Search results for: hierarchical text classification models
6446 A Diagnostic Comparative Analysis of on Simultaneous Localization and Mapping (SLAM) Models for Indoor and Outdoor Route Planning and Obstacle Avoidance
Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari
Abstract:
In robotics literature, the simultaneous localization and mapping (SLAM) is commonly associated with a priori-posteriori problem. The autonomous vehicle needs a neutral map to spontaneously track its local position, i.e., “localization” while at the same time a precise path estimation of the environment state is required for effective route planning and obstacle avoidance. On the other hand, the environmental noise factors can significantly intensify the inherent uncertainties in using odometry information and measurements obtained from the robot’s exteroceptive sensor which in return directly affect the overall performance of the corresponding SLAM. Therefore, the current work is primarily dedicated to provide a diagnostic analysis of six SLAM algorithms including FastSLAM, L-SLAM, GraphSLAM, Grid SLAM and DP-SLAM. A SLAM simulated environment consisting of two sets of landmark locations and robot waypoints was set based on modified EKF and UKF in MATLAB using two separate maps for indoor and outdoor route planning subject to natural and artificial obstacles. The simulation results are expected to provide an unbiased platform to compare the estimation performances of the five SLAM models as well as on the reliability of each SLAM model for indoor and outdoor applications.Keywords: route planning, obstacle, estimation performance, FastSLAM, L-SLAM, GraphSLAM, Grid SLAM, DP-SLAM
Procedia PDF Downloads 4496445 Correlation Matrix for Automatic Identification of Meal-Taking Activity
Authors: Ghazi Bouaziz, Abderrahim Derouiche, Damien Brulin, Hélène Pigot, Eric Campo
Abstract:
Automatic ADL classification is a crucial part of ambient assisted living technologies. It allows to monitor the daily life of the elderly and to detect any changes in their behavior that could be related to health problem. But detection of ADLs is a challenge, especially because each person has his/her own rhythm for performing them. Therefore, we used a correlation matrix to extract custom rules that enable to detect ADLs, including eating activity. Data collected from 3 different individuals between 35 and 105 days allows the extraction of personalized eating patterns. The comparison of the results of the process of eating activity extracted from the correlation matrices with the declarative data collected during the survey shows an accuracy of 90%.Keywords: elderly monitoring, ADL identification, matrix correlation, meal-taking activity
Procedia PDF Downloads 976444 Sorption Properties of Hemp Cellulosic Byproducts for Petroleum Spills and Water
Authors: M. Soleimani, D. Cree, C. Chafe, L. Bates
Abstract:
The accidental release of petroleum products into the environment could have harmful consequences to our ecosystem. Different techniques such as mechanical separation, membrane filtration, incineration, treatment processes using enzymes and dispersants, bioremediation, and sorption process using sorbents have been applied for oil spill remediation. Most of the techniques investigated are too costly or do not have high enough efficiency. This study was conducted to determine the sorption performance of hemp byproducts (cellulosic materials) in terms of sorption capacity and kinetics for hydrophobic and hydrophilic fluids. In this study, heavy oil, light oil, diesel fuel, and water/water vapor were used as sorbate fluids. Hemp stalk in different forms, including loose material (hammer milled (HM) and shredded (Sh) with low bulk densities) and densified forms (pellet form (P) and crumbled pellets (CP)) with high bulk densities, were used as sorbents. The sorption/retention tests were conducted according to ASTM 726 standard. For a quick-purpose application of the sorbents, the sorption tests were conducted for 15 min, and for an ideal sorption capacity of the materials, the tests were carried out for 24 h. During the test, the sorbent material was exposed to the fluid by immersion, followed by filtration through a stainless-steel wire screen. Water vapor adsorption was carried out in a controlled environment chamber with the capability of controlling relative humidity (RH) and temperature. To determine the kinetics of sorption for each fluid and sorbent, the retention capacity also was determined intervalley for up to 24 h. To analyze the kinetics of sorption, pseudo-first-order, pseudo-second order and intraparticle diffusion models were employed with the objective of minimal deviation of the experimental results from the models. The results indicated that HM and Sh materials had the highest sorption capacity for the hydrophobic fluids with approximately 6 times compared to P and CP materials. For example, average retention values of heavy oil on HM and Sh was 560% and 470% of the mass of the sorbents, respectively. Whereas, the retention of heavy oil on P and CP was up to 85% of the mass of the sorbents. This lower sorption capacity for P and CP can be due to the less exposed surface area of these materials and compacted voids or capillary tubes in the structures. For water uptake application, HM and Sh resulted in at least 40% higher sorption capacity compared to those obtained for P and CP. On average, the performance of sorbate uptake from high to low was as follows: water, heavy oil, light oil, diesel fuel. The kinetic analysis indicated that the second-pseudo order model can describe the sorption process of the oil and diesel better than other models. However, the kinetics of water absorption was better described by the pseudo-first-order model. Acetylation of HM materials could improve its oil and diesel sorption to some extent. Water vapor adsorption of hemp fiber was a function of temperature and RH, and among the models studied, the modified Oswin model was the best model in describing this phenomenon.Keywords: environment, fiber, petroleum, sorption
Procedia PDF Downloads 1276443 A Study on Adsorption Ability of MnO2 Nanoparticles to Remove Methyl Violet Dye from Aqueous Solution
Authors: Zh. Saffari, A. Naeimi, M. S. Ekrami-Kakhki, Kh. Khandan-Barani
Abstract:
The textile industries are becoming a major source of environmental contamination because an alarming amount of dye pollutants are generated during the dyeing processes. Organic dyes are one of the largest pollutants released into wastewater from textile and other industrial processes, which have shown severe impacts on human physiology. Nano-structure compounds have gained importance in this category due their anticipated high surface area and improved reactive sites. In recent years several novel adsorbents have been reported to possess great adsorption potential due to their enhanced adsorptive capacity. Nano-MnO2 has great potential applications in environment protection field and has gained importance in this category because it has a wide variety of structure with large surface area. The diverse structures, chemical properties of manganese oxides are taken advantage of in potential applications such as adsorbents, sensor catalysis and it is also used for wide catalytic applications, such as degradation of dyes. In this study, adsorption of Methyl Violet (MV) dye from aqueous solutions onto MnO2 nanoparticles (MNP) has been investigated. The surface characterization of these nano particles was examined by Particle size analysis, Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and X-Ray Diffraction (XRD). The effects of process parameters such as initial concentration, pH, temperature and contact duration on the adsorption capacities have been evaluated, in which pH has been found to be most effective parameter among all. The data were analyzed using the Langmuir and Freundlich for explaining the equilibrium characteristics of adsorption. And kinetic models like pseudo first- order, second-order model and Elovich equation were utilized to describe the kinetic data. The experimental data were well fitted with Langmuir adsorption isotherm model and pseudo second order kinetic model. The thermodynamic parameters, such as Free energy of adsorption (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) were also determined and evaluated.Keywords: MnO2 nanoparticles, adsorption, methyl violet, isotherm models, kinetic models, surface chemistry
