Search results for: real-time data
21451 Extraction of Urban Building Damage Using Spectral, Height and Corner Information
Authors: X. Wang
Abstract:
Timely and accurate information on urban building damage caused by earthquake is important basis for disaster assessment and emergency relief. Very high resolution (VHR) remotely sensed imagery containing abundant fine-scale information offers a large quantity of data for detecting and assessing urban building damage in the aftermath of earthquake disasters. However, the accuracy obtained using spectral features alone is comparatively low, since building damage, intact buildings and pavements are spectrally similar. Therefore, it is of great significance to detect urban building damage effectively using multi-source data. Considering that in general height or geometric structure of buildings change dramatically in the devastated areas, a novel multi-stage urban building damage detection method, using bi-temporal spectral, height and corner information, was proposed in this study. The pre-event height information was generated using stereo VHR images acquired from two different satellites, while the post-event height information was produced from airborne LiDAR data. The corner information was extracted from pre- and post-event panchromatic images. The proposed method can be summarized as follows. To reduce the classification errors caused by spectral similarity and errors in extracting height information, ground surface, shadows, and vegetation were first extracted using the post-event VHR image and height data and were masked out. Two different types of building damage were then extracted from the remaining areas: the height difference between pre- and post-event was used for detecting building damage showing significant height change; the difference in the density of corners between pre- and post-event was used for extracting building damage showing drastic change in geometric structure. The initial building damage result was generated by combining above two building damage results. Finally, a post-processing procedure was adopted to refine the obtained initial result. The proposed method was quantitatively evaluated and compared to two existing methods in Port au Prince, Haiti, which was heavily hit by an earthquake in January 2010, using pre-event GeoEye-1 image, pre-event WorldView-2 image, post-event QuickBird image and post-event LiDAR data. The results showed that the method proposed in this study significantly outperformed the two comparative methods in terms of urban building damage extraction accuracy. The proposed method provides a fast and reliable method to detect urban building collapse, which is also applicable to relevant applications.Keywords: building damage, corner, earthquake, height, very high resolution (VHR)
Procedia PDF Downloads 21321450 Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries
Authors: Gaurav Kumar Sinha
Abstract:
The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance
Procedia PDF Downloads 3121449 Examining the Teaching and Learning Needs of Science and Mathematics Educators in South Africa
Authors: M. Shaheed Hartley
Abstract:
There has been increasing pressure on education researchers and practitioners at higher education institutions to focus on the development of South Africa’s rural and peri-urban communities and improving their quality of life. Many tertiary institutions are obliged to review their outreach interventions in schools. To ensure that the support provided to schools is still relevant, a systemic evaluation of science educator needs is central to this process. These prioritised needs will serve as guide not only for the outreach projects of tertiary institutions, but also to service providers in general so that the process of addressing educators needs become coordinated, organised and delivered in a systemic manner. This paper describes one area of a broader needs assessment exercise to collect data regarding the needs of educators in a district of 45 secondary schools in the Western Cape Province of South Africa. This research focuses on the needs and challenges faced by science educators at these schools as articulated by the relevant stakeholders. The objectives of this investigation are two-fold: (1) to create a data base that will capture the needs and challenges identified by science educators of the selected secondary schools; and (2) to develop a needs profile for each of the participating secondary schools that will serve as a strategic asset to be shared with the various service providers as part of a community of practice whose core business is to support science educators and science education at large. The data was collected by a means of a needs assessment questionnaire (NAQ) which was developed in both actual and preferred versions. An open-ended questionnaire was also administered which allowed teachers to express their views. The categories of the questionnaire were predetermined by participating researchers, educators and education department officials. Group interviews were also held with the science teachers at each of the schools. An analysis of the data revealed important trends in terms of science educator needs and identified schools that can be clustered around priority needs, logistic reasoning and educator profiles. The needs database also provides opportunity for the community of practice to strategise and coordinate their interventions.Keywords: needs assessment, science and mathematics education, evaluation, teaching and learning, South Africa
Procedia PDF Downloads 18321448 Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth
Authors: Ella Tyuryumina, Alexey Neznanov
Abstract:
This study is an attempt to obtain reliable data on the natural history of breast cancer growth. We analyze the opportunities for using classical mathematical models (exponential and logistic tumor growth models, Gompertz and von Bertalanffy tumor growth models) to try to describe growth of the primary tumor and the secondary distant metastases of human breast cancer. The research aim is to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoMPaS and corresponding software. We are interested in: 1) modelling the whole natural history of the primary tumor and the secondary distant metastases; 2) developing adequate and precise CoMPaS which reflects relations between the primary tumor and the secondary distant metastases; 3) analyzing the CoMPaS scope of application; 4) implementing the model as a software tool. The foundation of the CoMPaS is the exponential tumor growth model, which is described by determinate nonlinear and linear equations. The CoMPaS corresponds to TNM classification. It allows to calculate different growth periods of the primary tumor and the secondary distant metastases: 1) ‘non-visible period’ for the primary tumor; 2) ‘non-visible period’ for the secondary distant metastases; 3) ‘visible period’ for the secondary distant metastases. The CoMPaS is validated on clinical data of 10-years and 15-years survival depending on the tumor stage and diameter of the primary tumor. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer growth models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. The CoMPaS model and predictive software: a) fit to clinical trials data; b) detect different growth periods of the primary tumor and the secondary distant metastases; c) make forecast of the period of the secondary distant metastases appearance; d) have higher average prediction accuracy than the other tools; e) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoMPaS: the number of doublings for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases. The CoMPaS enables, for the first time, to predict ‘whole natural history’ of the primary tumor and the secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on the primary tumor sizes. Summarizing: a) CoMPaS describes correctly the primary tumor growth of IA, IIA, IIB, IIIB (T1-4N0M0) stages without metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and inception of the secondary distant metastases.Keywords: breast cancer, exponential growth model, mathematical model, metastases in lymph nodes, primary tumor, survival
Procedia PDF Downloads 34121447 Child Molesters’ Perceptions of Their Abusive Behavior in a Greek Prison
Authors: Polychronis Voultsos, Theodora Pandelidou, Alexandra K. Tsaroucha
Abstract:
Aim: To explore child molesters' perceptions of their sexually offensive behavior in Greece. To our knowledge, there is a relative research gap on this topic. Method: A prospective qualitative study using in-depth interviews with eight child molesters who were convicted and imprisoned in a Greek prison. The research was conducted in May 2022. Results: Child molesters' cognitive distortions including justifications, rationalizations and minimizations emerged from our data analysis (content analysis). Importantly, child molesters. adopted a particularly daring ‘role reversal’. Participants reported themselves as being ‘victims’. They said that the children (namely, their victims) were the ones who made the first move and got them in the mood for having sex with the children. Furthermore, we discuss our results in the context of the existing international academic literature on the area of this research. Conclusions: Child molesters' different cognitive distortions emerged from our data analysis, with ‘role reversal’ being prevalent.Keywords: child molesters, sex offenders, cognitive distortions, Greece
Procedia PDF Downloads 12421446 Delineation of Different Geological Interfaces Beneath the Bengal Basin: Spectrum Analysis and 2D Density Modeling of Gravity Data
Authors: Md. Afroz Ansari
Abstract:
The Bengal basin is a spectacular example of a peripheral foreland basin formed by the convergence of the Indian plate beneath the Eurasian and Burmese plates. The basin is embraced on three sides; north, west and east by different fault-controlled tectonic features whereas released in the south where the rivers are drained into the Bay of Bengal. The Bengal basin in the eastern part of the Indian subcontinent constitutes the largest fluvio-deltaic to shallow marine sedimentary basin in the world today. This continental basin coupled with the offshore Bengal Fan under the Bay of Bengal forms the biggest sediment dispersal system. The continental basin is continuously receiving the sediments by the two major rivers Ganga and Brahmaputra (known as Jamuna in Bengal), and Meghna (emerging from the point of conflux of the Ganga and Brahmaputra) and large number of rain-fed, small tributaries originating from the eastern Indian Shield. The drained sediments are ultimately delivered into the Bengal fan. The significance of the present study is to delineate the variations in thicknesses of the sediments, different crustal structures, and the mantle lithosphere throughout the onshore-offshore Bengal basin. In the present study, the different crustal/geological units and the shallower mantle lithosphere were delineated by analyzing the Bouguer Gravity Anomaly (BGA) data along two long traverses South-North (running from Bengal fan cutting across the transition offshore-onshore of the Bengal basin and intersecting the Main Frontal Thrust of India-Himalaya collision zone in Sikkim-Bhutan Himalaya) and West-East (running from the Peninsular Indian Shield across the Bengal basin to the Chittagong–Tripura Fold Belt). The BGA map was derived from the analysis of topex data after incorporating Bouguer correction and all terrain corrections. The anomaly map was compared with the available ground gravity data in the western Bengal basin and the sub-continents of India for consistency of the data used. Initially, the anisotropy associated with the thicknesses of the different crustal units, crustal interfaces and moho boundary was estimated through spectral analysis of the gravity data with varying window size over the study area. The 2D density sections along the traverses were finalized after a number of iterations with the acceptable root mean square (RMS) errors. The estimated thicknesses of the different crustal units and dips of the Moho boundary along both the profiles are consistent with the earlier results. Further the results were encouraged by examining the earthquake database and focal mechanism solutions for better understanding the geodynamics. The earthquake data were taken from the catalogue of US Geological Survey, and the focal mechanism solutions were compiled from the Harvard Centroid Moment Tensor Catalogue. The concentrations of seismic events at different depth levels are not uncommon. The occurrences of earthquakes may be due to stress accumulation as a result of resistance from three sides.Keywords: anisotropy, interfaces, seismicity, spectrum analysis
Procedia PDF Downloads 27421445 Educational Attainment of Owner-Managers and Performance of Micro- and Small Informal Businesses in Nigeria
Authors: Isaiah Oluranti Olurinola, Michael Kayode Bolarinwa, Ebenezer Bowale, Ifeoluwa Ogunrinola
Abstract:
Abstract - While much literature exists on microfinancing and its impact on the development of micro, small and medium-scale enterprises (MSME), yet little is known in respect of the impact of different types of education of owner-managers on the performances as well as innovative possibilities of such enterprises. This paper aims at contributing to the understanding of the impact of different types of education (academic, technical, apprenticeship, etc) that influence the performance of micro, small and medium-sized enterprise (MSME). This study utilises a recent and larger data-set collected in six states and FCT Abuja, Nigeria in the year 2014. Furthermore, the study carries out a comparative analysis of business performance among the different geo-political zones in Nigeria, given the educational attainment of the owner-managers. The data set were enterprise-based and were collected by the Nigerian Institute for Social and Economic Research (NISER) in the year 2014. Six hundred and eighty eight enterprises were covered in the survey. The method of data analysis for this study is the use of basic descriptive statistics in addition to the Logistic Regression model used in the prediction of the log of odds of business performance in relation to any of the identified educational attainment of the owner-managers in the sampled enterprises. An OLS econometric technique is also used to determine the effects of owner-managers' different educational types on the performance of the sampled MSME. Policy measures that will further enhance the contributions of education to MSME performance will be put forward.Keywords: Business Performance, Education, Microfinancing, Micro, Small and Medium Scale Enterprises
Procedia PDF Downloads 52221444 Efficiency and Scale Elasticity in Network Data Envelopment Analysis: An Application to International Tourist Hotels in Taiwan
Authors: Li-Hsueh Chen
Abstract:
Efficient operation is more and more important for managers of hotels. Unlike the manufacturing industry, hotels cannot store their products. In addition, many hotels provide room service, and food and beverage service simultaneously. When efficiencies of hotels are evaluated, the internal structure should be considered. Hence, based on the operational characteristics of hotels, this study proposes a DEA model to simultaneously assess the efficiencies among the room production division, food and beverage production division, room service division and food and beverage service division. However, not only the enhancement of efficiency but also the adjustment of scale can improve the performance. In terms of the adjustment of scale, scale elasticity or returns to scale can help to managers to make decisions concerning expansion or contraction. In order to construct a reasonable approach to measure the efficiencies and scale elasticities of hotels, this study builds an alternative variable-returns-to-scale-based two-stage network DEA model with the combination of parallel and series structures to explore the scale elasticities of the whole system, room production division, food and beverage production division, room service division and food and beverage service division based on the data of international tourist hotel industry in Taiwan. The results may provide valuable information on operational performance and scale for managers and decision makers.Keywords: efficiency, scale elasticity, network data envelopment analysis, international tourist hotel
Procedia PDF Downloads 22521443 Assessing the Actions of the Farm Mangers to Execute Field Operations at Opportune Times
Authors: G. Edwards, N. Dybro, L. J. Munkholm, C. G. Sørensen
Abstract:
Planning agricultural operations requires an understanding of when fields are ready for operations. However determining a field’s readiness is a difficult process that can involve large amounts of data and an experienced farm manager. A consequence of this is that operations are often executed when fields are unready, or partially unready, which can compromise results incurring environmental impacts, decreased yield and increased operational costs. In order to assess timeliness of operations’ execution, a new scheme is introduced to quantify the aptitude of farm managers to plan operations. Two criteria are presented by which the execution of operations can be evaluated as to their exploitation of a field’s readiness window. A dataset containing the execution dates of spring and autumn operations on 93 fields in Iowa, USA, over two years, was considered as an example and used to demonstrate how operations’ executions can be evaluated. The execution dates were compared with simulated data to gain a measure of how disparate the actual execution was from the ideal execution. The presented tool is able to evaluate the spring operations better than the autumn operations as required data was lacking to correctly parameterise the crop model. Further work is needed on the underlying models of the decision support tool in order for its situational knowledge to emulate reality more consistently. However the assessment methods and evaluation criteria presented offer a standard by which operations' execution proficiency can be quantified and could be used to identify farm managers who require decisional support when planning operations, or as a means of incentivising and promoting the use of sustainable farming practices.Keywords: operation management, field readiness, sustainable farming, workability
Procedia PDF Downloads 38721442 The Experience of Head Nurse: Phenomenological Research of Implementing Islamic Leadership Style in Syarif Hidayatullah Hospital
Authors: Jamaludin Tarkim, Yoga Teguh Guntara, Maftuhah
Abstract:
Islamic leadership style is model of leadership style applied by the Prophet Muhammad SAW. Islamic leadership style is applied, namely Syura (deliberation), ‘Adl bil qisth (justice, with equality), and Hurriyyah al-kalam (freedom of expression) and along with the values of Islam in the Islamic leadership style. This research aims to gain an overview of the experience of Head Nurse in the implementation of Islamic leadership style. This research is a qualitative one with descriptive phenomenology design through in-depth interviews. Participants were occupied as Head Nurse at the Hospital room Syarif Hidayatullah, set directly (purposive) with the principle of suitability (appropriateness) and sufficiency (adequacy). Retrieval of data and research conducted during the month of June 2014. Data collected in the form of recording in-depth interviews and analysis with Collazi method. This research identified four themes Syura (deliberation);‘Adl bil qisth (justice, with equality); Hurriyyah al-kalam (freedom of expression) and along with the values of Islam in the Islamic leadership style. The results of this research can provide a review of the Head Room experience in the application of Islamic leadership style at Syarif Hidayatullah Hospital already skilled leadership during the process, but the application is still not maximized. Required further research on in-depth exploration of how to get more comprehensive results from room Head Nurse experience in the application of Islamic leadership style, as well as subsequent researchers can choose a wider scope and complex so get more complete data.Keywords: experience, Islamic leadership style, head nurse, nursing management
