Search results for: product water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11921

Search results for: product water

8261 Evaluating the Factors That Influence Caries Reduction During Pregnancy

Authors: Mimoza Canga, Irene Malagnino, Vergjini Mulo, Alketa Qafmolla, Vito Antonio Malagnino

Abstract:

Background: Dental caries is the most common dental disease and pregnancy represents a special process of physical, hormonal and metabolic changes in pregnant women, which is accompanied by an imbalance in the oral cavity. Objective: The objective of this study is to evaluate caries reduction after dental visits, the scaling of teeth, fluoridated water, brushing of the teeth and using fluoride toothpaste before and during pregnancy. Materials and methods: This study was conducted in the time period March 2018- September 2021, the age range of the participants was: 18-41 years old. The sample taken under observation was composed of 84 pregnant women. The questionnaire included the demographic characteristics of the sample, such as age, women's education level was primary, secondary, and higher education. Based on women's education level, our analysis found that 25.9% of pregnant women had completed primary education, 35.2% of them had secondary education and 38.9% of pregnant women had higher education. The descriptive and analytical research analysis is formulated as a longitudinal study. Statistical analysis was performed using IBM SPSS Statistics 23.0. The significance level (α) was set at 0.05, whereas P-value and analysis of variance (ANOVA) were used to analyze the data. Results: In the present study, it was observed that there is a strong relationship between dental visits and the scaling of the teeth with the value of P˂ .0001. While the number of teeth with caries before pregnancy and fluoridated water have a P-value=0.002. If we compare the same factor with the number of teeth with dental caries during pregnancy, the correlation is P-value = 0.0001. The number of teeth with caries before pregnancy and carbohydrates consumption has a strong relation with P-value=0.05. According to the present research, the number of teeth with dental caries before pregnancy in relation to brushing the teeth has a P-value ˂ 0.05. Furthermore, in the actual research, it was established that using fluoride toothpaste doesn’t affect the number of teeth with caries before pregnancy with a P-value= .314. Conclusion: According to the results of the present study performed in Albania, it was found out that the periodical dental visits, scaling of the teeth, fluoridated water, brushing of the teeth influenced caries reduction before and during pregnancy. In comparison, the usage of fluoride toothpaste did not have any effect on dental caries reduction in the same time period. The recommendations are as follows: maintaining oral hygiene, using fluoridated water and brushing the teeth regularly. Healthcare providers should inform pregnant women about the importance of oral health and the implementation of measures to manage dental caries.

Keywords: brushing of the teeth, dental visits, dental scaling, fluoridated water, pregnancy

Procedia PDF Downloads 194
8260 The Project Evaluation to Develop the Competencies, Capabilities, and Skills in Repairing Computers of People in Jompluak Local Municipality, Bang Khonthi District, Samut Songkram Province

Authors: Wilailuk Meepracha

Abstract:

The results of the study on the project evaluation to develop the competencies, capabilities, and skills in repairing computers of people in Jompluak Local Municipality, Bang Khonthi District, Samut Songkram Province showed that the overall result was good (4.33). When considering on each aspect, it was found that the highest one was on process evaluation (4.60) followed by product evaluation (4.50) and the least one was on feeding factor (3.97). When considering in details, it was found that: 1) the context aspect was high (4.23) with the highest item on the arrangement of the training situation (4.67) followed by the appropriateness of the target (4.30) and the least aspect was on the project cooperation (3.73). 2) The evaluation of average overall primary factor or feeding factor showed high value (4.23) while the highest aspect was on the capability of the trainers (4.47) followed by the suitable venue (4.33) while the least aspect was on the insufficient budget (3.47). 3) The average result of process evaluation was very high (4.60). The highest aspect was on the follow-op supervision (4.70) followed by responsibility of each project staffs (4.50) while the least aspect was on the present situation and the problems of the community (4.40). 4) The overall result of the product evaluation was very high (4.50). The highest aspect was on the diversity of the activities and the community integration (4.67) followed by project target achievement (4.63) while the least aspect was on continuation and regularity of the activities (4.33). The trainees reported high satisfaction on the project management at very high level (43.33%) while 40% reported high level and 16.67% reported moderate level. Suggestions for the project were on the additional number of the computer sets (37.78%) followed by longer training period especially on computer skills (43.48%).

Keywords: project evaluation, competency development, the capability on computer repairing and computer skills

Procedia PDF Downloads 303
8259 Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM

Authors: S. Mahdi S. Kolbadi, Ramezan Ali Alvand, Afrasiab Mirzaei

Abstract:

In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses.