Procedia PDF Downloads 2596442 A Domain Specific Modeling Language Semantic Model for Artefact Orientation
Authors: Bunakiye R. Japheth, Ogude U. Cyril
Abstract:
Since the process of transforming user requirements to modeling constructs are not very well supported by domain-specific frameworks, it became necessary to integrate domain requirements with the specific architectures to achieve an integrated customizable solutions space via artifact orientation. Domain-specific modeling language specifications of model-driven engineering technologies focus more on requirements within a particular domain, which can be tailored to aid the domain expert in expressing domain concepts effectively. Modeling processes through domain-specific language formalisms are highly volatile due to dependencies on domain concepts or used process models. A capable solution is given by artifact orientation that stresses on the results rather than expressing a strict dependence on complicated platforms for model creation and development. Based on this premise, domain-specific methods for producing artifacts without having to take into account the complexity and variability of platforms for model definitions can be integrated to support customizable development. In this paper, we discuss methods for the integration capabilities and necessities within a common structure and semantics that contribute a metamodel for artifact-orientation, which leads to a reusable software layer with concrete syntax capable of determining design intents from domain expert. These concepts forming the language formalism are established from models explained within the oil and gas pipelines industry.Keywords: control process, metrics of engineering, structured abstraction, semantic model
Procedia PDF Downloads 1446441 Providing a Secure Hybrid Method for Graphical Password Authentication to Prevent Shoulder Surfing, Smudge and Brute Force Attack
Authors: Faraji Sepideh
Abstract:
Nowadays, purchase rate of the smart device is increasing and user authentication is one of the important issues in information security. Alphanumeric strong passwords are difficult to memorize and also owners write them down on papers or save them in a computer file. In addition, text password has its own flaws and is vulnerable to attacks. Graphical password can be used as an alternative to alphanumeric password that users choose images as a password. This type of password is easier to use and memorize and also more secure from pervious password types. In this paper we have designed a more secure graphical password system to prevent shoulder surfing, smudge and brute force attack. This scheme is a combination of two types of graphical passwords recognition based and Cued recall based. Evaluation the usability and security of our proposed scheme have been explained in conclusion part.Keywords: brute force attack, graphical password, shoulder surfing attack, smudge attack
Procedia PDF Downloads 1666440 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets
Authors: Hui Zhang, Sherif Beskhyroun
Abstract:
Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames
Procedia PDF Downloads 1056439 Continuous Professional Development of Teachers: Implementation Mechanisms in the Republic of Kazakhstan Based on the Professional Standard 'Teacher'
Authors: Yelena Agranovich, Larissa Ageyeva, Aigul Syzdykbayeva, Violetta Tyan
Abstract:
The modernization of the education system in the Republic of Kazakhstan is aimed at improving the quality of teacher training and enhancing key competencies among teachers. The current professional standard ‘Teacher’ defines the general characteristics of teachers’ activities, key competencies, and criteria according to relevant qualification categories structured on the principle of progression, thereby enabling Continuous Professional Development (CPD). The essence of CPD lies in the constant integration of new knowledge and skills that help teachers adapt to changes in the education system, in technologies, and teaching methods. This developmental process enables teachers to stay updated on recent scientific achievements, innovations, and modern pedagogical practices. Continuous learning helps teachers remain flexible and open to new developments, creating conditions for improving educational quality and fostering students' personal growth. This study aims to address the following objectives: analysis of international CPD practices, identification of conceptual foundations, and investigation of CPD implementation mechanisms in Kazakhstan. The core principles of CPD are identified as longitudinality, systematicity, and fragmentation. CPD implementation is based on various theoretical approaches: axiological, systemic, competency-based, activity-based, and learner-centered. The study analyzes leading models of teacher CPD, with a target sample that includes countries such as Australia, Japan, South Korea, England, Singapore, Sweden, Finland, and Kazakhstan. The research methods include analysis (comparative, historical, content analysis, systematic), case studies of CPD models, and synthesis and systematization of scientific data. As research results, the mechanisms for CPD implementation in Kazakhstan will be identified, along with further perspectives on transforming resources within the teacher professional development system. In comparing CPD models from various countries, it is noted that teacher CPD in the Republic of Kazakhstan: (1) is implemented through educational programs, professional development courses, teacher certification, professional networks, in-school professional development, self-education, and self-assessment; (2) includes the development of pedagogical values and competencies (tolerance, inclusivity, communication, critical thinking, creativity, reflection, etc.); (3) is carried out based on traditional forms (professional development courses, retraining) and informal forms (self-learning, self-development, experience sharing and exchange). Further research will focus on creating a digital ecosystem for teacher CPD, based on an educational platform that facilitates individualized professional development pathways for teachers (competency diagnostics, course selection, and a methodological system of course and post-course support for teachers).Keywords: continuous professional development, CPD models, professional development, professional upgrading, teacher, teacher training