Procedia PDF Downloads 17121441 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis
Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera
Abstract:
Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.Keywords: log-linear model, multi spectral, residuals, spatial error model
Procedia PDF Downloads 29721440 Determination of the Bank's Customer Risk Profile: Data Mining Applications
Authors: Taner Ersoz, Filiz Ersoz, Seyma Ozbilge
Abstract:
In this study, the clients who applied to a bank branch for loan were analyzed through data mining. The study was composed of the information such as amounts of loans received by personal and SME clients working with the bank branch, installment numbers, number of delays in loan installments, payments available in other banks and number of banks to which they are in debt between 2010 and 2013. The client risk profile was examined through Classification and Regression Tree (CART) analysis, one of the decision tree classification methods. At the end of the study, 5 different types of customers have been determined on the decision tree. The classification of these types of customers has been created with the rating of those posing a risk for the bank branch and the customers have been classified according to the risk ratings.Keywords: client classification, loan suitability, risk rating, CART analysis
Procedia PDF Downloads 33821439 Factors influencing Career Choice in Accounting: Perceptions of Undergraduate Accounting Students in Selected Nigerian Universities
Authors: Nwobu Obiamaka, Samuel O. Faboyede
Abstract:
This study examines the factors influencing career choice of undergraduate accounting students in selected Nigerian universities. The manner in which students of accounting perceive the factors that drive them into pursuing a career in accounting is important to the profession. The study made use of primary data collected from undergraduate accounting students in their final year in selected Nigerian universities. The data was collected using a survey instrument (questionnaire), copies of which were made and administered to the respondents (undergraduate accounting students in selected Nigerian universities). The finding suggests that the major factors influencing undergraduate accounting students to opt for a career in accounting include pressure from peers and monetary reward. The findings from the study have crucial policy implications for admission officers in tertiary institutions as well as the accounting profession in Nigeria.Keywords: accounting, career, choice, undergraduate
Procedia PDF Downloads 27821438 Impact of Microfinance in Promoting Rural Economic Growth in Nigeria
Authors: Udeh Anastasia Ifeoma
Abstract:
The need to develop the rural areas in developing countries where there have been decades of neglect are on the increase. It is against this background that this paper examined the impact of micro finance contribution to Nigeria’s gross domestic product. Time series data for 12-years period 1999-2010 were collated from Central Bank of Nigeria published annual reports. The least squares (LS) regression was used to analyze the data. The result revealed that microfinance activities have negative and non-significant contribution to gross domestic product in Nigeria. The paper recommends that rural poverty is often a product of poor infrastructural facilities; therefore government should make a conscious effort towards industrializing the rural areas thereby motivating the micro finance institutions to locate their offices and extend credit facilities to rural areas thereby improving rural economic growth.Keywords: microfinance, rural economic growth, Nigeria, developing countries
Procedia PDF Downloads 45121437 Cybersecurity Challenges and Solutions in ICT Management at the Federal Polytechnic, Ado-Ekiti: A Quantitative Study
Authors: Innocent Uzougbo Onwuegbuzie, Siene Elizabeth Eke
Abstract:
This study investigates cybersecurity challenges and solutions in managing Information and Communication Technology (ICT) at the Federal Polytechnic, Ado-Ekiti, South-West Nigeria. The rapid evolution of ICT has revolutionized organizational operations and impacted various sectors, including education, healthcare, and finance. While ICT advancements facilitate seamless communication, complex data analytics, and strategic decision-making, they also introduce significant cybersecurity risks such as data breaches, ransomware, and other malicious attacks. These threats jeopardize the confidentiality, integrity, and availability of information systems, necessitating robust cybersecurity measures. The primary aim of this research is to identify prevalent cybersecurity challenges in ICT management, evaluate their impact on the institution's operations, and assess the effectiveness of current cybersecurity solutions. Adopting a quantitative research approach, data was collected through surveys and structured questionnaires from students, staff, and IT professionals at the Federal Polytechnic, Ado-Ekiti. The findings underscore the critical need for continuous investment in cybersecurity technologies, employee and student training, and regulatory compliance to mitigate evolving cyber threats. This research contributes to bridging the knowledge gap in cybersecurity management and provides valuable insights into effective strategies and technologies for safeguarding ICT systems in educational institutions. The study's objectives are to enhance the security posture of the Federal Polytechnic, Ado-Ekiti, in an increasingly digital world by identifying and addressing the cybersecurity challenges faced by its ICT management.Keywords: cybersecurity challenges, cyber threat mitigation, federal polytechnic Ado-Ekiti, ICT management
Procedia PDF Downloads 4021436 A Literature Study on IoT Based Monitoring System for Smart Agriculture
Authors: Sonu Rana, Jyoti Verma, A. K. Gautam
Abstract:
In most developing countries like India, the majority of the population heavily relies on agriculture for their livelihood. The yield of agriculture is heavily dependent on uncertain weather conditions like a monsoon, soil fertility, availability of irrigation facilities and fertilizers as well as support from the government. The agricultural yield is quite less compared to the effort put in due to inefficient agricultural facilities and obsolete farming practices on the one hand and lack of knowledge on the other hand, and ultimately agricultural community does not prosper. It is therefore essential for the farmers to improve their harvest yield by the acquisition of related data such as soil condition, temperature, humidity, availability of irrigation facilities, availability of, manure, etc., and adopt smart farming techniques using modern agricultural equipment. Nowadays, using IOT technology in agriculture is the best solution to improve the yield with fewer efforts and economic costs. The primary focus of this work-related is IoT technology in the agriculture field. By using IoT all the parameters would be monitored by mounting sensors in an agriculture field held at different places, will collect real-time data, and could be transmitted by a transmitting device like an antenna. To improve the system, IoT will interact with other useful systems like Wireless Sensor Networks. IoT is exploring every aspect, so the radio frequency spectrum is getting crowded due to the increasing demand for wireless applications. Therefore, Federal Communications Commission is reallocating the spectrum for various wireless applications. An antenna is also an integral part of the newly designed IoT devices. The main aim is to propose a new antenna structure used for IoT agricultural applications and compatible with this new unlicensed frequency band. The main focus of this paper is to present work related to these technologies in the agriculture field. This also presented their challenges & benefits. It can help in understanding the job of data by using IoT and correspondence advancements in the horticulture division. This will help to motivate and educate the unskilled farmers to comprehend the best bits of knowledge given by the huge information investigation utilizing smart technology.Keywords: smart agriculture, IoT, agriculture technology, data analytics, smart technology
Procedia PDF Downloads 11621435 Quantification Model for Capability Evaluation of Optical-Based in-Situ Monitoring System for Laser Powder Bed Fusion (LPBF) Process
Authors: Song Zhang, Hui Wang, Johannes Henrich Schleifenbaum
Abstract:
Due to the increasing demand for quality assurance and reliability for additive manufacturing, the development of an advanced in-situ monitoring system is required to monitor the process anomalies as input for further process control. Optical-based monitoring systems, such as CMOS cameras and NIR cameras, are proved as effective ways to monitor the geometrical distortion and exceptional thermal distribution. Therefore, many studies and applications are focusing on the availability of the optical-based monitoring system for detecting varied types of defects. However, the capability of the monitoring setup is not quantified. In this study, a quantification model to evaluate the capability of the monitoring setups for the LPBF machine based on acquired monitoring data of a designed test artifact is presented, while the design of the relevant test artifacts is discussed. The monitoring setup is evaluated based on its hardware properties, location of the integration, and light condition. Methodology of data processing to quantify the capacity for each aspect is discussed. The minimal capability of the detectable size of the monitoring set up in the application is estimated by quantifying its resolution and accuracy. The quantification model is validated using a CCD camera-based monitoring system for LPBF machines in the laboratory with different setups. The result shows the model to quantify the monitoring system's performance, which makes the evaluation of monitoring systems with the same concept but different setups possible for the LPBF process and provides the direction to improve the setups.Keywords: data processing, in-situ monitoring, LPBF process, optical system, quantization model, test artifact
Procedia PDF Downloads 19721434 Effective Counseling Techniques Working with At-Risk Youth in Residential and Outpatient Settings
Authors: David A. Scott, Michelle G. Scott
Abstract:
The problem of juvenile crime, school suspensions and oppositional behaviors indicates a need for a wide range of intervention programs for at-risk youth. Juvenile court systems and mental health agencies are examining alternative ways to deal with at-risk youth that will allow the adolescent to live within their home community. The previous trend that treatment away from home is more effective than treatment near one's community has shifted. Research now suggests that treatment be close to home for several reasons, such as increased treatment success, parental involvement, and reduced costs. Treatment options consist of a wide range of interventions, including outpatient, inpatient, and community-based services (therapeutic group homes, foster care and in-home preservation services). The juvenile justice system, families and other mental health agencies continue to seek the most effective treatment for at-risk youth in their communities. This research examines two possible treatment modalities, a multi-systemic outpatient program and a residential program. Research examining effective, evidence- based counseling will be discussed during this presentation. The presenter recently completed a three-year research grant examining effective treatment modalities for at-risk youth participating in a multi-systemic program. The presenter has also been involved in several research activities gathering data on effective techniques used in residential programs. The data and discussion will be broken down into two parts, each discussing one of the treatment modalities mentioned above. Data on the residential programs was collected on both a sample of 740 at- risk youth over a five-year period and also a sample of 63 participants during a one-year period residing in a residential programs. The effectiveness of these residential services was measured in three ways: services are evaluated by primary referral sources; follow-up data is obtained at various intervals after program participation to measure recidivism (what percentage got back into trouble with the Department of Juvenile Justice); and a more sensitive, "Offense Seriousness Score", has been computed and analyzed prior to, during and after treatment in the residential program. Data on the multi-systemic program was gathered over the past three years on 190 participants. Research will discuss pre and post test results, recidivism rates, academic performance, parental involvement, and effective counseling treatment modalities.Keywords: at-risk youth, group homes, therapeutic group homes, recidivism rates
Procedia PDF Downloads 8221433 Prediction of Dubai Financial Market Stocks Movement Using K-Nearest Neighbor and Support Vector Regression
Authors: Abdulla D. Alblooshi
Abstract:
The stock market is a representation of human behavior and psychology, such as fear, greed, and discipline. Those are manifested in the form of price movements during the trading sessions. Therefore, predicting the stock movement and prices is a challenging effort. However, those trading sessions produce a large amount of data that can be utilized to train an AI agent for the purpose of predicting the stock movement. Predicting the stock market price action will be advantageous. In this paper, the stock movement data of three DFM listed stocks are studied using historical price movements and technical indicators value and used to train an agent using KNN and SVM methods to predict the future price movement. MATLAB Toolbox and a simple script is written to process and classify the information and output the prediction. It will also compare the different learning methods and parameters s using metrics like RMSE, MAE, and R².Keywords: KNN, ANN, style, SVM, stocks, technical indicators, RSI, MACD, moving averages, RMSE, MAE
Procedia PDF Downloads 17121432 Epidemiology of Congenital Heart Defects in Kazakhstan: Data from Unified National Electronic Healthcare System 2014-2020
Authors: Dmitriy Syssoyev, Aslan Seitkamzin, Natalya Lim, Kamilla Mussina, Abduzhappar Gaipov, Dimitri Poddighe, Dinara Galiyeva
Abstract:
Background: Data on the epidemiology of congenital heart defects (CHD) in Kazakhstan is scarce. Therefore, the aim of this study was to describe the incidence, prevalence and all-cause mortality of patients with CHD in Kazakhstan, using national large-scale registry data from the Unified National Electronic Healthcare System (UNEHS) for the period of 2014-2020. Methods: In this retrospective cohort study, the included data pertained to all patients diagnosed with CHD in Kazakhstan and registered in UNEHS between January 2014 and December 2020. CHD was defined based on International Classification of Diseases 10th Revision (ICD-10) codes Q20-Q26. Incidence, prevalence, and all-cause mortality rates were calculated per 100,000 population. Survival analysis was performed using Cox proportional hazards regression modeling and the Kaplan-Meier method. Results: In total, 66,512 patients were identified. Among them, 59,534 (89.5%) were diagnosed with a single CHD, while 6,978 (10.5%) had more than two CHDs. The median age at diagnosis was 0.08 years (interquartile range (IQR) 0.01 – 0.66) for people with multiple CHD types and 0.39 years (IQR 0.04 – 8.38) for those with a single CHD type. The most common CHD types were atrial septal defect (ASD) and ventricular septal defect (VSD), accounting for 25.8% and 21.2% of single CHD cases, respectively. The most common multiple types of CHD were ASD with VSD (23.4%), ASD with patent ductus arteriosus (PDA) (19.5%), and VSD with PDA (17.7%). The incidence rate of CHD decreased from 64.6 to 47.1 cases per 100,000 population among men and from 68.7 to 42.4 among women. The prevalence rose from 66.1 to 334.1 cases per 100,000 population among men and from 70.8 to 328.7 among women. Mortality rates showed a slight increase from 3.5 to 4.7 deaths per 100,000 in men and from 2.9 to 3.7 in women. Median follow-up was 5.21 years (IQR 2.47 – 11.69). Male sex (HR 1.60, 95% CI 1.45 - 1.77), having multiple CHDs (HR 2.45, 95% CI 2.01 - 2.97), and living in a rural area (HR 1.32, 95% CI 1.19 - 1.47) were associated with a higher risk of all-cause mortality. Conclusion: The incidence of CHD in Kazakhstan has shown a moderate decrease between 2014 and 2020, while prevalence and mortality have increased. Male sex, multiple CHD types, and rural residence were significantly associated with a higher risk of all-cause mortality.Keywords: congenital heart defects (CHD), epidemiology, incidence, Kazakhstan, mortality, prevalence
Procedia PDF Downloads 9621431 Relationship between Demographic Characteristics and Lifestyle among Indonesian Pregnant Women with Hypertension
Authors: Yosi Maria Wijaya, Florisma Arista Riti Tegu
Abstract:
Background: Hypertension in pregnancy can be prevented by controlling the lifestyle. However, the majority of research on this topic has been conducted on lifestyle in women with normal pregnancy. Few studies of lifestyle have focused on Indonesian pregnant women with hypertension. Aim: The purpose of this study is to determine the association of demographic characteristics and the lifestyle of pregnant women who have hypertension. Methods: In this cross-sectional study, 76 women with hypertension during pregnancy were recruited from primary health care, West Java, Indonesia. Inclusion criteria were gestational age ≥ 28 weeks with the blood pressure systole ≥ 140 mmHg and diastole ≥ 90 mmHg. Data were collected using two instruments: demographic data and Health Promoting Life Style Profile (HPLP II). Data were analyzed with descriptive statistic and linear regression analysis. Results: The majority of participants were married, mean age was 27.96 years old (SD=6.77) with the mean of gestational age 33.21 (SD=3.49), most of them unemployed (94.7%) and more than a half participants have an education less than twelve years (59.2%). The total score of lifestyle was 2.44 (SD=0.34), more than a half participants experience unhealthy lifestyle (59.2%). Lifestyle was predicted by income, education years, occupation, and access to health care services, accounting for 20.8% of the total variance. Conclusion: Pregnant women with hypertension with low income, low level of education, non-occupational and hard to access health care services were related to unhealthy lifestyle. Understanding the lifestyle and associated factors contributes to health care providers ability to design effective interventions intended to improve healthy lifestyle among pregnant women with hypertension.Keywords: demographic characteristics, hypertension, lifestyle, pregnancy
Procedia PDF Downloads 19121430 A Novel Geometrical Approach toward the Mechanical Properties of Particle Reinforced Composites
Authors: Hamed Khezrzadeh
Abstract:
Many investigations on the micromechanical structure of materials indicate that there exist fractal patterns at the micro scale in some of the main construction and industrial materials. A recently presented micro-fractal theory brings together the well-known periodic homogenization and the fractal geometry to construct an appropriate model for determination of the mechanical properties of particle reinforced composite materials. The proposed multi-step homogenization scheme considers the mechanical properties of different constituent phases in the composite together with the interaction between these phases throughout a step-by-step homogenization technique. In the proposed model the interaction of different phases is also investigated. By using this method the effect of fibers grading on the mechanical properties also could be studied. The theory outcomes are compared to the experimental data for different types of particle-reinforced composites which very good agreement with the experimental data is observed.Keywords: fractal geometry, homogenization, micromehcanics, particulate composites
