self-organizing network of sensor nodes connected by wireless links. WSNs consist of hundreds to thousands of low-power, low-cost, multi-function sensor nodes that are small in size and communicate over short-ranges. The distribution of sensor nodes in an open environment that could be unattended in addition to the resource constraints in terms of processing, storage and power, make such networks in stringent limitations such as lifetime (i.e. period of operation) and security. The importance of WSN applications that could be found in many militaries and civilian aspects has drawn the attention of many researchers to consider its security. To address this important issue and overcome one of the main challenges of WSNs, security solution systems have been developed by researchers. Those solutions are software-based network Intrusion Detection Systems (IDSs). However, it has been witnessed, that those developed IDSs are neither secure enough nor accurate to detect all malicious behaviours of attacks. Thus, the problem is the lack of coverage of all malicious behaviours in proposed IDSs, leading to unpleasant results, such as delays in the detection process, low detection accuracy, or even worse, leading to detection failure, as illustrated in the previous studies. Also, another problem is energy consumption in WSNs caused by IDS. So, in other words, not all requirements are implemented then traced. Moreover, neither all requirements are identified nor satisfied, as for some requirements have been compromised. The drawbacks in the current IDS are due to not following structured software development processes by researches and developers when developing IDS. Consequently, they resulted in inadequate requirement management, process, validation, and verification of requirements quality. Unfortunately, WSN and SE research communities have been mostly impermeable to each other. Integrating SE and WSNs is a real subject that will be expanded as technology evolves and spreads in industrial applications. Therefore, this paper will study the importance of Requirement Engineering when developing IDSs. Also, it will study a set of existed IDSs and illustrate the absence of Requirement Engineering and its effect. Then conclusions are drawn in regard of applying requirement engineering to systems to deliver the required functionalities, with respect to operational constraints, within an acceptable level of performance, accuracy and reliability.Keywords: software engineering, requirement engineering, Intrusion Detection System, IDS, Wireless Sensor Networks, WSN
Procedia PDF Downloads 324314 Lineament Analysis as a Method of Mineral Deposit Exploration
Authors: Dmitry Kukushkin
Abstract:
Lineaments form complex grids on Earth's surface. Currently, one particular object of study for many researchers is the analysis and geological interpretation of maps of lineament density in an attempt to locate various geological structures. But lineament grids are made up of global, regional and local components, and this superimposition of lineament grids of various scales (global, regional, and local) renders this method less effective. Besides, the erosion processes and the erosional resistance of rocks lying on the surface play a significant role in the formation of lineament grids. Therefore, specific lineament density map is characterized by poor contrast (most anomalies do not exceed the average values by more than 30%) and unstable relation with local geological structures. Our method allows to confidently determine the location and boundaries of local geological structures that are likely to contain mineral deposits. Maps of the fields of lineament distortion (residual specific density) created by our method are characterized by high contrast with anomalies exceeding the average by upward of 200%, and stable correlation to local geological structures containing mineral deposits. Our method considers a lineament grid as a general lineaments field – surface manifestation of stress and strain fields of Earth associated with geological structures of global, regional and local scales. Each of these structures has its own field of brittle dislocations that appears on the surface of its lineament field. Our method allows singling out local components by suppressing global and regional components of the general lineaments field. The remaining local lineament field is an indicator of local geological structures.The following are some of the examples of the method application: 1. Srednevilyuiskoye gas condensate field (Yakutia) - a direct proof of the effectiveness of methodology; 2. Structure of Astronomy (Taimyr) - confirmed by the seismic survey; 3. Active gold mine of Kadara (Chita Region) – confirmed by geochemistry; 4. Active gold mine of Davenda (Yakutia) - determined the boundaries of the granite massif that controls mineralization; 5. Object, promising to search for hydrocarbons in the north of Algeria - correlated with the results of geological, geochemical and geophysical surveys. For both Kadara and Davenda, the method demonstrated that the intensive anomalies of the local lineament fields are consistent with the geochemical anomalies and indicate the presence of the gold content at commercial levels. Our method of suppression of global and regional components results in isolating a local lineament field. In early stages of a geological exploration for oil and gas, this allows determining boundaries of various geological structures with very high reliability. Therefore, our method allows optimization of placement of seismic profile and exploratory drilling equipment, and this leads to a reduction of costs of prospecting and exploration of deposits, as well as acceleration of its commissioning.Keywords: lineaments, mineral exploration, oil and gas, remote sensing
