Search results for: Molecular Modeling
2223 Biophysical Consideration in the Interaction of Biological Cell Membranes with Virus Nanofilaments
Authors: Samaneh Farokhirad, Fatemeh Ahmadpoor
Abstract:
Biological membranes are constantly in contact with various filamentous soft nanostructures that either reside on their surface or are being transported between the cell and its environment. In particular, viral infections are determined by the interaction of viruses (such as filovirus) with cell membranes, membrane protein organization (such as cytoskeletal proteins and actin filament bundles) has been proposed to influence the mechanical properties of lipid membranes, and the adhesion of filamentous nanoparticles influence their delivery yield into target cells or tissues. The goal of this research is to integrate the rapidly increasing but still fragmented experimental observations on the adhesion and self-assembly of nanofilaments (including filoviruses, actin filaments, as well as natural and synthetic nanofilaments) on cell membranes into a general, rigorous, and unified knowledge framework. The global outbreak of the coronavirus disease in 2020, which has persisted for over three years, highlights the crucial role that nanofilamentbased delivery systems play in human health. This work will unravel the role of a unique property of all cell membranes, namely flexoelectricity, and the significance of nanofilaments’ flexibility in the adhesion and self-assembly of nanofilaments on cell membranes. This will be achieved utilizing a set of continuum mechanics, statistical mechanics, and molecular dynamics and Monte Carlo simulations. The findings will help address the societal needs to understand biophysical principles that govern the attachment of filoviruses and flexible nanofilaments onto the living cells and provide guidance on the development of nanofilament-based vaccines for a range of diseases, including infectious diseases and cancer.Keywords: virus nanofilaments, cell mechanics, computational biophysics, statistical mechanics
Procedia PDF Downloads 942222 Numerical Modeling of Artisanal and Small Scale Mining of Coltan in the African Great Lakes Region
Authors: Sergio Perez Rodriguez
Abstract:
Coltan Artisanal and Small-Scale Mining (ASM) production from Africa's Great Lakes region has previously been addressed at large scales, notably from regional to country levels. The current findings address the unresolved issue of a production model of ASM of coltan ore by an average Democratic Republic of Congo (DRC) mineworker, which can be used as a reference for a similar characterization of the daily labor of counterparts from other countries in the region. To that end, the Fundamental Equation of Mineral Production has been applied, considering a miner's average daily output of coltan, estimated in the base of gross statistical data gathered from reputable sources. Results indicate daily yields of individual miners in the order of 300 g of coltan ore, with hourly peaks of production in the range of 30 to 40 g of the mineral. Yields are expected to be in the order of 5 g or less during the least productive hours. These outputs are expected to be achieved during the halves of the eight to ten hours of daily working sessions that these artisanal laborers can attend during the mining season.Keywords: coltan, mineral production, production to reserve ratio, artisanal mining, small-scale mining, ASM, human work, Great Lakes region, Democratic Republic of Congo
Procedia PDF Downloads 762221 Green Supply Chain Design: A Mathematical Modeling Approach
Authors: Nusrat T. Chowdhury
Abstract:
Green Supply Chain Management (GSCM) is becoming a key to success for profitable businesses. The various activities contributing to carbon emissions in a supply chain are transportation, ordering and holding of inventory. This research work develops a mixed-integer nonlinear programming (MINLP) model that considers the scenario of a supply chain with multiple periods, multiple products and multiple suppliers. The model assumes that the demand is deterministic, the buyer has a limited storage space in each period, the buyer is responsible for the transportation cost, a supplier-dependent ordering cost applies for each period in which an order is placed on a supplier and inventory shortage is permissible. The model provides an optimal decision regarding what products to order, in what quantities, with which suppliers, and in which periods in order to maximize the profit. For the purpose of evaluating the carbon emissions, three different carbon regulating policies i.e., carbon cap-and-trade, the strict cap on carbon emission and carbon tax on emissions, have been considered. The proposed MINLP has been validated using a randomly generated data set.Keywords: green supply chain, carbon emission, mixed integer non-linear program, inventory shortage, carbon cap-and-trade
Procedia PDF Downloads 2412220 A Crystal Plasticity Approach to Model Dynamic Strain Aging
Authors: Burak Bal, Demircan Canadinc
Abstract:
