Search results for: Jones learning center
5466 What the Future Holds for Social Media Data Analysis
Authors: P. Wlodarczak, J. Soar, M. Ally
Abstract:
The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning
Procedia PDF Downloads 4235465 Emerging Issues in Early Childhood Care and Development in Nigeria
Authors: Evelyn Fabian
Abstract:
The focus of this discussion centres on the emerging issues in Early Childhood Care and development in Nigeria. Early childhood care is the bedrock of Nigeria’s educational system. However, there are critical issues that had not been addressed and it is frustrating the entire educational process. Thus, this paper will show the inter-connectedness between these issues such as poor funding, trained skillful teachers that would supervise the learning process of the kids, unconducive learning environment and lack of relevant facilities. For a clear grasp of these issues, the researcher visited 36 early childhood centres distributed across the 36 spates of Nigeria. The findings which were expressed in simple percentages revealed a near total absence or government neglect of these critical areas. The findings equally showed a misplaced priority in the government allocation of funds to early child care education and development. The study concludes that this mismatch in the training of these categories of pupils, government should expedite action in addressing these emerging issues in early childhood care and development in Nigeria.Keywords: early childhood, ECCE, education, emerging issues
Procedia PDF Downloads 5335464 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes
Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland
Abstract:
This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.Keywords: speech prosody, PTSD, machine learning, feature extraction
Procedia PDF Downloads 905463 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning
Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul
Abstract:
In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.Keywords: electrocardiogram, dictionary learning, sparse coding, classification
Procedia PDF Downloads 3865462 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes
Authors: L. S. Chathurika
Abstract:
Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.Keywords: algorithm, classification, evaluation, features, testing, training
Procedia PDF Downloads 1195461 Learner Awareness Levels Questionnaire: Development and Preliminary Validation of the English and Malay Versions to Measure How and Why Students Learn
Authors: S. Chee Choy, Pauline Swee Choo Goh, Yow Lin Liew
Abstract:
The purpose of this study is to evaluate the English version and a Malay translation of the 21-item Learner Awareness Questionnaire for its application to assess student learning in higher education. The Learner Awareness Questionnaire, originally written in English, is a quantitative measure of how and why students learn. The questionnaire gives an indication of the process and motives to learn using four scales: survival, establishing stability, approval, and loving to learn. Data in the present study came from 680 university students enrolled in various programs in Malaysia. The Malay version of the questionnaire supported a similar four-factor structure and internal consistency to the English version. The four factors of the Malay version also showed moderate to strong correlations with those of the English versions. The results suggest that the Malay version of the questionnaire is similar to the English version. However, further refinement for the questions is needed to strengthen the correlations between the two questionnaires.Keywords: student learning, learner awareness, questionnaire development, instrument validation
Procedia PDF Downloads 4285460 Education in Personality Development and Grooming for Airline Business Program's Students of International College, Suan Sunandha Rajabhat University
Authors: Taksina Bunbut
Abstract:
Personality and grooming are vital for creating professionalism and safety image for all staffs in the airline industry. Airline Business Program also has an aim to educate students through the subject Personality Development and Grooming in order to elevate the quality of students to meet standard requirements of the airline industry. However, students agree that there are many difficulties that cause unsuccessful learning experience in this subject. The research is to study problems that can afflict students from getting good results in the classroom. Furthermore, exploring possible solutions to overcome challenges are also included in this study. The research sample consists of 140 students who attended the class of Personality Development and Grooming. The employed research instrument is a questionnaire. Statistic for data analysis is t-test and Multiple Regression Analysis. The result found that although students are satisfied with teaching and learning of this subject, they considered that teaching in English and teaching topics in social etiquette in different cultures are difficult for them to understand.Keywords: personality development, grooming, Airline Business Program, soft skill
Procedia PDF Downloads 2385459 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization
Authors: Subhajit Das, Nirjhar Dhang
Abstract:
Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization
Procedia PDF Downloads 2155458 Assessing the Quality of Maternity Care in Sub-Saharan Africa Using the Donabedian Quality of Care Framework: A Systematic Scoping Review
Authors: Bernice Boafoaa Gyapong, Anne Jones, Sam Bassett, Janet Anderson
Abstract:
Background: Maternal mortality and morbidity are global concerns, especially in sub-Saharan Africa (SSA). Most maternal mortalities occur at the time of birth. Quality intrapartum care is essential for improving maternal and newborn health outcomes. This scoping review aimed to assess and describe the quality of care during childbirth in SSA to provide an overview of the regional trend of the quality of intrapartum care, the challenges to quality care provision, and identify research gaps. Methods: A scoping review based on Arksey and O’Malley’s scoping review framework was conducted. Medline, CINAHL, PsycINFO, and maternal-infant databases were searched to identify the relevant studies for this review. A narrative summary was presented using themes based on the Donabedian structure, process, and outcome quality of care model. Results: A total of five hundred and forty-seven (547) publications were identified. Fifty-six (56) studies conducted in twenty (20) countries were included in the review. Thirty-four (34) were quantitative, sixteen (16) were qualitative, and six (6) were mixed methods. Most of the studies were related to the process component of quality of care. The provision of emergency obstetric care services, infrastructure, and availability of essential staff and equipment for perinatal care was inadequate in many facilities, particularly rural and peripheral health facilities. Many women experienced disrespectful care during childbirth. Routine care during labour and delivery was observed to be sub-optimal, yet some women reported high satisfaction with care. The use of health facilities for delivery was lower in health centres compared to hospitals. Conclusion: There are variations in the quality of maternity care provided in SSA. Intrapartum care quality is generally deficient in SSA, particularly in peripheral health facilities, health centres, and community clinics. Many of the quality-of-care issues identified are related to the structure component. Stakeholders must develop interventions that comprehensively address these interrelated issues to improve maternal healthcare quality, especially in primary healthcare facilities.Keywords: quality of care, maternity health, Sub-Saharan Africa, intrapartum
Procedia PDF Downloads 725457 Transforming Mindsets and Driving Action through Environmental Sustainability Education: A Course in Case Studies and Project-Based Learning in Public Education
Authors: Sofia Horjales, Florencia Palma
Abstract:
Our society is currently experiencing a profound transformation, demanding a proactive response from governmental bodies and higher education institutions to empower the next generation as catalysts for change. Environmental sustainability is rooted in the critical need to maintain the equilibrium and integrity of natural ecosystems, ensuring the preservation of precious natural resources and biodiversity for the benefit of both present and future generations. It is an essential cornerstone of sustainable development, complementing social and economic sustainability. In this evolving landscape, active methodologies take a central role, aligning perfectly with the principles of the 2030 Agenda for Sustainable Development and emerging as a pivotal element of teacher education. The emphasis on active learning methods has been driven by the urgent need to nurture sustainability and instill social responsibility in our future leaders. The Universidad Tecnológica of Uruguay (UTEC) is a public, technologically-oriented institution established in 2012. UTEC is dedicated to decentralization, expanding access to higher education throughout Uruguay, and promoting inclusive social development. Operating through Regional Technological Institutes (ITRs) and associated centers spread across the country, UTEC faces the challenge of remote student populations. To address this, UTEC utilizes e-learning for equal opportunities, self-regulated learning, and digital skills development, enhancing communication among students, teachers, and peers through virtual classrooms. The Interdisciplinary Continuing Education Program is part of the Innovation and Entrepreneurship Department of UTEC. The main goal is to strengthen innovation skills through a transversal and multidisciplinary approach. Within this Program, we have developed a Case of Study and Project-Based Learning Virtual Course designed for university students and open to the broader UTEC community. The primary aim of this course is to establish a strong foundation for comprehending and addressing environmental sustainability issues from an interdisciplinary perspective. Upon completing the course, we expect students not only to understand the intricate interactions between social and ecosystem environments but also to utilize their knowledge and innovation skills to develop projects that offer enhancements or solutions to real-world challenges. Our course design centers on innovative learning experiences, rooted in active methodologies. We explore the intersection of these methods with sustainability and social responsibility in the education of university students. A paramount focus lies in gathering student feedback, empowering them to autonomously generate ideas with guidance from instructors, and even defining their own project topics. This approach underscores that when students are genuinely engaged in subjects of their choice, they not only acquire the necessary knowledge and skills but also develop essential attributes like effective communication, critical thinking, and problem-solving abilities. These qualities will benefit them throughout their lifelong learning journey. We are convinced that education serves as the conduit to merge knowledge and cultivate interdisciplinary collaboration, igniting awareness and instigating action for environmental sustainability. While systemic changes are undoubtedly essential for society and the economy, we are making significant progress by shaping perspectives and sparking small, everyday actions within the UTEC community. This approach empowers our students to become engaged global citizens, actively contributing to the creation of a more sustainable future.Keywords: active learning, environmental education, project-based learning, soft skills development