Procedia PDF Downloads 305313 A Standard-Based Competency Evaluation Scale for Preparing Qualified Adapted Physical Education Teachers
Authors: Jiabei Zhang
Abstract:
Although adapted physical education (APE) teacher preparation programs are available in the nation, a consistent standards-based competency evaluation scale for preparing of qualified personnel for teaching children with disabilities in APE cannot be identified in the literature. The purpose of this study was to develop a standard-based competency evaluation scale for assessing qualifications for teaching children with disabilities in APE. Standard-based competencies were reviewed and identified based on research evidence documented as effective in teaching children with disabilities in APE. A standard-based competency scale was developed for assessing qualifications for teaching children with disabilities in APE. This scale included 20 standard-based competencies and a 4-point Likert-type scale for each standard-based competency. The first standard-based competency is knowledgeable of the causes of disabilities and their effects. The second competency is the ability to assess physical education skills of children with disabilities. The third competency is able to collaborate with other personnel. The fourth competency is knowledgeable of the measurement and evaluation. The fifth competency is to understand federal and state laws. The sixth competency is knowledgeable of the unique characteristics of all learners. The seventh competency is the ability to write in behavioral terms for objectives. The eighth competency is knowledgeable of developmental characteristics. The ninth competency is knowledgeable of normal and abnormal motor behaviors. The tenth competency is the ability to analyze and adapt the physical education curriculums. The eleventh competency is to understand the history and the philosophy of physical education. The twelfth competency is to understand curriculum theory and development. The thirteenth competency is the ability to utilize instructional designs and plans. The fourteenth competency is the ability to create and implement physical activities. The fifteenth competency is the ability to utilize technology applications. The sixteenth competency is to understand the value of program evaluation. The seventeenth competency is to understand professional standards. The eighteenth competency is knowledgeable of the focused instruction and individualized interventions. The nineteenth competency is able to complete a research project independently. The twentieth competency is to teach children with disabilities in APE independently. The 4-point Likert-type scale ranges from 1 for incompetent to 4 for highly competent. This scale is used for assessing if one completing all course works is eligible for receiving an endorsement for teaching children with disabilities in APE, which is completed based on the grades earned on three courses targeted for each standard-based competency. A mean grade received in three courses primarily addressing a standard-based competency will be marked on a competency level in the above scale. The level 4 is marked for a mean grade of A one receives over three courses, the level 3 for a mean grade of B over three courses, and so on. One should receive a mean score of 3 (competent level) or higher (highly competent) across 19 standard-based competencies after completing all courses specified for receiving an endorsement for teaching children with disabilities in APE. The validity, reliability, and objectivity of this standard-based competency evaluation scale are to be documented.Keywords: evaluation scale, teacher preparation, adapted physical education teachers, and children with disabilities
Procedia PDF Downloads 117312 Modeling and Analysis Of Occupant Behavior On Heating And Air Conditioning Systems In A Higher Education And Vocational Training Building In A Mediterranean Climate
Authors: Abderrahmane Soufi
Abstract:
The building sector is the largest consumer of energy in France, accounting for 44% of French consumption. To reduce energy consumption and improve energy efficiency, France implemented an energy transition law targeting 40% energy savings by 2030 in the tertiary building sector. Building simulation tools are used to predict the energy performance of buildings but the reliability of these tools is hampered by discrepancies between the real and simulated energy performance of a building. This performance gap lies in the simplified assumptions of certain factors, such as the behavior of occupants on air conditioning and heating, which is considered deterministic when setting a fixed operating schedule and a fixed interior comfort temperature. However, the behavior of occupants on air conditioning and heating is stochastic, diverse, and complex because it can be affected by many factors. Probabilistic models are an alternative to deterministic models. These models are usually derived from statistical data and express occupant behavior by assuming a probabilistic relationship to one or more variables. In the literature, logistic regression has been used to model the behavior