Procedia PDF Downloads 256438 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks
Authors: Khalid Ali, Manar Jammal
Abstract:
In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity
Procedia PDF Downloads 2346437 Conceptual Model of a Residential Waste Collection System Using ARENA Software
Authors: Bruce G. Wilson
Abstract:
The collection of municipal solid waste at the curbside is a complex operation that is repeated daily under varying circumstances around the world. There have been several attempts to develop Monte Carlo simulation models of the waste collection process dating back almost 50 years. Despite this long history, the use of simulation modeling as a planning or optimization tool for waste collection is still extremely limited in practice. Historically, simulation modeling of waste collection systems has been hampered by the limitations of computer hardware and software and by the availability of representative input data. This paper outlines the development of a Monte Carlo simulation model that overcomes many of the limitations contained in previous models. The model uses a general purpose simulation software program that is easily capable of modeling an entire waste collection network. The model treats the stops on a waste collection route as a queue of work to be processed by a collection vehicle (or server). Input data can be collected from a variety of sources including municipal geographic information systems, global positioning system recorders on collection vehicles, and weigh scales at transfer stations or treatment facilities. The result is a flexible model that is sufficiently robust that it can model the collection activities in a large municipality, while providing the flexibility to adapt to changing conditions on the collection route.Keywords: modeling, queues, residential waste collection, Monte Carlo simulation
Procedia PDF Downloads 4046436 Road Accidents Bigdata Mining and Visualization Using Support Vector Machines
Authors: Usha Lokala, Srinivas Nowduri, Prabhakar K. Sharma
Abstract:
Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM’s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work.Keywords: support vector mechanism (SVM), machine learning (ML), support vector machines (SVM), department of transportation (DFT)
Procedia PDF Downloads 2766435 Development and Clinical Application of a Cochlear Implant Mapping Assistance System
Authors: Hong Mengdi, Li Jianan, Ji Fei, Chen Aiting, Wang Qian
Abstract:
Objective: To overcome the communication barriers that audiologists encounter during cochlear implant mapping, particularly the challenge of eliciting subjective feedback from recipients regarding electrical stimulation, and to enhance the capabilities of existing technologies, we teamed up with software engineers to design an interactive approach for patient-audiologist communication. This approach employs a tablet (PAD) as the interface for a communication and feedback system between patients and audiologists during the mapping process, known as the Cochlear Implant Mapping Assistance System. Methods: Capitalizing on the touchscreen functionality of the PAD, the recipients' subjective feedback during cochlear implant mapping is instantly transmitted to the audiologist's mapping computer. The system acts as a platform for auditory assessment instruments, facilitating immediate evaluation of recipients' post-mapping hearing and speech discrimination capabilities. Furthermore, the system is designed to augment the visual reinforcement audiometry (VRA) process. The system consists of six modules, including three testing projects: loudness testing, hearing threshold testing, and loudness balance testing; two assessment projects: warble tone testing and digit speech testing; and one VRA animation project. It also incorporates speech-to-text and text input display functions tailored to accommodate speech communication difficulties in hearing-impaired individuals, with pre-installed common exchange content between audiologists and recipients. Audiologists can input sentences by selecting options. The system supports switching between Chinese and English versions, suitable for audiologists and recipients who use English, facilitating international application of the system. Results: The Cochlear Implant Mapping Assistance System has been in use for over a year in the Auditory Implant Center of the Department of Otology and Neurotology, Medical Center of Otology and Head & Neck Surgery, Chinese PLA General Hospital, with more than 300 recipients using this mapping system. Currently, the system operates stably, with both audiologists and recipients providing positive feedback, indicating a significant improvement over previous methods. It is particularly well-received by pediatric recipients, significantly enhancing the work efficiency of audiologists and improving the feedback efficiency and accuracy of recipients. The system enhances the comprehensibility for cochlear implant recipients, improves wearing comfort and user experience, facilitates cochlear implant auditory mapping, and increases the collection of previously challenging-to-obtain data during the existing assisted mapping process, such as loudness testing data, electrical stimulation testing data, warble tone testing data, loudness balance testing data, digit speech testing data, and visual reinforcement audiometry testing data. Real-time data recording improves the accuracy of assisted mapping. The interface design is meticulously crafted to accommodate patients of varying ages and cognitive abilities, featuring an intuitive design that allows for effortless, guidance-free use by patients.Keywords: audiologist, subjective feedback, mapping, cochlear implant
Procedia PDF Downloads 246434 Clinical Validation of an Automated Natural Language Processing Algorithm for Finding COVID-19 Symptoms and Complications in Patient Notes
Authors: Karolina Wieczorek, Sophie Wiliams
Abstract:
Introduction: Patient data is often collected in Electronic Health Record Systems (EHR) for purposes such as providing care as well as reporting data. This information can be re-used to validate data models in clinical trials or in epidemiological studies. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. Mentioning a disease in a discharge letter does not necessarily mean that a patient suffers from this disease. Many of them discuss a diagnostic process, different tests, or discuss whether a patient has a certain disease. The COVID-19 dataset in this study used natural language processing (NLP), an automated algorithm which extracts information related to COVID-19 symptoms, complications, and medications prescribed within the hospital. Free-text patient clinical patient notes are rich sources of information which contain patient data not captured in a structured form, hence the use of named entity recognition (NER) to capture additional information. Methods: Patient data (discharge summary letters) were exported and screened by an algorithm to pick up relevant terms related to COVID-19. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. A list of 124 Systematized Nomenclature of Medicine (SNOMED) Clinical Terms has been provided in Excel with corresponding IDs. Two independent medical student researchers were provided with a dictionary of SNOMED list of terms to refer to when screening the notes. They worked on two separate datasets called "A” and "B”, respectively. Notes were screened to check if the correct term had been picked-up by the algorithm to ensure that negated terms were not picked up. Results: Its implementation in the hospital began on March 31, 2020, and the first EHR-derived extract was generated for use in an audit study on June 04, 2020. The dataset has contributed to large, priority clinical trials (including International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) by bulk upload to REDcap research databases) and local research and audit studies. Successful sharing of EHR-extracted datasets requires communicating the provenance and quality, including completeness and accuracy of this data. The results of the validation of the algorithm were the following: precision (0.907), recall (0.416), and F-score test (0.570). Percentage enhancement with NLP extracted terms compared to regular data extraction alone was low (0.3%) for relatively well-documented data such as previous medical history but higher (16.6%, 29.53%, 30.3%, 45.1%) for complications, presenting illness, chronic procedures, acute procedures respectively. Conclusions: This automated NLP algorithm is shown to be useful in facilitating patient data analysis and has the potential to be used in more large-scale clinical trials to assess potential study exclusion criteria for participants in the development of vaccines.Keywords: automated, algorithm, NLP, COVID-19
Procedia PDF Downloads 1046433 Three Dimensional Computational Fluid Dynamics Simulation of Wall Condensation inside Inclined Tubes
Authors: Amirhosein Moonesi Shabestary, Eckhard Krepper, Dirk Lucas
Abstract:
The current PhD project comprises CFD-modeling and simulation of condensation and heat transfer inside horizontal pipes. Condensation plays an important role in emergency cooling systems of reactors. The emergency cooling system consists of inclined horizontal pipes which are immersed in a tank of subcooled water. In the case of an accident the water level in the core is decreasing, steam comes in the emergency pipes, and due to the subcooled water around the pipe, this steam will start to condense. These horizontal pipes act as a strong heat sink which is responsible for a quick depressurization of the reactor core when any accident happens. This project is defined in order to model all these processes which happening in the emergency cooling systems. The most focus of the project is on detection of different morphologies such as annular flow, stratified flow, slug flow and plug flow. This project is an ongoing project which has been started 1 year ago in Helmholtz Zentrum Dresden Rossendorf (HZDR), Fluid Dynamics department. In HZDR most in cooperation with ANSYS different models are developed for modeling multiphase flows. Inhomogeneous MUSIG model considers the bubble size distribution and is used for modeling small-scaled dispersed gas phase. AIAD (Algebraic Interfacial Area Density Model) is developed for detection of the local morphology and corresponding switch between them. The recent model is GENTOP combines both concepts. GENTOP is able to simulate co-existing large-scaled (continuous) and small-scaled (polydispersed) structures. All these models are validated for adiabatic cases without any phase change. Therefore, the start point of the current PhD project is using the available models and trying to integrate phase transition and wall condensing models into them. In order to simplify the idea of condensation inside horizontal tubes, 3 steps have been defined. The first step is the investigation of condensation inside a horizontal tube by considering only direct contact condensation (DCC) and neglect wall condensation. Therefore, the inlet of the pipe is considered to be annular flow. In this step, AIAD model is used in order to detect the interface. The second step is the extension of the model to consider wall condensation as well which is closer to the reality. In this step, the inlet is pure steam, and due to the wall condensation, a liquid film occurs near the wall which leads to annular flow. The last step will be modeling of different morphologies which are occurring inside the tube during the condensation via using GENTOP model. By using GENTOP, the dispersed phase is able to be considered and simulated. Finally, the results of the simulations will be validated by experimental data which will be available also in HZDR.Keywords: wall condensation, direct contact condensation, AIAD model, morphology detection
Procedia PDF Downloads 3096432 The Role of Attachment Styles, Gender Schemas, Sexual Self Schemas, and Body Exposures During Sexual Activity in Sexual Function, Marital Satisfaction, and Sexual Self-Esteem
Authors: Hossein Shareh, Farhad Seifi
Abstract:
The present study was to examine the role of attachment styles, gender schemas, sexual-self schemas, and body image during sexual activity in sexual function, marital satisfaction, and sexual self-esteem. The sampling method was among married women who were living in Mashhad; a snowball selected 765 people. Questionnaires and measures of adult attachment style (AAS), Bem Sex Role Inventory (BSRI), sexual self-schema (SSS), body exposure during sexual activity questionnaire (BESAQ), sexual function female inventory (FSFI), a short form of sexual self-esteem (SSEI-W-SF) and marital satisfaction (Enrich) were completed by participants. Data analysis using Pearson correlation and hierarchical regression and case analysis was performed by SPSS-19 software. The results showed that there is a significant correlation (P <0.05) between attachment and sexual function (r=0.342), marital satisfaction (r=0.351) and sexual self-esteem (r =0.292). A correlation (P <0.05) was observed between sexual schema (r=0.342) and sexual esteem (r=0.31). A meaningful correlation (P <0.05) exists between gender stereotypes and sexual function (r=0.352). There was a significant inverse correlation (P <0.05) between body image and their performance during sexual activity (r=0.41). There is no significant relationship between gender schemas, sexual schemas, body image, and marital satisfaction, and no relation was found between gender schemas, body image, and sexual self-esteem. Also, the result of the regression showed that attachment styles, gender schemas, sexual self- schemas, and body exposures during sexual activity are predictable in sexual function, and marital satisfaction can be predicted by attachment style and gender schema. Somewhat, sexual self-esteem can be expected by attachment style and gender schemas.Keywords: attachment styles, gender and sexual schemas, body image, sexual function, marital satisfaction, sexual self-esteem
Procedia PDF Downloads 476431 Analyzing How Working From Home Can Lead to Higher Job Satisfaction for Employees Who Have Care Responsibilities Using Structural Equation Modeling
Authors: Christian Louis Kühner, Florian Pfeffel, Valentin Nickolai
Abstract:
Taking care of children, dependents, or pets can be a difficult and time-consuming task. Especially for part- and full-time employees, it can feel exhausting and overwhelming to meet these obligations besides working a job. Thus, working mostly at home and not having to drive to the company can save valuable time and stress. This study aims to show the influence that the working model has on the job satisfaction of employees with care responsibilities in comparison to employees who do not have such obligations. Using structural equation modeling (SEM), the three work models, “work from home”, “working remotely”, and a hybrid model, have been analyzed based on 13 influencing constructs on job satisfaction. These 13 factors have been further summarized into three groups “classic influencing factors”, “influencing factors changed by remote working”, and “new remote working influencing factors”. Based on the influencing factors on job satisfaction, an online survey was conducted with n = 684 employees from the service sector. Here, Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. In addition, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). The SEM-analysis has shown that the most significant influencing factor on job satisfaction is “identification with the work” with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis shows that the identification with the work is the most significant factor in all three work models and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that among the employees with care responsibilities, the higher the proportion of working from home in comparison to working from the office, the more satisfied the employees are with their job. Since the work models that meet the requirements of comprehensive care led to higher job satisfaction amongst employees with such obligations, adapting as a company to such private obligations by employees can be crucial to sustained success. Conversely, the satisfaction level of the working model where employees work at the office is higher for workers without caregiving responsibilities.Keywords: care responsibilities, home office, job satisfaction, structural equation modeling
Procedia PDF Downloads 876430 The Utilization of FSI Technique and Two-Way Particle Coupling System on Particle Dynamics in the Human Alveoli
Authors: Hassan Athari, Abdurrahim Bolukbasi, Dogan Ciloglu
Abstract:
This study represented the respiratory alveoli system, and determined the trajectory of inhaled particles more accurately using the modified three-dimensional model with deformable walls of alveoli. The study also considered the tissue tension in the model to demonstrate the effect of lung. Tissue tensions are transferred by the lung parenchyma and produce the pressure gradient. This load expands the alveoli and establishes a sub-ambient (vacuum) pressure within the lungs. Thus, at the alveolar level, the flow field and movement of alveoli wall lead to an integrated effect. In this research, we assume that the three-dimensional alveolus has a visco-elastic tissue (walls). For accurate investigation of pulmonary tissue mechanical properties on particle transport and alveolar flow field, the actual relevance between tissue movement and airflow is solved by two-way FSI (Fluid Structure Interaction) simulation technique in the alveolus. Therefore, the essence of real simulation of pulmonary breathing mechanics can be achieved by developing a coupled FSI computational model. We, therefore conduct a series of FSI simulations over a range of tissue models and breathing rates. As a result, the fluid flows and streamlines have changed during present flexible model against the rigid models and also the two-way coupling particle trajectories have changed against the one-way particle coupling.Keywords: FSI, two-way particle coupling, alveoli, CDF
Procedia PDF Downloads 2636429 A Study on Children's Literature for Multiracial Asian American Children
Authors: Kaori Mori Want
Abstract:
American society is a racially diverse society and there are children books that tell the importance of respecting racial differences. Through reading books, children understand the world around them little by little along with their direct interaction with the world in reality. They find role models in books, strive to be like role models, and grow confidence in who they are. Books thus nurture the mind of children. On the other hand, because of their small presence, children books for multiracial Asian American children are scarce. Multiracial Asian American population is increasing but they are still minority in number. The lack of children’s books for these children may deprive the opportunities of them to embrace their multiraciality positively because they cannot find someone like them in any books. Children books for multiracial Asian American are still not that many, but a few have been being published recently. This paper introduces children books for multiracial Asian American children, and examines how they address issues pertaining to these children, and how they could nurture their self-esteem. Many states of the US used to ban interracial marriages and interracial families and their children once were discriminated against in American society. There was even a theory called the hybrid degeneracy theory which claimed that mixed race children were inferior mentally and physically. In this negative social environment, some multiracial Asian American people report that they had trouble embracing their multiracial identity positively. Yet, children books for these children are full of positive messages. This paper will argue the importance of children books for the mental growth of multiracial Asian American children, and how these books can contribute to the development of multiculturalism in the US in general.Keywords: critical mixed race studies in the US, hapa children literature, interracial marriage, multiraciality
Procedia PDF Downloads 3646428 Optimize Study and Optical Characterization of Bilayer Structures from Silicon Nitride
Authors: Beddiaf Abdelaziz
Abstract:
The optical characteristics of thin films of silicon oxynitride SiOₓNy prepared by the Low-Pressure Chemical Vapor Deposition (LPCVD) technique have been studied. The films are elaborated from the SiH₂Cl₂, N₂O and NH₃ gaseous mixtures. The flows of SiH₂Cl₂ and (N₂O+NH₃) are 200 sccm and 160 sccm respectively. The deposited films have been characterized by ellipsometry, to model our silicon oxynitride SiOₓNy films. We have suggested two theoretical models (Maxwell Garnett and Bruggeman effective medium approximation (BEMA)). These models have been applied on silicon oxynitride considering the material as a heterogeneous medium formed by silicon oxide and silicon nitride. The model's validation was justified by the confrontation of theoretical spectra and those measured by ellipsometry. This result permits us to obtain the optical refractive coefficient of these films and their thickness. Ellipsometry analysis of the optical properties of the SiOₓNy films shows that the SiO₂ fraction decreases when the gaseous ratio NH₃/N₂O increases. Whereas the increase of this ratio leads to an increase of the silicon nitride Si3N4 fraction. The study also shows that the increasing gaseous ratio leads to a strong incorporation of nitrogen atoms in films. Also, the increasing of the SiOₓNy refractive coefficient until the SiO₂ value shows that this insulating material has good dielectric quality.Keywords: ellipsometry, silicon oxynitrde, model, refractive coefficient, effective medium
Procedia PDF Downloads 256427 Air Pollution and Respiratory-Related Restricted Activity Days in Tunisia
Authors: Mokhtar Kouki Inès Rekik
Abstract:
This paper focuses on the assessment of the air pollution and morbidity relationship in Tunisia. Air pollution is measured by ozone air concentration and the morbidity is measured by the number of respiratory-related restricted activity days during the 2-week period prior to the interview. Socioeconomic data are also collected in order to adjust for any confounding covariates. Our sample is composed by 407 Tunisian respondents; 44.7% are women, the average age is 35.2, near 69% are living in a house built after the 1980, and 27.8% have reported at least one day of respiratory-related restricted activity. The model consists on the regression of the number of respiratory-related restricted activity days on the air quality measure and the socioeconomic covariates. In order to correct for zero-inflation and heterogeneity, we estimate several models (Poisson, Negative binomial, Zero inflated Poisson, Poisson hurdle, Negative binomial hurdle and finite mixture Poisson models). Bootstrapping and post-stratification techniques are used in order to correct for any sample bias. According to the Akaike information criteria, the hurdle negative binomial model has the greatest goodness of fit. The main result indicates that, after adjusting for socioeconomic data, the ozone concentration increases the probability of positive number of restricted activity days.Keywords: bootstrapping, hurdle negbin model, overdispersion, ozone concentration, respiratory-related restricted activity days
Procedia PDF Downloads 2616426 Biosorption of Metal Ions from Sarcheshmeh Acid Mine Drainage by Immobilized Bacillus thuringiensis in a Fixed-Bed Column
Authors: V. Khosravi, F. D. Ardejani, A. Aryafar, M. Sedighi
Abstract:
Heavy metals have a damaging impact for the environment, animals and humans due to their extreme toxicity and removing them from wastewaters is a very important and interesting task in the field of water pollution control. Biosorption is a relatively new method for treatment of wastewaters and recovery of heavy metals. In this study, a continuous fixed bed study was carried out by using Bacillus thuringiensis as a biosorbent for the removal of Cu and Mn ions from Sarcheshmeh Acid Mine Drainage (AMD). The effect of operating parameters such as flow rate and bed height on the sorption characteristics of B. thuringiensis was investigated at pH 6.0 for each metal ion. The experimental results showed that the breakthrough time decreased with increasing flow rate and decreasing bed height. The data also indicated that the equilibrium uptake of both metals increased with decreasing flow rate and increasing bed height. BDST, Thomas, and Yoon–Nelson models were applied to experimental data to predict the breakthrough curves. All models were found suitable for describing the whole dynamic behavior of the column with respect to flow rate and bed height. In order to regenerate the adsorbent, an elution step was carried out with 1 M HCl and five adsorption-desorption cycles were carried out in continuous manner.Keywords: acid mine drainage, bacillus thuringiensis, biosorption, cu and mn ions, fixed bed
Procedia PDF Downloads 4086425 Optimization of the Fabrication Process for Particleboards Made from Oil Palm Fronds Blended with Empty Fruit Bunch Using Response Surface Methodology
Authors: Ghazi Faisal Najmuldeen, Wahida Amat-Fadzil, Zulkafli Hassan, Jinan B. Al-Dabbagh
Abstract:
The objective of this study was to evaluate the optimum fabrication process variables to produce particleboards from oil palm fronds (OPF) particles and empty fruit bunch fiber (EFB). Response surface methodology was employed to analyse the effect of hot press temperature (150–190°C); press time (3–7 minutes) and EFB blending ratio (0–40%) on particleboards modulus of rupture, modulus of elasticity, internal bonding, water absorption and thickness swelling. A Box-Behnken experimental design was carried out to develop statistical models used for the optimisation of the fabrication process variables. All factors were found to be statistically significant on particleboards properties. The statistical analysis indicated that all models showed significant fit with experimental results. The optimum particleboards properties were obtained at optimal fabrication process condition; press temperature; 186°C, press time; 5.7 min and EFB / OPF ratio; 30.4%. Incorporating of oil palm frond and empty fruit bunch to produce particleboards has improved the particleboards properties. The OPF–EFB particleboards fabricated at optimized conditions have satisfied the ANSI A208.1–1999 specification for general purpose particleboards.Keywords: empty fruit bunch fiber, oil palm fronds, particleboards, response surface methodology
Procedia PDF Downloads 2346424 Introduction of Artificial Intelligence for Estimating Fractal Dimension and Its Applications in the Medical Field
Authors: Zerroug Abdelhamid, Danielle Chassoux
Abstract:
Various models are given to simulate homogeneous or heterogeneous cancerous tumors and extract in each case the boundary. The fractal dimension is then estimated by least squares method and compared to some previous methods.Keywords: simulation, cancerous tumor, Markov fields, fractal dimension, extraction, recovering
Procedia PDF Downloads 3686423 Organizational Resilience in the Perspective of Supply Chain Risk Management: A Scholarly Network Analysis
Authors: William Ho, Agus Wicaksana
Abstract:
Anecdotal evidence in the last decade shows that the occurrence of disruptive events and uncertainties in the supply chain is increasing. The coupling of these events with the nature of an increasingly complex and interdependent business environment leads to devastating impacts that quickly propagate within and across organizations. For example, the recent COVID-19 pandemic increased the global supply chain disruption frequency by at least 20% in 2020 and is projected to have an accumulative cost of $13.8 trillion by 2024. This crisis raises attention to organizational resilience to weather business uncertainty. However, the concept has been criticized for being vague and lacking a consistent definition, thus reducing the significance of the concept for practice and research. This study is intended to solve that issue by providing a comprehensive review of the conceptualization, measurement, and antecedents of operational resilience that have been discussed in the supply chain risk management literature (SCRM). We performed a Scholarly Network Analysis, combining citation-based and text-based approaches, on 252 articles published from 2000 to 2021 in top-tier journals based on three parameters: AJG ranking and ABS ranking, UT Dallas and FT50 list, and editorial board review. We utilized a hybrid scholarly network analysis by combining citation-based and text-based approaches to understand the conceptualization, measurement, and antecedents of operational resilience in the SCRM literature. Specifically, we employed a Bibliographic Coupling Analysis in the research cluster formation stage and a Co-words Analysis in the research cluster interpretation and analysis stage. Our analysis reveals three major research clusters of resilience research in the SCRM literature, namely (1) supply chain network design and optimization, (2) organizational capabilities, and (3) digital technologies. We portray the research process in the last two decades in terms of the exemplar studies, problems studied, commonly used approaches and theories, and solutions provided in each cluster. We then provide a conceptual framework on the