Dynamic strain aging (DSA), resulting from the reorientation of C-Mn clusters in the core of dislocations, can provide a strain hardening mechanism. In addition, in Hadfield steel, negative strain rate sensitivity is observed due to the DSA. In our study, we incorporated dynamic strain aging onto crystal plasticity computations to predict the local instabilities and corresponding negative strain rate sensitivity. Specifically, the material response of Hadfield steel was obtained from monotonic and strain-rate jump experiments under tensile loading. The strain rate range was adjusted from 10⁻⁴ to 10⁻¹s ⁻¹. The crystal plasticity modeling of the material response was carried out based on Voce-type hardening law and corresponding Voce hardening parameters were determined. The solute pinning effect of carbon atom was incorporated to crystal plasticity simulations at microscale level by computing the shear stress contribution imposed on an arrested dislocation by carbon atom. After crystal plasticity simulations with modifying hardening rule, which takes into account the contribution of DSA, it was seen that the model successfully predicts both the role of DSA and corresponding strain rate sensitivity.Keywords: crystal plasticity, dynamic strain aging, Hadfield steel, negative strain rate sensitivity
Procedia PDF Downloads 2602219 Modeling Studies on the Elevated Temperatures Formability of Tube Ends Using RSM
Authors: M. J. Davidson, N. Selvaraj, L. Venugopal
Abstract:
The elevated temperature forming studies on the expansion of thin walled tubes have been studied in the present work. The influence of process parameters namely the die angle, the die ratio and the operating temperatures on the expansion of tube ends at elevated temperatures is carried out. The range of operating parameters have been identified by perfoming extensive simulation studies. The hot forming parameters have been evaluated for AA2014 alloy for performing the simulation studies. Experimental matrix has been developed from the feasible range got from the simulation results. The design of experiments is used for the optimization of process parameters. Response Surface Method’s (RSM) and Box-Behenken design (BBD) is used for developing the mathematical model for expansion. Analysis of variance (ANOVA) is used to analyze the influence of process parameters on the expansion of tube ends. The effect of various process combinations of expansion are analyzed through graphical representations. The developed model is found to be appropriate as the coefficient of determination value is very high and is equal to 0.9726. The predicted values are found to coincide well with the experimental results, within acceptable error limits.Keywords: expansion, optimization, Response Surface Method (RSM), ANOVA, bbd, residuals, regression, tube
Procedia PDF Downloads 5092218 Cerebrovascular Modeling: A Vessel Network Approach for Fluid Distribution
Authors: Karla E. Sanchez-Cazares, Kim H. Parker, Jennifer H. Tweedy
Abstract:
The purpose of this work is to develop a simple compartmental model of cerebral fluid balance including blood and cerebrospinal-fluid (CSF). At the first level the cerebral arteries and veins are modelled as bifurcating trees with constant scaling factors between generations which are connected through a homogeneous microcirculation. The arteries and veins are assumed to be non-rigid and the cross-sectional area, resistance and mean pressure in each generation are determined as a function of blood volume flow rate. From the mean pressure and further assumptions about the variation of wall permeability, the transmural fluid flux can be calculated. The results suggest the next level of modelling where the cerebral vasculature is divided into three compartments; the large arteries, the small arteries, the capillaries and the veins with effective compliances and permeabilities derived from the detailed vascular model. These vascular compartments are then linked to other compartments describing the different CSF spaces, the cerebral ventricles and the subarachnoid space. This compartmental model is used to calculate the distribution of fluid in the cranium. Known volumes and flows for normal conditions are used to determine reasonable parameters for the model, which can then be used to help understand pathological behaviour and suggest clinical interventions.Keywords: cerebrovascular, compartmental model, CSF model, vascular network
Procedia PDF Downloads 2752217 Numerical Design and Characterization of MOVPE Grown Nitride Based Semiconductors
Authors: J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski
Abstract:
In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S are addressed. The aim of this study was to design the optimal fluid flow and thermal conditions for obtaining the most homogeneous product. Since there are many agents influencing reactions on the crystal growth area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. Variations of process pressure and hydrogen mass flow rates have been considered. According to the fact that it’s impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, detailed 3D modeling has been used to get an insight of the process conditions. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in the numerical model allows to calculate the growth rate of the substrate. The present approach has been applied to enhance the performance of AIX-200/4RF-S reactor.Keywords: computational fluid dynamics, finite volume method, epitaxial growth, gallium nitride
Procedia PDF Downloads 4542216 About Multi-Resolution Techniques for Large Eddy Simulation of Reactive Multi-Phase Flows
Authors: Giacomo Rossi, Bernardo Favini, Eugenio Giacomazzi, Franca Rita Picchia, Nunzio Maria Salvatore Arcidiacono
Abstract:
A numerical technique for mesh refinement in the HeaRT (Heat Release and Transfer) numerical code is presented. In the CFD framework, Large Eddy Simulation (LES) approach is gaining in importance as a tool for simulating turbulent combustion processes, also if this approach has an high computational cost due to the complexity of the turbulent modeling and the high number of grid points necessary to obtain a good numerical solution. In particular, when a numerical simulation of a big domain is performed with a structured grid, the number of grid points can increase so much that the simulation becomes impossible: this problem can be overcame with a mesh refinement technique. Mesh refinement technique developed for HeaRT numerical code (a staggered finite difference code) is based on an high order reconstruction of the variables at the grid interfaces by means of a least square quasi-ENO interpolation: numerical code is written in modern Fortran (2003 standard of newer) and is parallelized using domain decomposition and message passing interface (MPI) standard.Keywords: LES, multi-resolution, ENO, fortran
Procedia PDF Downloads 3662215 Formulation Development and Characterization of Oligonucleotide Containing Chitosan Nanoparticles
Authors: Gyati Shilakari Asthana, Abhay Asthana
Abstract:
Purpose: The therapeutic potential of oligonucleotide (ODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study is focused to design low molecular weight chitosan nanoconstructs to meet the requirements of safe and effectual delivery of ODNs. LMW-chitosan is a biodegradable, water soluble, biocompatible polymer and is useful as a non-viral vector for gene delivery due to its better stability in water. Methods: LMW chitosan ODN nanoparticles (CHODN NPs) were formulated by self assembled method using various N/P ratios (moles ratio of amine groups of CH to phosphate moieties of ODNs; 0.5:1, 1:1, 3:1, 5:1 and 7:1) of CH to ODN. The developed CHODN NPs were evaluated with respect to gel retardation assay, particle size, zeta potential and cytotoxicity and transfection efficiency. Results: Complete complexation of CH/ODN was achieved at the charge ratio of 0.5:1 or above and CHODN NPs displayed resistance against DNase I. On increasing the N/P ratio of CH/ODN, particle size of the NPs decreased whereas zeta potential (ZV) value increased. No significant toxicity was observed at all CH concentrations. The transfection efficiency was increased on increasing N/P ratio from 1:1 to 3:1, whereas it was decreased with further increment in N/P ratio upto 7:1. Maximum transfection of CHODN NPs with both the cell lines (Raw 267.4 cells and Hela cells) was achieved at N/P ratio of 3:1. The results suggest that transfection efficiency of CHODN NPs is dependent on N/P ratio. Conclusion: Thus the present study states that LMW chitosan nanoparticulate carriers would be acceptable choice to improve transfection efficiency in vitro as well as in vivo delivery of oligonucleotide.Keywords: LMW-chitosan, chitosan nanoparticles, biocompatibility, cytotoxicity study, transfection efficiency, oligonucleotide
Procedia PDF Downloads 4932214 Comparison of Johnson-Cook and Barlat Material Model for 316L Stainless Steel
Authors: Yiğit Gürler, İbrahim Şimşek, Müge Savaştaer, Ayberk Karakuş, Alper Taşdemirci
Abstract:
316L steel is frequently used in the industry due to its easy formability and accessibility in sheet metal forming processes. Numerical and experimental studies are frequently encountered in the literature to examine the mechanical behavior of 316L stainless steel during the forming process. 316L stainless steel is the most common material used in the production of plate heat exchangers and plate heat exchangers are produced by plastic deformation of the stainless steel. The motivation in this study is to determine the appropriate material model during the simulation of the sheet metal forming process. For this reason, two different material models were examined and Ls-Dyna material cards were created using material test data. These are MAT133_BARLAT_YLD2000 and MAT093_SIMPLIFIED_JOHNSON_COOK. In order to compare results of the tensile test & hydraulic bulge test performed both numerically and experimentally. The obtained results were evaluated comparatively and the most suitable material model was selected for the forming simulation. In future studies, this material model will be used in the numerical modeling of the sheet metal forming process.Keywords: 316L, mechanical characterization, metal forming, Ls-Dyna
Procedia PDF Downloads 3342213 The Impact of Nurse-Physician Interprofessional Relationship on Nurses' Willingness to Engage in Leadership Roles: A Multilevel Modelling Approach
Authors: Sulaiman D. Al Sabei, Amy M. Ross, Christopher S. Lee
Abstract:
Nurse leaders play a fundamental role in transforming healthcare system and improving quality of patient care. Several healthcare organizations have called to increase the number of nurse leaders across all levels and in every practice setting. Identification of factors influencing nurses’ willingness to lead can inform healthcare leaders and policy makers of potentially illuminating strategies for establishing favorable work environments that motivate nurses to engage in leadership roles. The aim of this study was to investigate determinants of nurses’ willingness to engage in future leadership roles. The study was conducted at a public hospital in the Sultanate of Oman. A total of 171 registered nurses participated. A multilevel modeling was conducted. Findings revealed that 80% of nurses were likely to seek out opportunities to engage in leadership roles. The quality of the nurse-physician collegial relationships was a significant predictor of nurses’ willingness to lead. Establishing a work environment’s culture of positive nurse-physician relationships is critical to enhance nurses’ work attitude and engage them in leadership roles.Keywords: interprofessional relationship, leadership, motivation, nurses
Procedia PDF Downloads 1922212 Molecular Characterization of Polyploid Bamboo (Dendrocalamus hamiltonii) Using Microsatellite Markers