Procedia PDF Downloads 715456 Evaluation of Musical Conductor Exposure to Noise
Authors: Ahmed Saleh Summan
Abstract:
This article presents the results of a technical report on the evaluation of occupational noise exposures among a musical conductor in a musical rehearsal hall (party–center). A calibrated noise dosimeter was used to measure the personal exposure of a music teacher/conductor for 8 hours in two days of rehearsal involving 90 players. Results showed that noise exposure levels were much higher than the permissible levels regulated 85dBA/8hr by NIOSH. In fact, the first day of measurements recorded the highest exposure levels (91 dBA). A number of factors contributed to these results, such as players number, types of instruments used, and activities. Noise control measures were recommended to solve this situation.Keywords: noise exposure, music conductors, occupational noise, noise in rooms
Procedia PDF Downloads 1155455 Virtual Reality and Avatars in Education
Authors: Michael Brazley
Abstract:
Virtual Reality (VR) and 3D videos are the most current generation of learning technology today. Virtual Reality and 3D videos are being used in professional offices and Schools now for marketing and education. Technology in the field of design has progress from two dimensional drawings to 3D models, using computers and sophisticated software. Virtual Reality is being used as collaborative means to allow designers and others to meet and communicate inside models or VR platforms using avatars. This research proposes to teach students from different backgrounds how to take a digital model into a 3D video, then into VR, and finally VR with multiple avatars communicating with each other in real time. The next step would be to develop the model where people from three or more different locations can meet as avatars in real time, in the same model and talk to each other. This research is longitudinal, studying the use of 3D videos in graduate design and Virtual Reality in XR (Extended Reality) courses. The research methodology is a combination of quantitative and qualitative methods. The qualitative methods begin with the literature review and case studies. The quantitative methods come by way of student’s 3D videos, survey, and Extended Reality (XR) course work. The end product is to develop a VR platform with multiple avatars being able to communicate in real time. This research is important because it will allow multiple users to remotely enter your model or VR platform from any location in the world and effectively communicate in real time. This research will lead to improved learning and training using Virtual Reality and Avatars; and is generalizable because most Colleges, Universities, and many citizens own VR equipment and computer labs. This research did produce a VR platform with multiple avatars having the ability to move and speak to each other in real time. Major implications of the research include but not limited to improved: learning, teaching, communication, marketing, designing, planning, etc. Both hardware and software played a major role in project success.Keywords: virtual reality, avatars, education, XR
Procedia PDF Downloads 985454 Post Apartheid Language Positionality and Policy: Student Teachers' Narratives from Teaching Practicum
Authors: Thelma Mort
Abstract:
This empirical, qualitative research uses interviews of four intermediate phase English language student teachers at one university in South Africa and is an exploration of student teacher learning on their teaching practicum in their penultimate year of the initial teacher education course. The country’s post-apartheid language in education policy provides a context to this study in that children move from mother tongue language of instruction in foundation phase to English as a language of instruction in Intermediate phase. There is another layer of context informing this study which is the school context; the student teachers’ reflections are from their teaching practicum in resource constrained schools, which make up more than 75% of schools in South Africa. The findings were that in these schools, deep biases existed to local languages, that language was being used as a proxy for social class, and that conditions necessary for language acquisition were absent. The student teachers’ attitudes were in contrast to those found in the schools, namely that they had various pragmatic approaches to overcoming obstacles and that they saw language as enabling interdisciplinary work. This study describes language issues, tensions created by policy in South African schools and also supplies a regional account of learning to teach in resource constrained schools in Cape Town, where such language tensions are more inflated. The central findings in this research illuminate attitudes to language and language education in these teaching practicum schools and the complexity of learning to be a language teacher in these contexts. This study is one of the few local empirical studies regarding language teaching in the classroom and language teacher education; as such it offers some background to the country’s poor performance in both international and national literacy assessments.Keywords: language teaching, narrative, post apartheid, South Africa, student teacher