conceptualization and antecedents of resilience based on studies in these clusters and highlight potential areas that need to be studied further. Finally, we leverage the concept of abnormal operating performance to propose a new measurement strategy for resilience. This measurement overcomes the limitation of most current measurements that are event-dependent and focus on the resistance or recovery stage - without capturing the growth stage. In conclusion, this study provides a robust literature review through a scholarly network analysis that increases the completeness and accuracy of research cluster identification and analysis to understand conceptualization, antecedents, and measurement of resilience. It also enables us to perform a comprehensive review of resilience research in SCRM literature by including research articles published during the pandemic and connects this development with a plethora of articles published in the last two decades. From the managerial perspective, this study provides practitioners with clarity on the conceptualization and critical success factors of firm resilience from the SCRM perspective.Keywords: supply chain risk management, organizational resilience, scholarly network analysis, systematic literature review
Procedia PDF Downloads 796422 Magnification Factor Based Seismic Response of Moment Resisting Frames with Open Ground Storey
Authors: Subzar Ahmad Bhat, Saraswati Setia, V. K.Sehgal
Abstract:
During the past earthquakes, open ground storey buildings have performed poorly due to the soft storey defect. Indian Standard IS 1893:2002 allows analysis of open ground storey buildings without considering infill stiffness but with a multiplication factor 2.5 in compensation for the stiffness discontinuity. Therefore, the aim of this paper is to check the applicability of the multiplication factor of 2.5 and study behaviour of the structure after the application of the multiplication factor. For this purpose, study is performed on models considering infill stiffness using SAP 2000 (Version 14) by linear static analysis and response spectrum analysis. Total seven models are analysed and designed for the range of multiplication factor ranging from 1.25 to 2.5. The value of multiplication factor equal to 2.5 has been found on the higher side, resulting in increased dimension and percentage of reinforcement without significant enhancement beyond a certain multiplication factor. When the building with OGS is designed for values of MF higher than 1.25 considering infill stiffness soft storey effect shifts from ground storey to first storey. For the analysis of the OGS structure best way to analysis the structure is to analyse it as the frame with stiffness and strength of the infill taken into account. The provision of infill walls in the upper storeys enhances the performance of the structure in terms of displacement and storey drift controls.Keywords: open ground storey, multiplication factor, IS 1893:2002 provisions, static analysis, response spectrum analysis, infill stiffness, equivalent strut
Procedia PDF Downloads 3976421 Multiscale Modeling of Damage in Textile Composites
Authors: Jaan-Willem Simon, Bertram Stier, Brett Bednarcyk, Evan Pineda, Stefanie Reese
Abstract:
Textile composites, in which the reinforcing fibers are woven or braided, have become very popular in numerous applications in aerospace, automotive, and maritime industry. These textile composites are advantageous due to their ease of manufacture, damage tolerance, and relatively low cost. However, physics-based modeling of the mechanical behavior of textile composites is challenging. Compared to their unidirectional counterparts, textile composites introduce additional geometric complexities, which cause significant local stress and strain concentrations. Since these internal concentrations are primary drivers of nonlinearity, damage, and failure within textile composites, they must be taken into account in order for the models to be predictive. The macro-scale approach to modeling textile-reinforced composites treats the whole composite as an effective, homogenized material. This approach is very computationally efficient, but it cannot be considered predictive beyond the elastic regime because the complex microstructural geometry is not considered. Further, this approach can, at best, offer a phenomenological treatment of nonlinear deformation and failure. In contrast, the mesoscale approach to modeling textile composites explicitly considers the internal geometry of the reinforcing tows, and thus, their interaction, and the effects of their curved paths can be modeled. The tows are treated as effective (homogenized) materials, requiring the use of anisotropic material models to capture their behavior. Finally, the micro-scale approach goes one level lower, modeling the individual filaments that constitute the tows. This paper will compare meso- and micro-scale approaches to modeling the deformation, damage, and failure of textile-reinforced polymer matrix composites. For the mesoscale approach, the woven composite architecture will be modeled using the finite element method, and an anisotropic damage model for the tows will be employed to capture the local nonlinear behavior. For the micro-scale, two different models will be used, the one being based on the finite element method, whereas the other one makes use of an embedded semi-analytical approach. The goal will be the comparison and evaluation of these approaches to modeling textile-reinforced composites in terms of accuracy, efficiency, and utility.Keywords: multiscale modeling, continuum damage model, damage interaction, textile composites
Procedia PDF Downloads 3586420 Investigating the Impact of Job-Related and Organisational Factors on Employee Engagement: An Emotionally Relevant Approach Based on Psychological Climate and Organisational Emotional Intelligence (OEI)
Authors: Nuno Da Camara, Victor Dulewicz, Malcolm Higgs
Abstract:
Factors on employee engagement: In particular, although theorists have described the critical role of emotional cognition of the workplace environment as antecedents to employee engagement, empirical research on the impact of emotional cognition on employee engagement is limited. However, previous researchers have typically provided evidence of the link between emotional cognition of the workplace environment and workplace attitudes such as job satisfaction and organisational commitment. This study therefore aims to investigate the impact of emotional cognition of job, role, leader and organisation domains of the work environment – as represented by measures of psychological climate and organizational emotional intelligence (OEI) - on employee engagement. The research is based on a quantitative cross-sectional survey of employees in a UK charity organization (n=174). The research instruments applied include the psychological climate scale, the organisational emotional intelligence questionnaire (OEIQ) and the Utrecht Work Engagement Scale (UWES). The data were analysed using hierarchical regression and partial least squares (PLS) analytical techniques. The results of the study show that both psychological climate and OEI, which represent emotional cognition of job, role, leader and organisation domains in the workplace are significant drivers of employee engagement. In particular, the study found that a sense of contribution and challenge at work are the strongest drivers of vigour, dedication and absorption and highlights the importance of emotionally relevant approaches in furthering our understanding of workplace engagement.Keywords: employee engagement, organisational emotional intelligence, psychological climate, workplace attitudes