Authors: Rajendra K. Meena, Maneesh S. Bhandari, Santan Barthwal, Harish S. Ginwal
Abstract:
Microsatellite markers are the most valuable tools for the characterization of plant genetic resources or population genetic analysis. Since it is codominant and allelic markers, utilizing them in polyploid species remained doubtful. In such cases, the microsatellite marker is usually analyzed by treating them as a dominant marker. In the current study, it has been showed that despite losing the advantage of co-dominance, microsatellite markers are still a powerful tool for genotyping of polyploid species because of availability of large number of reproducible alleles per locus. It has been studied by genotyping of 19 subpopulations of Dendrocalamus hamiltonii (hexaploid bamboo species) with 17 polymorphic simple sequence repeat (SSR) primer pairs. Among these, ten primers gave typical banding pattern of microsatellite marker as expected in diploid species, but rest 7 gave an unusual pattern, i.e., more than two bands per locus per genotype. In such case, genotyping data are generally analyzed by considering as dominant markers. In the current study, data were analyzed in both ways as dominant and co-dominant. All the 17 primers were first scored as nonallelic data and analyzed; later, the ten primers giving standard banding patterns were analyzed as allelic data and the results were compared. The UPGMA clustering and genetic structure showed that results obtained with both the data sets are very similar with slight variation, and therefore the SSR marker could be utilized to characterize polyploid species by considering them as a dominant marker. The study is highly useful to widen the scope for SSR markers applications and beneficial to the researchers dealing with polyploid species.Keywords: microsatellite markers, Dendrocalamus hamiltonii, dominant and codominant, polyploids
Procedia PDF Downloads 1442211 Gonadal Maturation in Pen Shells Pinna Rudis and Pinna Nobilis Stimulated by Reproductive Neuropeptides
Authors: Ntalamagka N., Sanchis-Benlloch P. J., Mayoral-Serrano R., Tena-Medialdea J., García-March J. R.
Abstract:
The pen shell Pinna nobilis population has declined dramatically since 2016 due to die-off events observed in the whole extent of the Mediterranean Sea associated with the protozoan Haplosporidium pinnae. As of 2019, it is considered a critically endangered species. Due to its ecological importance and its endangered status, several initiatives have been developed for its salvation and recovery. This research is an effort to understand and control its reproduction under captivity. As a limited number of Pinna nobilis individuals could be used for experimentation, the possibility of using the Pinna rudis as a model animal was explored. The molecular mechanism that regulates the reproduction of both species is unknown; consequently, transcriptomic analysis was performed to identify neuropeptides that are expressed in the key regulatory tissues of the visceral ganglia and gonads of both species. Neuropeptides form an important group of signaling peptides that regulate reproductive, behavioral and physiological functions in molluscs. In total, 17 neuropeptide precursors were identified in P. nobilis and 14 in P. rudis transcriptomes; 14 of them were identical in both species. This affinity verified the genetic similarity of these species at the reproduction level. APGWamide, buccalin, ELH and GnRH were tested in P. rudis and demonstrated their capacity to advance gonadal maturation and trigger spawning while spawning was recorded in P. nobilis after the usage of APGWamide and buccalin. The neuropeptides were administered using intramuscular injection and cholesterol implants following relative literature as well as a new method was developed for external administration without the use of anesthesia using a mathematical model. The know-how of this research will not only lead to the survival of the species but also will narrow the horizons of broodstock conditioning of other similar species.Keywords: neuropeptides, Pinna nobilis, reproduction, transcriptomics
Procedia PDF Downloads 1042210 Screening of Lactobacilli and Bifidobacteria from Bangladeshi Indigenous Poultry for Their Potential Use as Probiotics
Authors: K. B. M. Islam, Syeeda Shiraj-Um-Mahmuda, Afroj Jahan, A. A. Bhuiyan
Abstract:
In Bangladesh, the use of imported probiotics in poultry is gradually being increased. But surprisingly, no probiotic bacteria have been isolated yet in Bangladesh despite the existence of scavenging native poultry as potential source that is seemingly more resistant to GIT infection as well as other diseases. Therefore, the study was undertaken to isolate, identify and characterize the potential probiotic Lactobacillus and Bifidobacteria strains from Bangladeshi indigenous poultry, and to evaluate their suitability to use in poultry industry. Crop and cecal samples from 61 healthy indigenous birds were used to isolate potential probiotics strains following conventional cultural methods. A total of 216 isolates were identified following physical, biochemical and molecular methods that belonged to the genus Lactobacillus and Bifidobacteria. An auto-aggregation test was performed for 180 and 136 isolated lactobacilli and bifidobacteria strains, respectively. Twelve lactobacilli isolates and 7 bifidobacteria isolates were selected because of their convenient aggregation. In vitro tests including antibacterial activity, resistance to low pH, hemolytic activities etc. were performed for evaluation of probiotic potential of each strain. Under the in vitro conditions and with respects to the probiotic traits, three lactobacilli; LS16, LS45, LS133 and two bifidobacteria, BS21 and BS90 were found to be potential probiotic strains. Thus, they are proposed to be evaluated for their in vivo probiotic properties. If the proposed strains are found suitable as the probiotics to be used in commercial poultry industry, it is expected that the local probiotics would be more beneficial and would save the huge amount of money that Bangladesh spends every year for the importation of such materials from abroad.Keywords: Bangladeshi poultry, gut microbiota, lactic acid bacteria, scavenging chicken, GIT health