Procedia PDF Downloads 1475453 Deep Learning-Based Approach to Automatic Abstractive Summarization of Patent Documents
Authors: Sakshi V. Tantak, Vishap K. Malik, Neelanjney Pilarisetty
Abstract:
A patent is an exclusive right granted for an invention. It can be a product or a process that provides an innovative method of doing something, or offers a new technical perspective or solution to a problem. A patent can be obtained by making the technical information and details about the invention publicly available. The patent owner has exclusive rights to prevent or stop anyone from using the patented invention for commercial uses. Any commercial usage, distribution, import or export of a patented invention or product requires the patent owner’s consent. It has been observed that the central and important parts of patents are scripted in idiosyncratic and complex linguistic structures that can be difficult to read, comprehend or interpret for the masses. The abstracts of these patents tend to obfuscate the precise nature of the patent instead of clarifying it via direct and simple linguistic constructs. This makes it necessary to have an efficient access to this knowledge via concise and transparent summaries. However, as mentioned above, due to complex and repetitive linguistic constructs and extremely long sentences, common extraction-oriented automatic text summarization methods should not be expected to show a remarkable performance when applied to patent documents. Other, more content-oriented or abstractive summarization techniques are able to perform much better and generate more concise summaries. This paper proposes an efficient summarization system for patents using artificial intelligence, natural language processing and deep learning techniques to condense the knowledge and essential information from a patent document into a single summary that is easier to understand without any redundant formatting and difficult jargon.Keywords: abstractive summarization, deep learning, natural language Processing, patent document
Procedia PDF Downloads 1235452 A Case Study on Blended Pedagogical Approach by Leveraging on Digital Marketing Concepts towards Inculcating Concepts of Sustainability in Management Education
Authors: Narendra Babu Bommenahalli Veerabhadrappa
Abstract:
Teaching sustainability concepts along with profit maximizing philosophy of business in management education is a challenge. This paper explores and evaluates various learning models to inculcate sustainability concepts in management education. The paper explains about a new pedagogy that was tested in a business management school (Indus Business Academy, Bangalore, India) to teach sustainability. The pedagogy was designed by intertwining concepts related to sustainability with digital marketing concepts. As part of this experimental method, students (in groups) were assigned with various topics of sustainability and were asked to work with concepts of digital marketing and thus market the concepts of sustainability. The paper explains as a case study as to how sustainability was integrated with digital marketing tools and how learning towards sustainability was facilitated. It also explains the outcomes of this pedagogical method, in terms of inculcating sustainability concepts amongst management students as well as marketing and proliferation of sustainability concepts to bring about the behavioral changes amongst target audience towards sustainability.Keywords: management-education, pedagogy, sustainability, behavior
Procedia PDF Downloads 2465451 Women-Hating Masculinities: How the Demand for Prostitution Fuels Sex Trafficking
Authors: Rosa M. Senent
Abstract:
Over the centuries, prostitution has been problematized from many sides, with women always at the center of the debate. However, prostitution is a gendered, demand-driven phenomenon. Thus, a focus must be put on the men who demand it, as an increasing number of studies have been done in the last few decades. The purpose of this paper is to expose how men's discourse online reveals the link between their demand for paid sex in prostitution and sex trafficking. The methodological tool employed was Critical Discourse Analysis (CDA). A critical analysis of sex buyers' discourse online showed that online communities of sex buyers are a useful tool in researching their behavior towards women, that their knowledge of sex trafficking and exploitation do not work as a deterrent for them to buy sex, and that the type of masculinity that sex buyers endorse is characterized by attitudes linked to the perpetuation of violence against women.Keywords: masculinities, prostitution, sex trafficking, violence
Procedia PDF Downloads 1395450 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning
Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene
Procedia PDF Downloads 235449 The Creative Unfolding of “Reduced Descriptive Structures” in Musical Cognition: Technical and Theoretical Insights Based on the OpenMusic and PWGL Long-Term Feedback
Authors: Jacopo Baboni Schilingi
Abstract:
We here describe the theoretical and philosophical understanding of a long term use and development of algorithmic computer-based tools applied to music composition. The findings of our research lead us to interrogate some specific processes and systems of communication engaged in the discovery of specific cultural artworks: artistic creation in the sono-musical domain. Our hypothesis is that the patterns of auditory learning cannot be only understood in terms of social transmission but would gain to be questioned in the way they rely on various ranges of acoustic stimuli modes of consciousness and how the different types of memories engaged in the percept-action expressive systems of our cultural communities also relies on these shadowy conscious entities we named “Reduced Descriptive Structures”.Keywords: algorithmic sonic computation, corrected and self-correcting learning patterns in acoustic perception, morphological derivations in sensorial patterns, social unconscious modes of communication