Keywords: dynamic behavior, flexible wall, fluid-structure interaction, water storage tank

Procedia PDF Downloads 185
8258 Phosphate Sludge Ceramics: Effects of Firing Cycle Parameters on Technological Properties and Ceramic Suitability

Authors: Mohamed Loutou, Mohamed Hajjaji, Mohamed Ait Babram, Mohammed Mansori, Rachid Hakkou, Claude Favotto

Abstract:

More than 26,4 million tons of phosphates are produced by the phosphates industries in Morocco (2010), generating huge amounts of sludge by flocculation during the ore beneficiation. They way are stored at the end of the process in open air ponds. Its accumulation and storage may have an impact on several scales such as ground water and human being. For this purpose, an efficient way to use it the field of the ceramic is proposed. The as received sludge and a clay-rich sediment have been studied in terms of chemical, mineralogical and micro-structural side using various analytical methods. Several formulations have been performed by mixing the sludge with the binder shaped in the form of granules. After being dried at 105 °C, the samples were heated in the range of 900-1200 °C. As well as the ceramic properties (firing shrinkage, water absorption, total porosity and compressive strength) the micro structure has been investigated using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The relations between properties and the operating factors were formulated using the design of experiments (DOE). Gehlenite was the only phase neo-formed in the sintering samples. SEM micrographs revealed the presence of nano metric stains. Based on RSM results, all factors had positive effects on Firing shrinkage, compressive strength and total porosity. However, they manifested opposite effects on density and water absorption.

Keywords: phosphate sludge, clay, ceramic properties, granule

Procedia PDF Downloads 505
8257 Gethuk Marillo: The New Product Development of Anti-Cancer Snacks Utilizing Xanthones and Anthocyanin in Mangosteen Pericarp and Tamarillo Fruit

Authors: Desi Meriyanti, Delina Puspa Rosana Firdaus, Ristia Rinati

Abstract:

Nowadays, the presence of free radicals become a big concern due to its negative impact to the body, which can triggers the formation of degenerative diseases such as cancer, heart disease cardiovascular, diabetic mellitus and others. Free radical oxidation can be prevented by the presence of antioxidants. Naturally, the human body produces its own antioxidants. Because of the free radicals exposure are so intense, especially from the environment, it is necessary to supply antioxidants needed from outside, through the consumption of functional foods with high antioxidant content. Gethuk is one of the traditional snacks in Indonesia. Gethuk is made from cassava with minimal processing such as boiling, destructing, and forming. Gethuk is classified as a familiar snack in the community, so it has a potential for developing, especially into a functional food. The low content of antioxidants in gethuk can be overcome with the development of a product called Gethuk Marillo. Gethuk Marillo is gethuk with the addition of natural antioxidants from mangosteen pericarp extract which has a high content of xanthones, these compounds are classified into flavonoids and act as antioxidants in the body. Gethuk Marillo served along with tamarillo fruit sauce which is also high in antioxidants such as anthocyanin. The combination between 300 grams gethuk Marillo and sauce contain flavonoid about 31% of human antioxidant needs per day. Gethuk Marillo called as a functional food because of high flavonoids content which can prevent degenerative diseases namely cancer, as many studies that the xanthone and anthocyanins compounds can effectively prevent the formation of cancer cells in human body.

Keywords: Gethuk marillo, xanthones, anthocyanin, high antioxidants, anti-cancer

Procedia PDF Downloads 655
8256 Fashion Appropriation: A Study in Awareness of Crossing Cultural Boundaries in Design

Authors: Anahita Suri

Abstract:

Myriad cultures form the warp and weft of the fabric of this world. The last century saw mass migration of people across geographical boundaries, owing to industrialization and globalization. These people took with them their cultures, costumes, traditions, and folklore, which mingled with the local cultures to create something new and place it in a different context to make it contemporary. With the surge in population and growth of the fashion industry, there has been an increasing demand for innovative and individual fashion, from street markets to luxury brands. Exhausted by local influences, designers take inspiration from the so called ‘low’ culture and create artistic products, place it in a different context, and the end-product is categorized as ‘high’ culture. It is challenging as to why a design/culture is ‘high’ or ‘low’. Who decides which works, practices, activities, etc., are ‘high’ and which are ‘low’? The justification for this distinction is often found not in the design itself but the context attached to it. Also, the concept of high/ low is relative to time- what is ‘high’ today can be ‘low’ tomorrow and ‘high’ again the day after. This raises certain concerns. Firstly, it is sad that a culture which offers inspiration is looked down upon as ‘low’ culture. Secondly, it is ironic because the so designated ‘high’ culture is a manipulation of the truth from the authentic ‘low’ culture, which is capable of true expression. When you borrow from a different culture, you pretend to be authentic because you actually are not. Finally, it is important to be aware of crossing cultural boundaries and the context attached to a design/product so as to use it a responsible way that communicates the design without offending anyone. Is it ok for a person’s cultural identity to become another person’s fashion accessory? This essay explores the complex, multi-layered subject of fashion appropriation and aims to provoke debate over cultural ‘borrowing’ and create awareness that commodification of cultural symbols and iconography in fashion is inappropriate and offensive and not the same as ‘celebrating cultural differences’.

Keywords: context, culture, fashion appropriation, inoffensive, responsible

Procedia PDF Downloads 124
8255 Study on Horizontal Ecological Compensation Mechanism in Yangtze River Economic Belt Basin: Based on Evolutionary Game Analysis and Water Quality and Quantity Model

Authors: Tingyu Zhang

Abstract:

The horizontal ecological compensation (HEC) mechanism is the key to stimulating the active participation of the whole basin in ecological protection. In this paper, we construct an evolutionary model for HEC in the Yangtze River Economic Belt (YREB) basin with the introduction of the central government constraint and incentive mechanism (CGCIM) and explore the conditions for the realization of a (Protection and compensation) strategy that meets the social expectations. Further, the water quality-water quantity model is utilized to measure the HEC amount with the characteristic factual data of the YREB in 2020-2022. The results show that the stability of the evolutionary game model of upstream and downstream governments in the YREB is closely related to the CGCIM. If (Protection Compensation) is to be realized as the only evolutionary stable strategy of the evolutionary game system composed of upstream and downstream governments, it is necessary for the CGCIM to satisfy that the sum of the incentives for the protection side and its unilateral or bilateral constraints is greater than twice the input cost of the active strategy, and the sum of the incentives for the compensation side and its unilateral or bilateral constraints is greater than the amount of ecological compensation that needs to be paid by it when it adopts the active strategy. At this point, the total amount of HEC that the downstream government should give to the upstream government of the YREB is 2856.7 million yuan in 2020, 5782.1 million yuan in 2021, and 23166.7 million yuan in 2022. The results of the study can provide a reference for promoting the improvement and refinement of the HEC mechanism in the YREB.

Keywords: horizontal ecological compensation, Yangtze river economic belt, evolutionary game analysis, water quality and quantity model research on territorial ecological restoration in Mianzhu city, Sichuan, under the dual evaluation framework

Procedia PDF Downloads 49
8254 Green Supply Chain Network Optimization with Internet of Things

Authors: Sema Kayapinar, Ismail Karaoglan, Turan Paksoy, Hadi Gokcen

Abstract:

Green Supply Chain Management is gaining growing interest among researchers and supply chain management. The concept of Green Supply Chain Management is to integrate environmental thinking into the Supply Chain Management. It is the systematic concept emphasis on environmental problems such as reduction of greenhouse gas emissions, energy efficiency, recycling end of life products, generation of solid and hazardous waste. This study is to present a green supply chain network model integrated Internet of Things applications. Internet of Things provides to get precise and accurate information of end-of-life product with sensors and systems devices. The forward direction consists of suppliers, plants, distributions centres and sales and collect centres while, the reverse flow includes the sales and collects centres, disassembled centre, recycling and disposal centre. The sales and collection centre sells the new products are transhipped from factory via distribution centre and also receive the end-of life product according their value level. We describe green logistics activities by presenting specific examples including “recycling of the returned products and “reduction of CO2 gas emissions”. The different transportation choices are illustrated between echelons according to their CO2 gas emissions. This problem is formulated as a mixed integer linear programming model to solve the green supply chain problems which are emerged from the environmental awareness and responsibilities. This model is solved by using Gams package program. Numerical examples are suggested to illustrate the efficiency of the proposed model.