Procedia PDF Downloads 3032209 A Bivariate Inverse Generalized Exponential Distribution and Its Applications in Dependent Competing Risks Model
Authors: Fatemah A. Alqallaf, Debasis Kundu
Abstract:
The aim of this paper is to introduce a bivariate inverse generalized exponential distribution which has a singular component. The proposed bivariate distribution can be used when the marginals have heavy-tailed distributions, and they have non-monotone hazard functions. Due to the presence of the singular component, it can be used quite effectively when there are ties in the data. Since it has four parameters, it is a very flexible bivariate distribution, and it can be used quite effectively for analyzing various bivariate data sets. Several dependency properties and dependency measures have been obtained. The maximum likelihood estimators cannot be obtained in closed form, and it involves solving a four-dimensional optimization problem. To avoid that, we have proposed to use an EM algorithm, and it involves solving only one non-linear equation at each `E'-step. Hence, the implementation of the proposed EM algorithm is very straight forward in practice. Extensive simulation experiments and the analysis of one data set have been performed. We have observed that the proposed bivariate inverse generalized exponential distribution can be used for modeling dependent competing risks data. One data set has been analyzed to show the effectiveness of the proposed model.Keywords: Block and Basu bivariate distributions, competing risks, EM algorithm, Marshall-Olkin bivariate exponential distribution, maximum likelihood estimators
Procedia PDF Downloads 1432208 Quantum Decision Making with Small Sample for Network Monitoring and Control
Authors: Tatsuya Otoshi, Masayuki Murata
Abstract:
With the development and diversification of applications on the Internet, applications that require high responsiveness, such as video streaming, are becoming mainstream. Application responsiveness is not only a matter of communication delay but also a matter of time required to grasp changes in network conditions. The tradeoff between accuracy and measurement time is a challenge in network control. We people make countless decisions all the time, and our decisions seem to resolve tradeoffs between time and accuracy. When making decisions, people are known to make appropriate choices based on relatively small samples. Although there have been various studies on models of human decision-making, a model that integrates various cognitive biases, called ”quantum decision-making,” has recently attracted much attention. However, the modeling of small samples has not been examined much so far. In this paper, we extend the model of quantum decision-making to model decision-making with a small sample. In the proposed model, the state is updated by value-based probability amplitude amplification. By analytically obtaining a lower bound on the number of samples required for decision-making, we show that decision-making with a small number of samples is feasible.Keywords: quantum decision making, small sample, MPEG-DASH, Grover's algorithm
Procedia PDF Downloads 792207 Artificial Intelligence in the Design of High-Strength Recycled Concrete
Authors: Hadi Rouhi Belvirdi, Davoud Beheshtizadeh
Abstract:
The increasing demand for sustainable construction materials has led to a growing interest in high-strength recycled concrete (HSRC). Utilizing recycled materials not only reduces waste but also minimizes the depletion of natural resources. This study explores the application of artificial intelligence (AI) techniques to model and predict the properties of HSRC. In the past two decades, the production levels in various industries and, consequently, the amount of waste have increased significantly. Continuing this trend will undoubtedly cause irreparable damage to the environment. For this reason, engineers have been constantly seeking practical solutions for recycling industrial waste in recent years. This research utilized the results of the compressive strength of 90-day high-strength recycled concrete. The method for creating recycled concrete involved replacing sand with crushed glass and using glass powder instead of cement. Subsequently, a feedforward artificial neural network was employed to model the compressive strength results for 90 days. The regression and error values obtained indicate that this network is suitable for modeling the compressive strength data.Keywords: high-strength recycled concrete, feedforward artificial neural network, regression, construction materials
Procedia PDF Downloads 152206 Experimental and Numerical Analysis of the Effects of Ball-End Milling Process upon Residual Stresses and Cutting Forces
Authors: Belkacem Chebil Sonia, Bensalem Wacef
Abstract:
The majority of ball end milling models includes only the influence of cutting parameters (cutting speed, feed rate, depth of cut). Furthermore, this influence is studied in most of works on cutting force. Therefore, this study proposes an accurate ball end milling process modeling which includes also the influence of tool workpiece inclination. In addition, a characterization of residual stresses resulting of thermo mechanical loading in the workpiece was also presented. Moreover, the study of the influence of tool workpiece inclination and cutting parameters was made on residual stresses distribution. In order to achieve the predetermination of cutting forces and residual stresses during a milling operation, a thermo mechanical three-dimensional numerical model of ball end milling was developed. Furthermore, an experimental companion of ball end milling tests was realized on a 5-axis machining center to determine the cutting forces and characterize the residual stresses. The simulation results are compared with the experiment to validate the Finite Element Model and subsequently identify the optimum inclination angle and cutting parameters.Keywords: ball end milling, cutting forces, cutting parameters, residual stress, tool-workpiece inclination
Procedia PDF Downloads 3082205 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line
Abstract:
Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.Keywords: computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone
Procedia PDF Downloads 4032204 Graphene Based Materials as Novel Membranes for Water Desalination and Boron Separation
Authors: Francesca Risplendi, Li-Chiang Lin, Jeffrey C. Grossman, Giancarlo Cicero
Abstract:
Desalination is one of the most employed approaches to supply water in the context of a rapidly growing global water shortage. However, the most popular water filtration method available is the reverse osmosis (RO) technique, still suffers from important drawbacks, such as a large energy demands and high process costs. In addition some serious limitations have been recently discovered, among them, the boron problem seems to have a critical meaning. Boron has been found to have a dual effect on the living systems on Earth and the difference between boron deficiency and boron toxicity levels is quite small. The aim of this project is to develop a new generation of RO membranes based on porous graphene or reduced graphene oxide (rGO) able to remove salts from seawater and to reduce boron concentrations in the permeate to the level that meets the drinking or process water requirements, by means of a theoretical approach based on density functional theory and classical molecular dynamics. Computer simulations have been employed to investigate the relationship between the atomic structure of nanoporous graphene or rGO monolayer and its membrane properties in RO applications (i.e. water permeability and resilience at RO pressures). In addition, an emphasis has been given to multilayer nanoporous rGO and rGO flakes based membranes. By means of non-equilibrium MD simulations, we investigated the water transport mechanism permeating through such multilayer membrane focusing on the effect of slit widths and sheet geometries. These simulations allowed us to establish the implications of these graphene based materials as promising membrane properties for desalination plants and as boron filtration.Keywords: boron filtration, desalination, graphene membrane, reduced graphene oxide membrane
Procedia PDF Downloads 2992203 Physiological Normoxia and Cellular Adhesion of Diffuse Large B-Cell Lymphoma Primary Cells: Real-Time PCR and Immunohistochemistry Study
Authors: Kamila Duś-Szachniewicz, Kinga M. Walaszek, Paweł Skiba, Paweł Kołodziej, Piotr Ziółkowski
Abstract:
Cell adhesion is of fundamental importance in the cell communication, signaling, and motility, and its dysfunction occurs prevalently during cancer progression. The knowledge of the molecular and cellular processes involved in abnormalities in cancer cells adhesion has greatly increased, and it has been focused mainly on cellular adhesion molecules (CAMs) and tumor microenvironment. Unfortunately, most of the data regarding CAMs expression relates to study on cells maintained in standard oxygen condition of 21%, while the emerging evidence suggests that culturing cells in ambient air is far from physiological. In fact, oxygen in human tissues ranges from 1 to 11%. The aim of this study was to compare the effects of physiological lymph node normoxia (5% O2), and hyperoxia (21% O2) on the expression of cellular adhesion molecules of primary diffuse large B-cell lymphoma cells (DLBCL) isolated from 10 lymphoma patients. Quantitative RT-PCR and immunohistochemistry were used to confirm the differential expression of several CAMs, including ICAM, CD83, CD81, CD44, depending on the level of oxygen. Our findings also suggest that DLBCL cells maintained at ambient O2 (21%) exhibit reduced growth rate and migration ability compared to the cells growing in normoxia conditions. Taking into account all the observations, we emphasize the need to identify the optimal human cell culture conditions mimicking the physiological aspects of tumor growth and differentiation.Keywords: adhesion molecules, diffuse large B-cell lymphoma, physiological normoxia, quantitative RT-PCR
Procedia PDF Downloads 2782202 3D Human Body Reconstruction Based on Multiple Viewpoints
Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo
Abstract:
The aim of this study was to improve the effects of human body 3D reconstruction. The MvP algorithm was adopted to obtain key point information from multiple perspectives. This algorithm allowed the capture of human posture and joint positions from multiple angles, providing more comprehensive and accurate data. The study also incorporated the SMPL-X model, which has been widely used for human body modeling, to achieve more accurate 3D reconstruction results. The use of the MvP algorithm made it possible to observe the reconstructed object from multiple angles, thus reducing the problems of blind spots and missing information. This algorithm was able to effectively capture key point information, including the position and rotation angle of limbs, providing key data for subsequent 3D reconstruction. Compared with traditional single-view methods, the method of multi-view fusion significantly improved the accuracy and stability of reconstruction. By combining the MvP algorithm with the SMPL-X model, we successfully achieved better human body 3D reconstruction effects. The SMPL-X model is highly scalable and can generate highly realistic 3D human body models, thus providing more detail and shape information.Keywords: 3D human reconstruction, multi-view, joint point, SMPL-X
Procedia PDF Downloads 702201 A Dynamical Approach for Relating Energy Consumption to Hybrid Inventory Level in the Supply Chain
Authors: Benga Ebouele, Thomas Tengen
Abstract:
Due to long lead time, work in process (WIP) inventory can manifest within the supply chain of most manufacturing system. It implies that there are lesser finished good on hand and more in the process because the work remains in the factory too long and cannot be sold to either customers The supply chain of most manufacturing system is then considered as inefficient as it take so much time to produce the finished good. Time consumed in each operation of the supply chain has an associated energy costs. Such phenomena can be harmful for a hybrid inventory system because a lot of space to store these semi-finished goods may be needed and one is not sure about the final energy cost of producing, holding and delivering the good to customers. The principle that reduces waste of energy within the supply chain of most manufacturing firms should therefore be available to all inventory managers in pursuit of profitability. Decision making by inventory managers in this condition is a modeling process, whereby a dynamical approach is used to depict, examine, specify and even operationalize the relationship between energy consumption and hybrid inventory level. The relationship between energy consumption and inventory level is established, which indicates a poor level of control and hence a potential for energy savings.Keywords: dynamic modelling, energy used, hybrid inventory, supply chain
Procedia PDF Downloads 2682200 Adaptive Anchor Weighting for Improved Localization with Levenberg-Marquardt Optimization
Authors: Basak Can
Abstract:
This paper introduces an iterative and weighted localization method that utilizes a unique cost function formulation to significantly enhance the performance of positioning systems. The system employs locators, such as Gateways (GWs), to estimate and track the position of an End Node (EN). Performance is evaluated relative to the number of locators, with known locations determined through calibration. Performance evaluation is presented utilizing low cost single-antenna Bluetooth Low Energy (BLE) devices. The proposed approach can be applied to alternative Internet of Things (IoT) modulation schemes, as well as Ultra WideBand (UWB) or millimeter-wave (mmWave) based devices. In non-line-of-sight (NLOS) scenarios, using four or eight locators yields a 95th percentile localization performance of 2.2 meters and 1.5 meters, respectively, in a 4,305 square feet indoor area with BLE 5.1 devices. This method outperforms conventional RSSI-based techniques, achieving a 51% improvement with four locators and a 52 % improvement with eight locators. Future work involves modeling interference impact and implementing data curation across multiple channels to mitigate such effects.Keywords: lateration, least squares, Levenberg-Marquardt algorithm, localization, path-loss, RMS error, RSSI, sensors, shadow fading, weighted localization
Procedia PDF Downloads 252199 One-Step Time Series Predictions with Recurrent Neural Networks
Authors: Vaidehi Iyer, Konstantin Borozdin
Abstract:
Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.Keywords: long short term memory, prediction methods, recurrent neural networks, reinforcement learning
Procedia PDF Downloads 2292198 Use of Multistage Transition Regression Models for Credit Card Income Prediction
Authors: Denys Osipenko, Jonathan Crook
Abstract:
Because of the variety of the card holders’ behaviour types and income sources each consumer account can be transferred to a variety of states. Each consumer account can be inactive, transactor, revolver, delinquent, defaulted and requires an individual model for the income prediction. The estimation of transition probabilities between statuses at the account level helps to avoid the memorylessness of the Markov Chains approach. This paper investigates the transition probabilities estimation approaches to credit cards income prediction at the account level. The key question of empirical research is which approach gives more accurate results: multinomial logistic regression or multistage conditional logistic regression with binary target. Both models have shown moderate predictive power. Prediction accuracy for conditional logistic regression depends on the order of stages for the conditional binary logistic regression. On the other hand, multinomial logistic regression is easier for usage and gives integrate estimations for all states without priorities. Thus further investigations can be concentrated on alternative modeling approaches such as discrete choice models.Keywords: multinomial regression, conditional logistic regression, credit account state, transition probability