of occupants with regard to heating and air conditioning systems by considering univariate logistic models in residential buildings; however, few studies have developed multivariate models for higher education and vocational training buildings in a Mediterranean climate. Therefore, in this study, occupant behavior on heating and air conditioning systems was modeled using logistic regression. Occupant behavior related to the turn-on heating and air conditioning systems was studied through experimental measurements collected over a period of one year (June 2023–June 2024) in three classrooms occupied by several groups of students in engineering schools and professional training. Instrumentation was provided to collect indoor temperature and indoor relative humidity in 10-min intervals. Furthermore, the state of the heating/air conditioning system (off or on) and the set point were determined. The outdoor air temperature, relative humidity, and wind speed were collected as weather data. The number of occupants, age, and sex were also considered. Logistic regression was used for modeling an occupant turning on the heating and air conditioning systems. The results yielded a proposed model that can be used in building simulation tools to predict the energy performance of teaching buildings. Based on the first months (summer and early autumn) of the investigations, the results illustrate that the occupant behavior of the air conditioning systems is affected by the indoor relative humidity and temperature in June, July, and August and by the indoor relative humidity, temperature, and number of occupants in September and October. Occupant behavior was analyzed monthly, and univariate and multivariate models were developed.Keywords: occupant behavior, logistic regression, behavior model, mediterranean climate, air conditioning, heating
Procedia PDF Downloads 62311 Role of Psychological Capital in Organizational and Personal Outcomes: An Exploratory Study of Medical Professionals in Pakistan
Authors: Shazia Almas, Jaffar Iqbal, Nazia Almas
Abstract:
In most of the South Asian countries like Pakistan medical profession is one the most valued and respectful professions yet being a medical professional requires an enormous amount of responsibilities and work overload at the same time which possibly can be in contrast with family role of a doctor. Job and family are two primary spheres of a person's life no matter whatever the profession one adopts and the type of family one is running. There is a bi-directional relationship between job and family. The type and nature of work, time schedules, working shifts in medical profession are very demanding in the countries like Pakistan where number of patients is far more higher than the number of doctors available. The work life also have significant impact on family life and vice versa. Because of the sensitivity and interdependency of these relations, today’s overarching and competing demands remain dissatisfactory. The main objective of the current research is to investigate how interpersonal relationships affect work and work affects interpersonal relationships of medical professionals. In line with identifying these facts, the current study aimed to examine the predictive role of psychological capital (self-efficacy, hope, optimism, and resilience), in organizational outcome (job satisfaction) and personal outcome (family satisfaction) amongst male and medical professionals. A total of 350 participants from public and private sector hospitals of Pakistan were recruited through simple random and stratified sampling techniques, with age ranges from 26-50 years. The questionnaire including established and certified self-report measures of Psychological Capital Questionnaire, Job Satisfaction, and Family Satisfaction were adopted to collect the data. The reliability and validity of mentioned instruments were established through Cronbach’s alpha and factor analyses (exploratory and confirmatory) respectively using Structural Equation Modeling (SEM) by AMOS. The proposed hypotheses were tested using Pearson’s Correlation and Regression analyses for predicting effect whereas, t-Test was deployed to verify the difference between male and female health professionals. The results revealed that self-efficacy and optimism predicted job satisfaction while, self-efficacy, hope, and resilience predicted family satisfaction. Moreover, the results depicted significant gender differences in job satisfaction where females were higher on job satisfaction as compared to male medical professionals but no significant differences were observed in levels of family satisfaction between both genders. The study has implications for social, organizational and work policy designers. The study also paves for more researches with positive psychological approach to promote work-family harmony.Keywords: family satisfaction, job satisfaction, medical professionals, psychological capital
Procedia PDF Downloads 251310 Factors Influencing Intention to Engage in Long-term Care Services among Nursing Aide Trainees and the General Public
Authors: Ju-Chun Chien
Abstract:
Rapid aging and depopulation could lead to serious problems, including workforce shortages and health expenditure costs. The current and predicted future LTC workforce shortages could be a real threat to Taiwan’s society. By means of comparison of data from 144 nursing aide trainees and 727 general public, the main purpose of the present study was to determine whether there were any notable differences between the two groups toward engaging in LTC services. Moreover, this study focused on recognizing the attributes of the general public who had the willingness to take LTC jobs but continue to ride the fence. A self-developed questionnaire was designed based on Ajzen’s Theory of Planned Behavior model. After conducting exploratory factor analysis (EFA) and reliability analysis, the questionnaire was a reliable and valid instrument for both nursing aide trainees and the general public. The main results were as follows: Firstly, nearly 70% of nursing aide trainees showed interest in LTC jobs. Most of them were middle-aged female (M = 46.85, SD = 9.31), had a high school diploma or lower, had unrelated work experience in healthcare, and were mostly unemployed. The most common reason for attending the LTC training program was to gain skills in a particular field. The second most common reason was to obtain the license. The third and fourth reasons were to be interested in caring for people and to increase income. The three major reasons that might push them to leave LTC jobs were physical exhaustion, payment is bad, and being looked down on. Secondly, the variables that best-predicted nursing aide trainees’ intention to engage in LTC services were having personal willingness, perceived behavior control, with high school diploma or lower, and supported from family and friends. Finally, only 11.80% of the general public reported having interest in LTC jobs (the disapproval rating was 50% for the general public). In comparison to nursing aide trainees who showed interest in LTC settings, 64.8% of the new workforce for LTC among the general public was male and had an associate degree, 54.8% had relevant healthcare experience, 67.1% was currently employed, and they were younger (M = 32.19, SD = 13.19) and unmarried (66.3%). Furthermore, the most commonly reason for the new workforce to engage in LTC jobs were to gain skills in a particular field. The second priority was to be interested in caring for people. The third and fourth most reasons were to give back to society and to increase income, respectively. The top five most commonly reasons for the new workforce to quitting LTC jobs were listed as follows: physical exhaustion, being looked down on, excessive working hours, payment is bad, and excessive job stress.Keywords: long-term care services, nursing aide trainees, Taiwanese people, theory of planned behavior
Procedia PDF Downloads 159309 Development of a Novel Clinical Screening Tool, Using the BSGE Pain Questionnaire, Clinical Examination and Ultrasound to Predict the Severity of Endometriosis Prior to Laparoscopic Surgery
Authors: Marlin Mubarak
Abstract:
Background: Endometriosis is a complex disabling disease affecting young females in the reproductive period mainly. The aim of this project is to generate a diagnostic model to predict severity and stage of endometriosis prior to Laparoscopic surgery. This will help to improve the pre-operative diagnostic accuracy of stage 3 & 4 endometriosis and as a result, refer relevant women to a specialist centre for complex Laparoscopic surgery. The model is based on the British Society of Gynaecological Endoscopy (BSGE) pain questionnaire, clinical examination and ultrasound scan. Design: This is a prospective, observational, study, in which women completed the BSGE pain questionnaire, a BSGE requirement. Also, as part of the routine preoperative assessment patient had a routine ultrasound scan and when recto-vaginal and deep infiltrating endometriosis was suspected an MRI was performed. Setting: Luton & Dunstable University Hospital. Patients: Symptomatic women (n = 56) scheduled for laparoscopy due to pelvic pain. The age ranged between 17 – 52 years of age (mean 33.8 years, SD 8.7 years). Interventions: None outside the recognised and established endometriosis centre protocol set up by BSGE. Main Outcome Measure(s): Sensitivity and specificity of endometriosis diagnosis predicted by symptoms based on BSGE pain questionnaire, clinical examinations and imaging. Findings: The prevalence of diagnosed endometriosis was calculated to be 76.8% and the prevalence of advanced stage was 55.4%. Deep infiltrating endometriosis in various locations was diagnosed in 32/56 women (57.1%) and some had DIE involving several locations. Logistic regression analysis was performed on 36 clinical variables to create a simple clinical prediction model. After creating the scoring system using variables with P < 0.05, the model was applied to the whole dataset. The sensitivity was 83.87% and specificity 96%. The positive likelihood ratio was 20.97 and the negative likelihood ratio was 0.17, indicating that the model has a good predictive value and could be useful in predicting advanced stage endometriosis. Conclusions: This is a hypothesis-generating project with one operator, but future proposed research would provide validation of the model and establish its usefulness in the general setting. Predictive tools based on such model could help organise the appropriate investigation in clinical practice, reduce risks associated with surgery and improve outcome. It could be of value for future research to standardise the assessment of women presenting with pelvic pain. The model needs further testing in a general setting to assess if the initial results are reproducible.Keywords: deep endometriosis, endometriosis, minimally invasive, MRI, ultrasound.