Keywords: green supply chain optimization, internet of things, greenhouse gas emission, recycling

Procedia PDF Downloads 328
8253 Hygrothermal Performance of Sheep Wool in Cold and Humid Climates

Authors: Yuchen Chen, Dehong Li, Bin Li, Denis Rodrigue, Xiaodong (Alice) Wang

Abstract:

When selecting insulation materials, not only should their thermal efficiency be considered, but also their impact on the environment. Compared to conventional insulation materials, bio-based materials not only have comparable thermal performance, but they also have a lower embodied energy. Sheep wool has the advantages of low negative health impact, high fire resistance, eco-friendliness, and high moisture resistance. However, studies on applying sheep wool insulation in cold and humid climates are still insufficient. The purpose of this study is to simulate the hygrothermal performance of sheep wool insulation for the Quebec City climate, as well as analyze the mold growth risks. The results show that a sheep wool wall has better thermal performance than a reference wall and that both meet the minimum requirements of the Quebec Code for the thermal performance of above-ground walls. The total water content indicates that the sheep wool wall can reach dynamic equilibrium in the Quebec climate and can dry out. At the same time, a delay of almost four months in the maximum total water content indicates that the sheep wool wall has high moisture absorption compared to the reference wall. The hygrothermal profiles show that the sheathing-insulation interface of both walls is at the highest risk for condensation. When the interior surface gypsum was replaced by stucco, the mold index significantly dropped.

Keywords: sheep wool, water content, hygrothermal performance, mould growth risk

Procedia PDF Downloads 91
8252 Interactive Virtual Patient Simulation Enhances Pharmacology Education and Clinical Practice

Authors: Lyndsee Baumann-Birkbeck, Sohil A. Khan, Shailendra Anoopkumar-Dukie, Gary D. Grant

Abstract:

Technology-enhanced education tools are being rapidly integrated into health programs globally. These tools provide an interactive platform for students and can be used to deliver topics in various modes including games and simulations. Simulations are of particular interest to healthcare education, where they are employed to enhance clinical knowledge and help to bridge the gap between theory and practice. Simulations will often assess competencies for practical tasks, yet limited research examines the effects of simulation on student perceptions of their learning. The aim of this study was to determine the effects of an interactive virtual patient simulation for pharmacology education and clinical practice on student knowledge, skills and confidence. Ethics approval for the study was obtained from Griffith University Research Ethics Committee (PHM/11/14/HREC). The simulation was intended to replicate the pharmacy environment and patient interaction. The content was designed to enhance knowledge of proton-pump inhibitor pharmacology, role in therapeutics and safe supply to patients. The tool was deployed into a third-year clinical pharmacology and therapeutics course. A number of core practice areas were examined including the competency domains of questioning, counselling, referral and product provision. Baseline measures of student self-reported knowledge, skills and confidence were taken prior to the simulation using a specifically designed questionnaire. A more extensive questionnaire was deployed following the virtual patient simulation, which also included measures of student engagement with the activity. A quiz assessing student factual and conceptual knowledge of proton-pump inhibitor pharmacology and related counselling information was also included in both questionnaires. Sixty-one students (response rate >95%) from two cohorts (2014 and 2015) participated in the study. Chi-square analyses were performed and data analysed using Fishers exact test. Results demonstrate that student knowledge, skills and confidence within the competency domains of questioning, counselling, referral and product provision, show improvement following the implementation of the virtual patient simulation. Statistically significant (p<0.05) improvement occurred in ten of the possible twelve self-reported measurement areas. Greatest magnitude of improvement occurred in the area of counselling (student confidence p<0.0001). Student confidence in all domains (questioning, counselling, referral and product provision) showed a marked increase. Student performance in the quiz also improved, demonstrating a 10% improvement overall for pharmacology knowledge and clinical practice following the simulation. Overall, 85% of students reported the simulation to be engaging and 93% of students felt the virtual patient simulation enhanced learning. The data suggests that the interactive virtual patient simulation developed for clinical pharmacology and therapeutics education enhanced students knowledge, skill and confidence, with respect to the competency domains of questioning, counselling, referral and product provision. These self-reported measures appear to translate to learning outcomes, as demonstrated by the improved student performance in the quiz assessment item. Future research of education using virtual simulation should seek to incorporate modern quantitative measures of student learning and engagement, such as eye tracking.