Procedia PDF Downloads 4872197 Modeling of a Pendulum Test Including Skin and Muscles under Compression
Authors: M. J. Kang, Y. N. Jo, H. H. Yoo
Abstract:
Pendulum tests were used to identify a stretch reflex and diagnose spasticity. Some researches tried to make a mathematical model to simulate the motions. Thighs are subject to compressive forces due to gravity during a pendulum test. Therefore, it affects knee trajectories. However, the most studies on the pendulum tests did not consider that conditions. We used Kelvin-Voight model as compression model of skin and muscles. In this study, we investigated viscoelastic behaviors of skin and muscles using gelatin blocks from experiments of the vibration of the compliantly supported beam. Then we calculated a dynamic stiffness and loss factors from the experiment and estimated a damping coefficient of the model. We also did pendulum tests of human lower limbs to validate the stiffness and damping coefficient of a skin model. To simulate the pendulum motion, we derive equations of motion. We used stretch reflex activation model to estimate muscle forces induced by the stretch reflex. To validate the results, we compared the activation with electromyography signals during experiments. The compression behavior of skin and muscles in this study can be applied to analyze sitting posture as wee as developing surgical techniques.Keywords: Kelvin-Voight model, pendulum test, skin and muscles under compression, stretch reflex
Procedia PDF Downloads 4462196 A Survey of Recognizing of Daily Living Activities in Multi-User Smart Home Environments
Authors: Kulsoom S. Bughio, Naeem K. Janjua, Gordana Dermody, Leslie F. Sikos, Shamsul Islam
Abstract:
The advancement in information and communication technologies (ICT) and wireless sensor networks have played a pivotal role in the design and development of real-time healthcare solutions, mainly targeting the elderly living in health-assistive smart homes. Such smart homes are equipped with sensor technologies to detect and record activities of daily living (ADL). This survey reviews and evaluates existing approaches and techniques based on real-time sensor-based modeling and reasoning in single-user and multi-user environments. It classifies the approaches into three main categories: learning-based, knowledge-based, and hybrid, and evaluates how they handle temporal relations, granularity, and uncertainty. The survey also highlights open challenges across various disciplines (including computer and information sciences and health sciences) to encourage interdisciplinary research for the detection and recognition of ADLs and discusses future directions.Keywords: daily living activities, smart homes, single-user environment, multi-user environment
Procedia PDF Downloads 1412195 Nonparametric Path Analysis with a Truncated Spline Approach in Modeling Waste Management Behavior Patterns
Authors: Adji Achmad Rinaldo Fernandes, Usriatur Rohma
Abstract:
Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best truncated spline nonparametric path function between linear and quadratic polynomial degrees with 1, 2, and 3 knot points and to determine the significance of estimating the best truncated spline nonparametric path function in the model of the effect of perceived benefits and perceived convenience on behavior to convert waste into economic value through the intention variable of changing people's mindset about waste using the t test statistic at the jackknife resampling stage. The data used in this study are primary data obtained from research grants. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3 knot points. In addition, the significance of the best truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables.Keywords: nonparametric path analysis, truncated spline, linear, kuadratic, behavior to turn waste into economic value, jackknife resampling
Procedia PDF Downloads 492194 Effect of Leaks in Solid Oxide Electrolysis Cells Tested for Durability under Co-Electrolysis Conditions
Authors: Megha Rao, Søren H. Jensen, Xiufu Sun, Anke Hagen, Mogens B. Mogensen
Abstract:
Solid oxide electrolysis cells have an immense potential in converting CO2 and H2O into syngas during co-electrolysis operation. The produced syngas can be further converted into hydrocarbons. This kind of technology is called power-to-gas or power-to-liquid. To produce hydrocarbons via this route, durability of the cells is still a challenge, which needs to be further investigated in order to improve the cells. In this work, various nickel-yttria stabilized zirconia (Ni-YSZ) fuel electrode supported or YSZ electrolyte supported cells, cerium gadolinium oxide (CGO) barrier layer, and an oxygen electrode are investigated for durability under co-electrolysis conditions in both galvanostatic and potentiostatic conditions. While changing the gas on the oxygen electrode, keeping the fuel electrode gas composition constant, a change in the gas concentration arc was observed by impedance spectroscopy. Measurements of open circuit potential revealed the presence of leaks in the setup. It is speculated that the change in concentration impedance may be related to the leaks. Furthermore, the cells were also tested under pressurized conditions to find an inter-play between the leak rate and the pressure. A mathematical modeling together with electrochemical and microscopy analysis is presented.Keywords: co-electrolysis, durability, leaks, gas concentration arc
Procedia PDF Downloads 148