Procedia PDF Downloads 5076419 Knowledge Creation Environment in the Iranian Universities: A Case Study
Authors: Mahdi Shaghaghi, Amir Ghaebi, Fariba Ahmadi
Abstract:
Purpose: The main purpose of the present research is to analyze the knowledge creation environment at a Iranian University (Alzahra University) as a typical University in Iran, using a combination of the i-System and Ba models. This study is necessary for understanding the determinants of knowledge creation at Alzahra University as a typical University in Iran. Methodology: To carry out the present research, which is an applied study in terms of purpose, a descriptive survey method was used. In this study, a combination of the i-System and Ba models has been used to analyze the knowledge creation environment at Alzahra University. i-System consists of 5 constructs including intervention (input), intelligence (process), involvement (process), imagination (process), and integration (output). The Ba environment has three pillars, namely the infrastructure, the agent, and the information. The integration of these two models resulted in 11 constructs which were as follows: intervention (input), infrastructure-intelligence, agent-intelligence, information-intelligence (process); infrastructure-involvement, agent-involvement, information-involvement (process); infrastructure-imagination, agent-imagination, information-imagination (process); and integration (output). These 11 constructs were incorporated into a 52-statement questionnaire and the validity and reliability of the questionnaire were examined and confirmed. The statistical population included the faculty members of Alzahra University (344 people). A total of 181 participants were selected through the stratified random sampling technique. The descriptive statistics, binomial test, regression analysis, and structural equation modeling (SEM) methods were also utilized to analyze the data. Findings: The research findings indicated that among the 11 research constructs, the levels of intervention, information-intelligence, infrastructure-involvement, and agent-imagination constructs were average and not acceptable. The levels of infrastructure-intelligence and information-imagination constructs ranged from average to low. The levels of agent-intelligence and information-involvement constructs were also completely average. The level of infrastructure-imagination construct was average to high and thus was considered acceptable. The levels of agent-involvement and integration constructs were above average and were in a highly acceptable condition. Furthermore, the regression analysis results indicated that only two constructs, viz. the information-imagination and agent-involvement constructs, positively and significantly correlate with the integration construct. The results of the structural equation modeling also revealed that the intervention, intelligence, and involvement constructs are related to the integration construct with the complete mediation of imagination. Discussion and conclusion: The present research suggests that knowledge creation at Alzahra University relatively complies with the combination of the i-System and Ba models. Unlike this model, the intervention, intelligence, and involvement constructs are not directly related to the integration construct and this seems to have three implications: 1) the information sources are not frequently used to assess and identify the research biases; 2) problem finding is probably of less concern at the end of studies and at the time of assessment and validation; 3) the involvement of others has a smaller role in the summarization, assessment, and validation of the research.Keywords: i-System, Ba model , knowledge creation , knowledge management, knowledge creation environment, Iranian Universities
Procedia PDF Downloads 1066418 Development of Work Breakdown Structure for EVMS in South Korea
Authors: Dong-Ho Kim, Su-Sang Lim, Sang-Won Han, Chang-Taek Hyun
Abstract:
In the construction site, the cost and schedules are the most important management elements. Despite efforts to integrated management the cost and schedule, WBS classification is struggling to differ from each other. The cost and schedule can be integrated and can be managed due to the characteristic of the detail system in the case of Korea around the axis of pressure and official fixture system. In this research, the Work Breakdown Structure (WBS) integrating the cost and schedules around in government office construction, WBS which can be used in common was presented in order to analyze the detail system of the public institution construction and improve. As to this method, the efficient administration of not only the link application of the cost and schedule but also construction project is expected.Keywords: WBS, EVMS, integrated cost and schedule, Korea case
Procedia PDF Downloads 3886417 Early Prediction of Cognitive Impairment in Adults Aged 20 Years and Older using Machine Learning and Biomarkers of Heavy Metal Exposure
Authors: Ali Nabavi, Farimah Safari, Mohammad Kashkooli, Sara Sadat Nabavizadeh, Hossein Molavi Vardanjani
Abstract:
Cognitive impairment presents a significant and increasing health concern as populations age. Environmental risk factors such as heavy metal exposure are suspected contributors, but their specific roles remain incompletely understood. Machine learning offers a promising approach to integrate multi-factorial data and improve the prediction of cognitive outcomes. This study aimed to develop and validate machine learning models to predict early risk of cognitive impairment by incorporating demographic, clinical, and biomarker data, including measures of heavy metal exposure. A retrospective analysis was conducted using 2011-2014 National Health and Nutrition Examination Survey (NHANES) data. The dataset included participants aged 20 years and older who underwent cognitive testing. Variables encompassed demographic information, medical history, lifestyle factors, and biomarkers such as blood and urine levels of lead, cadmium, manganese, and other metals. Machine learning algorithms were trained on 90% of the data and evaluated on the remaining 10%, with performance assessed through metrics such as accuracy, area under curve (AUC), and sensitivity. Analysis included 2,933 participants. The stacking ensemble model demonstrated the highest predictive performance, achieving an AUC of 0.778 and a sensitivity of 0.879 on the test dataset. Key predictors included age, gender, hypertension, education level, urinary cadmium, and blood manganese levels. The findings indicate that machine learning can effectively predict the risk of cognitive impairment using a comprehensive set of clinical and environmental exposure data. Incorporating biomarkers of heavy metal exposure improved prediction accuracy and highlighted the role of environmental factors in cognitive decline. Further prospective studies are recommended to validate the models and assess their utility over time.Keywords: cognitive impairment, heavy metal exposure, predictive models, aging
Procedia PDF Downloads 8