Keywords: clinical simulation, education, pharmacology, simulation, virtual learning

Procedia PDF Downloads 338
8251 Physical Properties of Nine Nigerian Staple Food Flours Related to Bulk Handling and Processing

Authors: Ogunsina Babatunde, Aregbesola Omotayo, Adebayo Adewale, Odunlami Johnson

Abstract:

The physical properties of nine Nigerian staple food flours related to bulk handling and processing were investigated following standard procedures. The results showed that the moisture content, bulk density, angle of repose, water absorption capacity, swelling index, dispersability, pH and wettability of the flours ranged from 9.95 to 11.98%, 0.44 to 0.66 g/cm3, 31.43 to 39.65o, 198.3 to 291.7 g of water/100 g of sample, 5.53 to 7.63, 60.3 to 73.8%, 4.43 to 6.70, and 11 to 150 s. The particle size analysis of the flour samples indicated significant differences (p<0.05). The least gelation concentration of the flour samples ranged from 6 to 14%. The colour of the flours fell between light and saturated, with the exception of cassava, millet and maize flours which appear dark and dull. The properties of food flours depend largely on the inherent property of the food material and may influence their functional behaviour as food materials.

Keywords: properties, flours, staple food, bulk handling

Procedia PDF Downloads 481
8250 Potassium Fertilization Improves Rice Yield in Aerobic Production System by Decreasing Panicle Sterility

Authors: Abdul Wakeel, Hafeez Ur Rehman, Muhammad Umair Mubarak

Abstract:

Rice is the second most important staple food in Pakistan after wheat. It is not only a healthy food for the people of all age groups but also a source of foreign exchange for Pakistan. Instead of bright history for Basmati rice production, we are suffering from multiple problems reducing yield and quality as well. Rice lodging and water shortage for an-aerobic rice production system is among major glitches of it. Due to water shortage an-aerobic rice production system has to be supplemented or replaced by aerobic rice system. Aerobic rice system has been adopted for production of non-basmati rice in many parts of the world. Also for basmati rice, significant efforts have been made for aerobic rice production, however still has to be improved for effective recommendations. Among two major issues for aerobic rice, weed elimination has been solved to great extent by introducing suitable herbicides, however, low yield production due weak grains and panicle sterility is still elusive. It has been reported that potassium (K) has significant role to decrease panicle sterility in cereals. Potassium deficiency is obvious for rice under aerobic rice production system due to lack of K gradient coming with irrigation water and lowered indigenous K release from soils. Therefore it was hypothesized that K application under aerobic rice production system may improve the rice yield by decreasing panicle sterility. Results from pot and field experiments confirm that application of K fertilizer significantly increased the rice grain yield due to decreased panicle sterility and improving grain health. The quality of rice was also improved by K fertilization.

Keywords: DSR, Basmati rice, aerobic, potassium

Procedia PDF Downloads 393
8249 First Principle-Based Dft and Microkinetic Simulation of Co-Conversion of Carbon Dioxide and Methane on Single Iridium Atom Doped Hematite with Surface Oxygen Defect

Authors: Kefale W. Yizengaw, Delele Worku Ayele, Jyh-Chiang Jiang

Abstract:

The catalytic co-conversion of CO₂ and CH₄ to value-added compounds has become one of the promising approaches to addressing global climate change by having valuable fossil fuels. Thedirect co-conversion of CO₂ and CH₄ to value-added compounds is attractive but tremendously challenging because of both molecules' thermodynamic stability and kinetic inertness. In the present study, a single iridium atom doped and a single oxygen atom defect hematite (110)surface model catalyst, which can comprehend direct C–O coupling based on simultaneous activation of CO2 and CH4 was studied using density functional theory plus U (DFT + U)calculations. The presence of dual active sites on the Ir/Fe₂O₃(110)-OV surface catalyst enablesCO₂ activation on the Ir site and CH₄ activation at the defect site. The electron analysis for the theco-adsorption of CO₂ and CH₄ deals with the electron redistribution on the surface and clearly shows the synergistic effect for simultaneous CO₂ and CH₄ activation on Ir/α- Fe₂O₃(110)-OVsurface. The microkinetic analysis shows that the dissociation of CH4 to CH3 * and H* plays an excellent role in the C–O coupling. The coverage analysis for the intermediate products of the microkinetic simulation results indicates that C–O coupling is the reaction limiting step. Finally, after the CH₃O* intermediate product species is produced, the radical hydrogen species spontaneously diffuse to the CH3O* intermediate product to form methanol at around 490 [K]. The present work provides mechanistic and kinetic insights into the direct C–O coupling of CO₂and CH₄, which could help design more-efficient catalysts.