Procedia PDF Downloads 29321429 The Effects of Giving on Knowledge about Epidemic Keratoconjunctivitis in Bangsaen Beach Venders, Chonburi, Thailand
Authors: Luksanaporn Krungkraipetch
Abstract:
Epidemic keratoconjunctivitis is an acute infection caused by the adenovirus symptoms of eye irritation, tearing an incubation period of 7-9 days from the respiratory tract into the eye and often cohesion in the community who work in the school's pool as well as a shopping mall. After infection can cause symptoms within 1-2 days chance to infect others up to two weeks. In some cases when red-eye better they had potential complications of the eye, inflammation occurs 7-10 days after conjunctivitis. It could be for several more months to recover. This study is a cross-sectional study with one hundred and eleven beach venders, and purpose of the research was to assess the knowledge, that knowledge has improved much. By comparing before and after the knowledge of the use of questionnaires and test your knowledge. The statistics used for data analysis percent, arithmetic mean and T-test. The statistics used to analyze data at the level of statistical p ≤ 0.05. Result of this study; mostly female (83.8%), most age 19-35 years (42.3%). Hometown is mostly in Chonburi 74.8%. 20.7% had epidemic keratoconjunctivitis within one year. Compared between before and after gave knowledge; after gave knowledge is better than before gave knowledge p=0.00.Keywords: knowledge, epidemic keratoconjunctivitis, conjunctivitis, beach vender
Procedia PDF Downloads 27821428 Meaning and Cultivating Factors of Mindfulness as Experienced by Thai Females Who Practice Dhamma
Authors: Sukjai Charoensuk, Penphan Pitaksongkram, Michael Christopher
Abstract:
Preliminary evidences supported the effectiveness of mindfulness-based interventions in reducing symptoms associated with a variety of medical and psychological conditions. However, the measurements of mindfulness are questionable since they have not been developed based-on Buddhist experiences. The purpose of this qualitative study was to describe meaning and cultivating factors of mindfulness as experienced by Thai females who practice Dhamma. Participants were purposively selected to include 2 groups of Thai females who practice Dhamma. The first group consisted of 6 female Buddhist monks, and the second group consisted of 7 female who practice Dhamma without ordaining. Data were collected using in-depth interview. The instruments used were demographic data questionnaire and guideline for in-depth interview developed by researchers. Content analysis was employed to analyze the data. The results revealed that Thai women who practice Dhamma described their experience in 2 themes, which were meaning and cultivating factors of mindfulness. The meaning composed of 4 categories; 1) Being Present, 2) Self-awareness, 3) Contemplation, and 4) Neutral. The cultivating factors of mindfulness composed of 2 categories; In-personal factors and Ex-personal factors. The In-personal cultivating factors included 4 sub-categories; Faith and Love, the Five Precepts, Sound body, and Practice. The Ex-personal cultivating factors included 2 sub-categories; Serenity, and Learning. These findings increase understanding about meaning of mindfulness and its cultivating factors. These could be used as a guideline to promote mental health and develop nursing interventions using mindfulness based, as well as, develop the instrument for assessing mindfulness in Thai context.Keywords: cultivating factor, meaning of mindfulness, practice Dhamma, Thai women
Procedia PDF Downloads 35121427 An Analysis of the Influence of Employee Readiness for Change on TQM Implementation
Authors: Mohamed Haffar, Khalil Al-Hyari, Mohammed Khair Abu Zaid, Ramadane Djbarni, Mohammed Hamdan
Abstract:
While employee readiness for change (ERFC) is recognised as critical for total quality management (TQM) implementation, there is a lack of systematic and empirical studies regarding the relationship between ERFC dimensions and TQM. Therefore, this study proposes to fill this gap by providing empirical evidence leading to advancement in the understanding of the influences of ERFC components on TQM implementation. The empirical data for this study was drawn from a survey of 400 middle and senior managers of Jordanian firms. The analysis of the collected data, which was conducted using Structural Equation Modeling technique, revealed that three of the ERFC components, namely personally beneficial, change self-efficacy and management support are the most supportive ERFC dimensions for TQM implementation. Therefore, this paper makes a novel contribution by providing a refined and deeper comprehension of the relationships between ERFCs and TQM implementation.Keywords: total quality management, employee readiness for change, manufacturing organisations, Jordan
Procedia PDF Downloads 55921426 Eye Tracking Syntax in Language Education
Authors: Marcus Maia
Abstract:
The present study reports and discusses the use of eye tracking qualitative data in reading workshops in Brazilian middle and high schools and in Generative Syntax and Sentence Processing courses at the undergraduate and graduate levels at the Federal University of Rio de Janeiro, respectively. Both endeavors take the sentential level as the proper object to be metacognitively explored in language education (cf. Chomsky, Gallego & Ott, 2019) to develop innate science forming capacity and knowledge of language. In both projects, non-discrepant qualitative eye tracking data collected and quantitatively analyzed in experimental syntax and psycholinguistic studies carried out in Lapex (Experimental Psycholinguistics Laboratory of the Federal University of Rio de Janeiro) were displayed to students as a point of departure, triggering discussions. Classes would generally start with the display of videos showing eye tracking data, such as gaze plots and heatmaps from several studies in Psycholinguistics and Experimental Syntax that we had already developed in our laboratory. The videos usually triggered discussions with students about linguistic and psycholinguistic issues, such as the reading of sentences for gist, garden-path sentences, syntactic and semantic anomalies, the filled-gap effect, island effects, direct and indirect cause, and recursive constructions, among other topics. Active, problem-solving based methodologies were employed with the objective of stimulating student participation. The communication also discusses the importance of developing full literacy, epistemic vigilance and intellectual self-defense in an infodemic world in the lines of Maia (2022).Keywords: reading, educational psycholinguistics, eye-tracking, active methodology
Procedia PDF Downloads 6621425 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: Sam Khozama, Ali M. Mayya