Procedia PDF Downloads 355308 Attitudes of Nursing Students Towards Caring Nurse-Patient Interaction
Authors: Şefika Dilek Güven, Gülden Küçükakça
Abstract:
Objective: Learning the process of interaction with patient occurs within the process of nursing education. For this reason, it is considered to provide an opportunity for questioning and rearrangement of nursing education programs by assessing attitudes of nursing students towards caring nurse-patient interaction. Method: This is a descriptive study conducted in order to assess attitudes of nursing students towards caring nurse-patient interaction. The study was conducted with 318 students who were studying at nursing department of Semra and Vefa Küçük Health High School, Nevşehir Hacı Bektaş Veli University in 2015-2016 academic year and agreed to participate in the study. “Personal Information Form” prepared by the researchers utilizing the literature and “Caring Nurse-Patient Interaction Scale (CNPIS)”, who Turkish validity and reliability were conducted by Atar and Aştı, were used in the study. The Cronbach α coefficient of CNPIS was found as 0.973 in the study. Permissions of the institution and participants were received before starting to conduct study. Significance test of the difference between two means, analysis of variance, and correlation analysis were used to assess the data. Results: Average age of nursing students participating in the study was 20.72±1.91 and 74.8% were female, and 28.0% were the fourth-year students. 52.5% of the nursing students stated that they chose nursing profession willingly, 80.2% did not have difficulty in their interactions with patients, and 84.6% did not have difficulty in their social relationships. CNPIS total mean score of nursing students was found to be 295.31±40.95. When the correlation between total CNPIS mean score of the nursing students in terms of some variables was examined; it was determined there was a significant positive correlation between ages of the nursing students and total mean score of CNPIS (r=0.184, p=0.001). CNPIS total mean score was found to be higher in female students compared to male students, in 3rd–year students compared to students studying at other years, in those choosing their profession willingly compared to those choosing their profession unwillingly, in those not having difficulty in relations with the patients compared to those having difficulty, and in those not having difficulty in social relationships compared to those having difficulty. It was determined there was a significant difference between CNPIS total mean scores in terms of the year and state of having difficulty in social relationships (p<0,005). Conclusion: Nursing students had positive attitudes towards caring nurse-patient interactions, attitudes of nursing students, who were female, studying at 3rd year, chose nursing profession willingly, did not have difficulty in patient relations, and did not have difficulty in social relationships, towards caring nurse-patient interaction were found to be more positive. In the line with these results; it can be recommended to organize activities for introducing nursing profession to the youth preparing for the university, to use methods that will increase further communication skills to nursing students during their education, to support students in terms of communication skills, and to involve activities that will strengthen their social relationships.Keywords: nurse-patient interaction, nursing student, patient, communication
Procedia PDF Downloads 223307 Predicting Reading Comprehension in Spanish: The Evidence for the Simple View Model
Authors: Gabriela Silva-Maceda, Silvia Romero-Contreras
Abstract:
Spanish is a more transparent language than English given that it has more direct correspondences between sounds and letters. It has become important to understand how decoding and linguistic comprehension contribute to reading comprehension in the framework of the widely known Simple View Model. This study aimed to identify the level of prediction by these two components in a sample of 1st to 4th grade children attending two schools in central Mexico (one public and one private). Within each school, ten children were randomly selected in each grade level, and their parents were asked about reading habits and socioeconomic information. In total, 79 children completed three standardized tests measuring decoding (pseudo-word reading), linguistic comprehension (understanding of paragraphs) and reading comprehension using subtests from the Clinical Evaluation of Language Fundamentals-Spanish, Fourth Edition, and the Test de Lectura y Escritura en Español (LEE). The data were analyzed using hierarchical regression, with decoding as a first step and linguistic comprehension as a second step. Results showed that decoding accounted for 19.2% of the variance in reading comprehension, while linguistic comprehension accounted for an additional 10%, adding up to 29.2% of variance explained: F (2, 75)= 15.45, p <.001. Socioeconomic status derived from parental questionnaires showed a statistically significant association with the type of school attended, X2 (3, N= 79) = 14.33, p =.002. Nonetheless when analyzing the Simple View components, only decoding differences were statistically significant (t = -6.92, df = 76.81, p < .001, two-tailed); reading comprehension differences were also significant (t = -3.44, df = 76, p = .001, two-tailed). When socioeconomic status was included in the model, it predicted a 5.9% unique variance, even when already accounting for Simple View components, adding to a 35.1% total variance explained. This three-predictor model was also significant: F (3, 72)= 12.99, p <.001. In addition, socioeconomic status was significantly correlated with the amount of non-textbook books parents reported to have at home for both adults (rho = .61, p<.001) and children (rho= .47, p<.001). Results converge with a large body of literature finding socioeconomic differences in reading comprehension; in addition this study suggests that these differences were also present in decoding skills. Although linguistic comprehension differences between schools were expected, it is argued that the test used to collect this variable was not sensitive to linguistic differences, since it came from a test to diagnose clinical language disabilities. Even with this caveat, results show that the components of the Simple View Model can predict less than a third of the variance in reading comprehension in Spanish. However, the results also suggest that a fuller model of reading comprehension is obtained when considering the family’s socioeconomic status, given the potential differences shown by the socioeconomic status association with books at home, factors that are particularly important in countries where inequality gaps are relatively large.Keywords: decoding, linguistic comprehension, reading comprehension, simple view model, socioeconomic status, Spanish
Procedia PDF Downloads 329