Keywords: co-conversion, C–O coupling, doping, oxygen vacancy, microkinetic

Procedia PDF Downloads 115
8248 Minerals of Canola (Brassica napus) as Affected by Water Stress and Applied Calcium

Authors: Rizwan Alam, Ikhtiar Khan, Aqib Iqbal

Abstract:

Plants are naturally exposed to a wide variety of environmental stresses. The stresses may be biotic or/and abiotic. These environmental stresses have adverse effects on photosynthesis, water relation and nutrients uptake of plants. Fertilization of plants with exogenous minerals can enhance the drought tolerance in plants. In this experiment, canola (Brassica napus) was treated with solutions of calcium nitrate in different concentrations before the imposition of drought stress for 10 days. It was observed that drought stress decreased the tissue-K, Ca and K/Ca ratio of canola seedlings. The tissue-carbon and nitrogen contents were also depressed by the drought stress. Application of calcium nitrate, however, could alleviate the adverse effects of drought stress by showing a positive effect on all the aforementioned parameters.

Keywords: Brassica napus, calcium, carbon, potassium

Procedia PDF Downloads 526
8247 Synthesis of High-Antifouling Ultrafiltration Polysulfone Membranes Incorporating Low Concentrations of Graphene Oxide

Authors: Abdulqader Alkhouzaam, Hazim Qiblawey, Majeda Khraisheh

Abstract:

Membrane treatment for desalination and wastewater treatment is one of the promising solutions to affordable clean water. It is a developing technology throughout the world and considered as the most effective and economical method available. However, the limitations of membranes’ mechanical and chemical properties restrict their industrial applications. Hence, developing novel membranes was the focus of most studies in the water treatment and desalination sector to find new materials that can improve the separation efficiency while reducing membrane fouling, which is the most important challenge in this field. Graphene oxide (GO) is one of the materials that have been recently investigated in the membrane water treatment sector. In this work, ultrafiltration polysulfone (PSF) membranes with high antifouling properties were synthesized by incorporating different loadings of GO. High-oxidation degree GO had been synthesized using a modified Hummers' method. The synthesized GO was characterized using different analytical techniques including elemental analysis, Fourier transform infrared spectroscopy - universal attenuated total reflectance sensor (FTIR-UATR), Raman spectroscopy, and CHNSO elemental analysis. CHNSO analysis showed a high oxidation degree of GO represented by its oxygen content (50 wt.%). Then, ultrafiltration PSF membranes incorporating GO were fabricated using the phase inversion technique. The prepared membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and showed a clear effect of GO on PSF physical structure and morphology. The water contact angle of the membranes was measured and showed better hydrophilicity of GO membranes compared to pure PSF caused by the hydrophilic nature of GO. Separation properties of the prepared membranes were investigated using a cross-flow membrane system. Antifouling properties were studied using bovine serum albumin (BSA) and humic acid (HA) as model foulants. It has been found that GO-based membranes exhibit higher antifouling properties compared to pure PSF. When using BSA, the flux recovery ratio (FRR %) increased from 65.4 ± 0.9 % for pure PSF to 84.0 ± 1.0 % with a loading of 0.05 wt.% GO in PSF. When using HA as model foulant, FRR increased from 87.8 ± 0.6 % to 93.1 ± 1.1 % with 0.02 wt.% of GO in PSF. The pure water permeability (PWP) decreased with loadings of GO from 181.7 L.m⁻².h⁻¹.bar⁻¹ of pure PSF to 181.1, and 157.6 L.m⁻².h⁻¹.bar⁻¹ with 0.02 and 0.05 wt.% GO respectively. It can be concluded from the obtained results that incorporating low loading of GO could enhance the antifouling properties of PSF hence improving its lifetime and reuse.

Keywords: antifouling properties, GO based membranes, hydrophilicity, polysulfone, ultrafiltration

Procedia PDF Downloads 143
8246 The History of Sambipitu Formation Temperature during the Early Miocene Epooch at Kali Ngalang, Nglipar, Gunung Kidul Regency

Authors: R. Harman Dwi, Ryan Avirsa, P. Abraham Ivan

Abstract:

Understanding of temperatures in the past, present, and future temperatures can be possible to do by analysis abundance of fossil foraminifera. This research was conducted in Sambipitu Formation, Ngalang River, Nglipar, Gunung Kidul Regency. The research method is divided into 3 stages: 1) study of literature, research based on previous researchers, 2) spatial, observation and sampling every 5-10 meters, 3) descriptive, analyzing samples consisting of a 10-gram sample weight, washing sample using 30% peroxide, biostratigraphy analysis, paleotemperature analysis using abundance of fossil, diversity analysis using Simpson diversity index method, and comparing current temperature data. There are two phases based on the appearance of Globorotalia menardii and Pulleniatina obliqueculata pointed to Phase Tropical Area, and the appearance of fossil Globigerinoides ruber and Orbulina universa fossil shows the phase of Subtropical Area. Paleotemperatur based on the appearance of Globorotalia menardii, Globigerinoides trilobus, Globigerinoides ruber, Orbulina universa, and Pulleniatina obliqueculata pointed to Warm Water Area and Warm Water Area (average surface water approximate 25°C).