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion
Procedia PDF Downloads 16321424 Innovation and Entrepreneurship Skills Attainment for the Growth of Industry: Panacea for Economic Development
Authors: Ademoyegun Olusegun
Abstract:
The advancement of industry in any given state involves a range of processes that entail entrepreneurship and innovative skill attainment, among others, for the development of an economy. This article studied the impact of innovative and entrepreneurship skill attainment as the panacea of the growth of industry for economic development in Nigeria. Content analysis was employed as an instrument on data obtained from secondary resources which include journals, magazines, Workshop Articles, the Internet, interviewing etc. this is preferred because of the absence of sequential data related to entrepreneurship and innovation on sustainable economic growth in Nigeria. The theory of innovative Entrepreneurship was used as a theoretical framework. Findings revealed that Entrepreneurship skill attainment will induce innovation that will accelerate the growth of Industry for the advancement of the Economy. The study recommended that the government should invest adequately in entrepreneurship skill attainment and create an enabling environment for innovation.Keywords: entrepreneurship, innovation, skill attainment, panacea, sustainable development
Procedia PDF Downloads 7921423 COVID-19 Laws and Policy: The Use of Policy Surveillance For Better Legal Preparedness
Authors: Francesca Nardi, Kashish Aneja, Katherine Ginsbach
Abstract:
The COVID-19 pandemic has demonstrated both a need for evidence-based and rights-based public health policy and how challenging it can be to make effective decisions with limited information, evidence, and data. The O’Neill Institute, in conjunction with several partners, has been working since the beginning of the pandemic to collect, analyze, and distribute critical data on public health policies enacted in response to COVID-19 around the world in the COVID-19 Law Lab. Well-designed laws and policies can help build strong health systems, implement necessary measures to combat viral transmission, enforce actions that promote public health and safety for everyone, and on the individual level have a direct impact on health outcomes. Poorly designed laws and policies, on the other hand, can fail to achieve the intended results and/or obstruct the realization of fundamental human rights, further disease spread, or cause unintended collateral harms. When done properly, laws can provide the foundation that brings clarity to complexity, embrace nuance, and identifies gaps of uncertainty. However, laws can also shape the societal factors that make disease possible. Law is inseparable from the rest of society, and COVID-19 has exposed just how much laws and policies intersects all facets of society. In the COVID-19 context, evidence-based and well-informed law and policy decisions—made at the right time and in the right place—can and have meant the difference between life or death for many. Having a solid evidentiary base of legal information can promote the understanding of what works well and where, and it can drive resources and action to where they are needed most. We know that legal mechanisms can enable nations to reduce inequities and prepare for emerging threats, like novel pathogens that result in deadly disease outbreaks or antibiotic resistance. The collection and analysis of data on these legal mechanisms is a critical step towards ensuring that legal interventions and legal landscapes are effectively incorporated into more traditional kinds of health science data analyses. The COVID-19 Law Labs see a unique opportunity to collect and analyze this kind of non-traditional data to inform policy using laws and policies from across the globe and across diseases. This global view is critical to assessing the efficacy of policies in a wide range of cultural, economic, and demographic circumstances. The COVID-19 Law Lab is not just a collection of legal texts relating to COVID-19; it is a dataset of concise and actionable legal information that can be used by health researchers, social scientists, academics, human rights advocates, law and policymakers, government decision-makers, and others for cross-disciplinary quantitative and qualitative analysis to identify best practices from this outbreak, and previous ones, to be better prepared for potential future public health events.Keywords: public health law, surveillance, policy, legal, data
Procedia PDF Downloads 14121422 Geological Structure Identification in Semilir Formation: An Correlated Geological and Geophysical (Very Low Frequency) Data for Zonation Disaster with Current Density Parameters and Geological Surface Information
Authors: E. M. Rifqi Wilda Pradana, Bagus Bayu Prabowo, Meida Riski Pujiyati, Efraim Maykhel Hagana Ginting, Virgiawan Arya Hangga Reksa
Abstract:
The VLF (Very Low Frequency) method is an electromagnetic method that uses low frequencies between 10-30 KHz which results in a fairly deep penetration. In this study, the VLF method was used for zonation of disaster-prone areas by identifying geological structures in the form of faults. Data acquisition was carried out in Trimulyo Region, Jetis District, Bantul Regency, Special Region of Yogyakarta, Indonesia with 8 measurement paths. This study uses wave transmitters from Japan and Australia to obtain Tilt and Elipt values that can be used to create RAE (Rapat Arus Ekuivalen or Current Density) sections that can be used to identify areas that are easily crossed by electric current. This section will indicate the existence of a geological structure in the form of faults in the study area which is characterized by a high RAE value. In data processing of VLF method, it is obtained Tilt vs Elliptical graph and Moving Average (MA) Tilt vs Moving Average (MA) Elipt graph of each path that shows a fluctuating pattern and does not show any intersection at all. Data processing uses Matlab software and obtained areas with low RAE values that are 0%-6% which shows medium with low conductivity and high resistivity and can be interpreted as sandstone, claystone, and tuff lithology which is part of the Semilir Formation. Whereas a high RAE value of 10% -16% which shows a medium with high conductivity and low resistivity can be interpreted as a fault zone filled with fluid. The existence of the fault zone is strengthened by the discovery of a normal fault on the surface with strike N550W and dip 630E at coordinates X= 433256 and Y= 9127722 so that the activities of residents in the zone such as housing, mining activities and other activities can be avoided to reduce the risk of natural disasters.Keywords: current density, faults, very low frequency, zonation
Procedia PDF Downloads 175