Procedia PDF Downloads 1545448 Diversity in Finance Literature Revealed through the Lens of Machine Learning: A Topic Modeling Approach on Academic Papers
Authors: Oumaima Lahmar
Abstract:
This paper aims to define a structured topography for finance researchers seeking to navigate the body of knowledge in their extrapolation of finance phenomena. To make sense of the body of knowledge in finance, a probabilistic topic modeling approach is applied on 6000 abstracts of academic articles published in three top journals in finance between 1976 and 2020. This approach combines both machine learning techniques and natural language processing to statistically identify the conjunctions between research articles and their shared topics described each by relevant keywords. The topic modeling analysis reveals 35 coherent topics that can well depict finance literature and provide a comprehensive structure for the ongoing research themes. Comparing the extracted topics to the Journal of Economic Literature (JEL) classification system, a significant similarity was highlighted between the characterizing keywords. On the other hand, we identify other topics that do not match the JEL classification despite being relevant in the finance literature.Keywords: finance literature, textual analysis, topic modeling, perplexity
Procedia PDF Downloads 1705447 A Comprehensive Study and Evaluation on Image Fashion Features Extraction
Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen
Abstract:
Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.Keywords: convolutional neural network, feature representation, image processing, machine modelling
Procedia PDF Downloads 1395446 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification
Authors: Bharatendra Rai
Abstract:
The sequence of words in text data has long-term dependencies and is known to suffer from vanishing gradient problems when developing deep learning models. Although recurrent networks such as long short-term memory networks help to overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine the advantages of long short-term memory networks and convolutional neural networks can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.Keywords: long short-term memory networks, convolutional recurrent networks, text classification, hyperparameter tuning, Tukey honest significant differences
Procedia PDF Downloads 1295445 Implementing Critical Friends Groups in Schools
Authors: S. Odabasi Cimer, A. Cimer
Abstract:
Recently, the poor quality of education, low achieving students, low international exam performances and little or no effect of the education reforms on the teaching in the classrooms are the main problems of education discussed in Turkey. Research showed that the quality of an education system can not exceed the quality of its teachers and teaching. Therefore, in-service training (INSET) courses are important to improve teacher quality, thereby, the quality of education. However, according to the research conducted on the evaluation of the INSET courses in Turkey, they are not effective in improving the quality of teaching in the classroom. The main reason for this result is because INSET courses are conducted and delivered in limited time and presented theoretically, which does not meet the needs of teachers and as a result, the knowledge and skills taught are not used in the classrooms. Recently, developed countries have been using Critical Friends Groups (CFGs) successfully for the purpose of school-based training of teachers. CFGs are the learning groups which contain 6-10 teachers aimed at fostering their capacities to undertake instructional and personal improvement and schoolwide reform. CFGs have been recognized as a critical feature in school reform, improving teaching practice and improving student achievement. In addition, in the USA, teachers have named CFGs one of the most powerful professional development activities in which they have ever participated. Whereas, in Turkey, the concept is new. This study aimed to investigate the implications of application, evaluation, and promotion of CFGs which has the potential to contribute to teacher development and student learning in schools in Turkey. For this purpose, the study employed a qualitative approach and case study methodology to implement the model in high schools. The research was conducted in two schools and 13 teachers working in these schools participated. The study lasted two years and the data were collected through various data collection tools including interviews, meeting transcripts, questionnaires, portfolios, and diaries. The results of the study showed that CFGs contributed professional development of teachers and their students’ learning. It also contributed to a culture of collaborative work in schools. A number of barriers and challenges which prevent effective implementation were also determined.Keywords: critical friends group, education reform, science learning, teacher education
Procedia PDF Downloads 1275444 Effective Health Promotion Interventions Help Young Children to Maximize Their Future Well-Being by Early Childhood Development
Authors: Nadeesha Sewwandi, Dilini Shashikala, R. Kanapathy, S. Viyasan, R. M. S. Kumara, Duminda Guruge
Abstract:
Early childhood development is important to the emotional, social, and physical development of young children and it has a direct effect on their overall development and on the adult they become. Play is so important to optimal child developments including skill development, social development, imagination, creativity and it fulfills a baby’s inborn need to learn. So, health promotion approach empowers people about the development of early childhood. Play area is a new concept and this study focus how this play areas helps to the development of early childhood of children in rural villages in Sri Lanka. This study was conducted with a children society in a rural village called Welankulama in Sri Lanka. Survey was conducted with children society about emotional, social and physical development of young children (Under age eight) in this village using questionnaires. It described most children under eight years age have poor level of emotional, social and physical development in this village. Then children society wanted to find determinants for this problem and among them they prioritized determinants like parental interactions, learning environment and social interaction and address them using an innovative concept called play area. In this village there is a common place as play area under a big tamarind tree. It consists of a playhouse, innovative playing toys, mobile library, etc. Twice a week children, parents, grandparents gather to this nice place. Collective feeding takes place in this area once a week and it was conducted by several mothers groups in this village. Mostly grandparents taught about handicrafts and this is a very nice place to share their experiences with all. Healthy competitions were conducted in this place through playing to motivate the children. Happy calendar (mood of the children) was marked by children before and after coming to the play area. In terms of results qualitative changes got significant place in this study. By learning about colors and counting through playing the thinking and reasoning skills got developed among children. Children were widening their imagination by means of storytelling. We observed there were good developments of fine and gross motor skills of two differently abled children in this village. Children learn to empathize with other people, sharing, collaboration, team work and following of rules. And also children gain knowledge about fairness, through role playing, obtained insight on the right ways of displaying emotions such as stress, fear, anger, frustration, and develops knowledge of how they can manage their feelings. The reading and writing ability of the children got improved by 83% because of the mobile library. The weight of children got increased by 81% in the village. Happiness was increased by 76% among children in the society. Playing is very important for learning during early childhood period of a person. Health promotion interventions play a major role to the development of early childhood and it help children to adjust to the school setting and even to enhance children’s learning readiness, learning behaviors and problem solving skills.Keywords: early childhood development, health promotion approach, play and learning, working with children
Procedia PDF Downloads 1395443 The Cultural Adaptation of a Social and Emotional Learning Program for an Intervention in Saudi Arabia’s Preschools
Authors: Malak Alqaydhi
Abstract:
A problem in the Saudi Arabia education system is that there is a lack of curriculum- based Social, emotional learning (SEL) teaching practices with the pedagogical concept of SEL yet to be practiced in the Kingdom of Saudi Arabia (KSA). Furthermore, voices of teachers and parents have not been captured regarding the use of SEL, particularly in preschools. The importance of this research is to help determine, with the input of teachers and mothers of preschoolers, the efficacy of a culturally adapted SEL program. The purpose of this research is to determine the most appropriate SEL intervention method to appropriately apply in the cultural context of the Saudi preschool classroom setting. The study will use a mixed method exploratory sequential research design, applying qualitative and quantitative approaches including semi-structured interviews with teachers and parents of preschoolers and an experimental research approach. The research will proceed in four phases beginning with a series of interviews with Saudi preschool teachers and mothers, whose voices and perceptions will help guide the second phase of selection and adaptation of a suitable SEL preschool program. The third phase will be the implementation of the intervention by the researcher in the preschool classroom environment, which will be facilitated by the researcher’s cultural proficiency and practical experience in Saudi Arabia. The fourth and final phase will be an evaluation to assess the effectiveness of the trialled SEL among the preschool student participants. The significance of this research stems from its contribution to knowledge about SEL in culturally appropriate Saudi preschools and the opportunity to support initiatives for Saudi early childhood educators to consider implementing SEL programs. The findings from the study may be useful to inform the Saudi Ministry of Education and its curriculum designers about SEL programs, which could be beneficial to trial more widely in the Saudi preschool curriculum.Keywords: social emotional learning, preschool children, saudi Arabia, child behavior
Procedia PDF Downloads 1575442 Enhancing Code Security with AI-Powered Vulnerability Detection
Authors: Zzibu Mark Brian
Abstract:
As software systems become increasingly complex, ensuring code security is a growing concern. Traditional vulnerability detection methods often rely on manual code reviews or static analysis tools, which can be time-consuming and prone to errors. This paper presents a distinct approach to enhancing code security by leveraging artificial intelligence (AI) and machine learning (ML) techniques. Our proposed system utilizes a combination of natural language processing (NLP) and deep learning algorithms to identify and classify vulnerabilities in real-world codebases. By analyzing vast amounts of open-source code data, our AI-powered tool learns to recognize patterns and anomalies indicative of security weaknesses. We evaluated our system on a dataset of over 10,000 open-source projects, achieving an accuracy rate of 92% in detecting known vulnerabilities. Furthermore, our tool identified previously unknown vulnerabilities in popular libraries and frameworks, demonstrating its potential for improving software security.Keywords: AI, machine language, cord security, machine leaning
Procedia PDF Downloads 365441 Thoughts on the Informatization Technology Innovation of Cores and Samples in China
Authors: Honggang Qu, Rongmei Liu, Bin Wang, Yong Xu, Zhenji Gao
Abstract:
There is a big gap in the ability and level of the informatization technology innovation of cores and samples compared with developed countries. Under the current background of promoting the technology innovation, how to strengthen the informatization technology innovation of cores and samples for National Cores and Samples Archives, which is a national innovation research center, is an important research topic. The paper summarizes the development status of cores and samples informatization technology, and finds the gaps and deficiencies, and proposes the innovation research directions and content, including data extraction, recognition, processing, integration, application and so on, so as to provide some reference and guidance for the future innovation research of the archives and support better the geological technology innovation in China.Keywords: cores and samples;, informatization technology;, innovation;, suggestion
Procedia PDF Downloads 1265440 The Impact of Culture in Teaching English, the Case Study of Preparatory School of Sciences and Techniques
Authors: Nouzha Yasmina Soulimane-Benhabib
Abstract:
Language is a medium of communication and a means of expression that is why today the learning of foreign languages especially the English language has become a basic necessity for every student who is ambitious. It is known that culture and language are inseparable and complementary, however, in the process of teaching a foreign language, teachers used to focus mainly on preparing adequate syllabi for ESP students, yet, some parameters should be considered. For instance; the culture of the target language may play an important role since students attitudes towards a foreign language enhance their learning or vice versa. The aim of this study is to analyse how culture could influence the teaching of a foreign language, we have taken the example of the English language as it is considered as the second foreign language in Algeria after French. The study is conducted at the Preparatory School of Sciences and Techniques, Tlemcen where twenty-five students participated in this research. The reasons behind learning the English language are various, and since English is the most widely-spoken language in the world, it is the language of research and education and it is used in many other fields, we have to take into consideration one important factor which is the social distance between the culture of the Algerian learner and the culture of the target language, this gap may lead to a culture shock. Two steps are followed in this research: The first one is to collect data from those students who are studying at the Preparatory School under the form of questionnaire and an interview is submitted to six of them in order to reinforce our research and get effective and precise results, and the second step is to analyse these data taking into consideration the diversity of the learners within this institution. The results obtained show that learners’ attitudes towards the English community and culture are mixed and it may influence their curiosity and attention to learn. Despite of big variance between Algerian and European cultures, some of the students focused mainly on the benefits of the English language since they need it in their studies, research and a future carrier, however, the others manifest their reluctance towards this language and this is mainly due to the profound impact of the English culture which is different from the Algerian one.Keywords: Algeria, culture, English, impact
Procedia PDF Downloads 3885439 Using a Card Game as a Tool for Developing a Design
Authors: Matthias Haenisch, Katharina Hermann, Marc Godau, Verena Weidner
Abstract:
Over the past two decades, international music education has been characterized by a growing interest in informal learning for formal contexts and a "compositional turn" that has moved from closed to open forms of composing. This change occurs under social and technological conditions that permeate 21st-century musical practices. This forms the background of Musical Communities in the (Post)Digital Age (MusCoDA), a four-year joint research project of the University of Erfurt (UE) and the University of Education Karlsruhe (PHK), funded by the German Federal Ministry of Education and Research (BMBF). Both explore songwriting processes as an example of collective creativity in (post)digital communities, one in formal and the other in informal learning contexts. Collective songwriting will be studied from a network perspective, that will allow us to view boundaries between both online and offline as well as formal and informal or hybrid contexts as permeable and to reconstruct musical learning practices. By comparing these songwriting processes, possibilities for a pedagogical-didactic interweaving of different educational worlds are highlighted. Therefore, the subproject of the University of Erfurt investigates school music lessons with the help of interviews, videography, and network maps by analyzing new digital pedagogical and didactic possibilities. In the first step, the international literature on songwriting in the music classroom was examined for design development. The analysis focused on the question of which methods and practices are circulating in the current literature. Results from this stage of the project form the basis for the first instructional design that will help teachers in planning regular music classes and subsequently reconstruct musical learning practices under these conditions. In analyzing the literature, we noticed certain structural methods and concepts that recur, such as the Building Blocks method and the pre-structuring of the songwriting process. From these findings, we developed a deck of cards that both captures the current state of research and serves as a method for design development. With this deck of cards, both teachers and students themselves can plan their individual songwriting lessons by independently selecting and arranging topic, structure, and action cards. In terms of science communication, music educators' interactions with the card game provide us with essential insights for developing the first design. The overall goal of MusCoDA is to develop an empirical model of collective musical creativity and learning and an instructional design for teaching music in the postdigital age.Keywords: card game, collective songwriting, community of practice, network, postdigital
Procedia PDF Downloads 645438 Elevated Reductive Defluorination of Branched Per and Polyfluoroalkyl Substances by Soluble Metal-Porphyrins and New Mechanistic Insights on the Degradation
Authors: Jun Sun, Tsz Tin Yu, Maryam Mirabediny, Matthew Lee, Adele Jones, Denis M. O’Carroll, Michael J. Manefield, Björn Åkermark, Biswanath Das, Naresh Kumar
Abstract:
Reductive defluorination has emerged as a sustainable approach to clean water from Per and polyfluoroalkyl substances (PFASs), also known as forever organic containments. For last few decades, nano zero valent metals (nZVMs) have been intensively applied in the reductive remediation of groundwater contaminated with chlorinated organic compounds due to its low redox potential, easy application, and low production cost. However, there is inadequate information on the effective reductive defluorination of linear or branched PFAS using nZVMs as reductants because of the lack of suitable catalysts. CoII-5,10,15,20-Tetraphenyl-21H,23H-porphyrin (CoTPP) has been recently reported for effective catalyzing reductive defluorination of branched (br-) perfluorooctane sulfonate (PFOS) by using TiIII citrate as reductant. However, the low water solubility of CoTPP limited its applicability. Here, we explored a series of structurally related soluble cobalt porphyrin catalysts based on our previously reported best performing CoTPP. All soluble porphyrins [[meso-tetra(4-carboxyphenyl)porphyrinato]cobalt(III)]Cl·₇H₂O (CoTCPP), [[meso-tetra(4-sulfonatophenyl) porphyrinato]cobalt(III)]·9H2O (CoTPPS), and [[meso-tetra(4-N-methylpyridyl) porphyrinato]cobalt(II)](I)₄·₄H₂O (CoTMpyP) displayed better defluorination efficiencies than CoTPP. Especially, CoTMpyP presented the best defluorination efficiency for br-PFOS (94 %), branched perfluorooctanoic acid (PFOA) (89 %), and 3,7-Perfluorodecanoic acid (PFDA) (60 %) after 1 day at 70 0C. CoTMpyP-nZn0 system showed 88-164 times higher defluorination rate than VB12-nZn0 system in terms of all investigated br-PFASs. The CoTMpyP-nZn0 also performed effectively at room temperature, demonstrating the potential prospect for in-situ reductive systems. Based on the analysis of the intermediate products, the calculated bond dissociation energies (BDEs) and possible first interaction between CoTMpyP and PFAS, degradation pathways of 3,7-PFDA and 6-PFOS are proposed.Keywords: cationic, soluble porphyrin, cobalt, vitamin b12, pfas, reductive defluorination
Procedia PDF Downloads 785437 Higher Order Thinking Skills Workshop: Faculty Professional Development and Its Effect on Their Teaching Strategies
Authors: Amani Hamdan
Abstract:
A post-workshop of higher-order thinking skills (HOTS), for faculty from diverse academic disciplines, was conducted and the researcher surveyed the participants’ intentions and plans to include HOTS as a goal, as learning and teaching task in their practices. Follow-up interviews with a random sample of participants were used to determine if they fulfilled their intentions three 3 months after the workshop. The degree of planned and enacted HOTS then was analyzed against the post-workshop HOT ability and knowledge. This is one topic that has not been adequately explored in faculty professional development literature where measuring the effect of learning on their ability to use what they learned. This qualitative method study explored a group of male and female faculty members (n=85) enrolled in HOTS 2 day workshop. The results showed that 89% of faculty members although were mostly enthused to apply what they learned after a 3 months period they were caught up with routine presentations and lecturing.Keywords: higher education, faculty development, Saudi Arabia, higher order thinking skills
Procedia PDF Downloads 457