Keywords: abundance, biostratigraphy, Simpson diversity index method, paleotemperature

Procedia PDF Downloads 172
8245 Comparison of Water Equivalent Ratio of Several Dosimetric Materials in Proton Therapy Using Monte Carlo Simulations and Experimental Data

Authors: M. R. Akbari , H. Yousefnia, E. Mirrezaei

Abstract:

Range uncertainties of protons are currently a topic of interest in proton therapy. Two of the parameters that are often used to specify proton range are water equivalent thickness (WET) and water equivalent ratio (WER). Since WER values for a specific material is nearly constant at different proton energies, it is a more useful parameter to compare. In this study, WER values were calculated for different proton energies in polymethyl methacrylate (PMMA), polystyrene (PS) and aluminum (Al) using FLUKA and TRIM codes. The results were compared with analytical, experimental and simulated SEICS code data obtained from the literature. In FLUKA simulation, a cylindrical phantom, 1000 mm in height and 300 mm in diameter, filled with the studied materials was simulated. A typical mono-energetic proton pencil beam in a wide range of incident energies usually applied in proton therapy (50 MeV to 225 MeV) impinges normally on the phantom. In order to obtain the WER values for the considered materials, cylindrical detectors, 1 mm in height and 20 mm in diameter, were also simulated along the beam trajectory in the phantom. In TRIM calculations, type of projectile, energy and angle of incidence, type of target material and thickness should be defined. The mode of 'detailed calculation with full damage cascades' was selected for proton transport in the target material. The biggest difference in WER values between the codes was 3.19%, 1.9% and 0.67% for Al, PMMA and PS, respectively. In Al and PMMA, the biggest difference between each code and experimental data was 1.08%, 1.26%, 2.55%, 0.94%, 0.77% and 0.95% for SEICS, FLUKA and SRIM, respectively. FLUKA and SEICS had the greatest agreement (≤0.77% difference in PMMA and ≤1.08% difference in Al, respectively) with the available experimental data in this study. It is concluded that, FLUKA and TRIM codes have capability for Bragg curves simulation and WER values calculation in the studied materials. They can also predict Bragg peak location and range of proton beams with acceptable accuracy.

Keywords: water equivalent ratio, dosimetric materials, proton therapy, Monte Carlo simulations

Procedia PDF Downloads 324
8244 Encapsulated Bacteria In Polymer Composites For Bioremediation Applications

Authors: Mahsa Mafi

Abstract:

Encapsulation of Micrococcus Luteus (M. Luteus) in polymeric composites has been employed for the bioremediation, sequestration of metals and for the biodegradation of chemical pollutants and toxic components in waste water. Polymer composites in the form of nonwovens of nanofibers, or core/shell particles can provide a bacterial friendly environment for transfer of nutrients and metabolisms, with the least leakage of bacteria. M. Luteus is encapsulated in a hydrophilic core of poly (vinyl alcohol), following by synthesis or coating of a proper shell as a support to maintain the chemical and mechanical strength. The biological activity of bacteria is confirmed by Live/Dead analysis and agar plate tests. SEM and TEM analysis were utilized for morphological studies of polymer composites. As a result of the successful encapsulation of the alive bacteria in polymers, longer storage time in their functional state were achieved.

Keywords: Polymer composites, Bacteria encapsulation, Bioremediation, Waste water treatment

Procedia PDF Downloads 137
8243 Rhizobia-Containing Rhizobacterial Consortia and Intercropping Improved Faba Bean and Wheat Performances Under Stress Combining Drought and Phosphorus Deficiency

Authors: Said Cheto, Khawla Oukaltouma, Imane Chamkhi, Ammar Ibn Yasser, Bouchra Benmrid, Ahmed Qaddoury, Lamfeddal Kouisni, Joerg Geistlinger, Youssef Zeroual, Adnane Bargaz, Cherki Ghoulam

Abstract:

Our study aimed to assess, the role of inoculation of faba bean/wheat intercrops with selected rhizobacteria consortia gathering one rhizobia and two phosphate solubilizing bacteria “PSB” to alleviate the effects of combined water deficit and P limitation on Faba bean/ wheat intercrops versus monocrops under greenhouse conditions. One Vicia faba L variety (Aguadulce “Ag”), and one Triticum durum L. variety (Karim “K”) were grown as sole crops or intercrop in pots containing sterilized substrate (sand: peat 4:1v/v) added either with rock phosphate (RP) as the alone P source (P limitation) or with KH₂PO₄ in nutrient solution (P sufficient control). Plant inoculation was done using rhizobacterial consortia composed; C1(Rhizobium laguerreae, Kocuria sp, and Pseudomonas sp) and C2 (R. laguerreae, Rahnella sp, and Kocuria sp). Two weeks after inoculation, the plants were submitted to water deficit consisting of 40% of substrate water holding Capacity (WHC) versus 80% WHC for well-watered plants. At the flowering stage, the trial was assessed, and the results showed that inoculation with both consortia (C1 and C2) improved faba bean biomass in terms of shoots, roots, and nodules compared to inoculation with rhizobia alone, particularly C2 improved these parametres by 19.03, 78.99, and 72.73%, respectively. Leaf relative water content decreased under combined stress, particularly in response to C1 with a significant improvement of this parameter in wheat intercrops. For faba bean under P limitation, inoculation with C2 increased stomatal conductance (gs) by 35.73% compared to plants inoculated with rhizobia alone. Furthermore, the same inoculum C2 improved membrane stability by 44,33% versus 16,16% for C1 compared to inoculation with rhizobia alone under P deficit. For sole cropped faba bean plants, inoculation with both consortia improved N accumulation compared to inoculation with rhizobia alone with an increase of 70.75% under P limitation. Moreover, under the combined stress, intercropping inoculation with C2 improved plant biomass and N content (112.98%) in wheat plants, compared to the sole crop. Our finding revealed that consortium C2 might offer an agronomic advantage under water and P deficit and could be used as inoculum for enhancing faba bean and wheat production under both monocropping and intercropping systems.

Keywords: drought, phosphorus, intercropping, PSB, rhizobia, vicia faba, Triticum durum

Procedia PDF Downloads 73
8242 Environmental and Toxicological Impacts of Glyphosate with Its Formulating Adjuvant

Authors: I. Székács, Á. Fejes, S. Klátyik, E. Takács, D. Patkó, J. Pomóthy, M. Mörtl, R. Horváth, E. Madarász, B. Darvas, A. Székács

Abstract:

Environmental and toxicological characteristics of formulated pesticides may substantially differ from those of their active ingredients or other components alone. This phenomenon is demonstrated in the case of the herbicide active ingredient glyphosate. Due to its extensive application, this active ingredient was found in surface and ground water samples collected in Békés County, Hungary, in the concentration range of 0.54–0.98 ng/ml. The occurrence of glyphosate appeared to be somewhat higher at areas under intensive agriculture, industrial activities and public road services, but the compound was detected at areas under organic (ecological) farming or natural grasslands, indicating environmental mobility. Increased toxicity of the formulated herbicide product Roundup, compared to that of glyphosate was observed on the indicator aquatic organism Daphnia magna Straus. Acute LC50 values of Roundup and its formulating adjuvant Polyethoxylated Tallowamine (POEA) exceeded 20 and 3.1 mg/ml, respectively, while that of glyphosate (as isopropyl salt) was found to be substantially lower (690-900 mg/ml) showing good agreement with literature data. Cytotoxicity of Roundup, POEA and glyphosate has been determined on the neuroectodermal cell line, NE-4C measured both by cell viability test and holographic microscopy. Acute toxicity (LC50) of Roundup, POEA and glyphosate on NE-4C cells was found to be 0.013±0.002%, 0.017±0.009% and 6.46±2.25%, respectively (in equivalents of diluted Roundup solution), corresponding to 0.022±0.003 and 53.1±18.5 mg/ml for POEA and glyphosate, respectively, indicating no statistical difference between Roundup and POEA and 2.5 orders of magnitude difference between these and glyphosate. The same order of cellular toxicity seen in average cell area has been indicated under quantitative cell visualization. The results indicate that toxicity of the formulated herbicide is caused by the formulating agent, but in some parameters toxicological synergy occurs between POEA and glyphosate.

Keywords: glyphosate, polyethoxylated tallowamine, Roundup, combined aquatic and cellular toxicity, synergy

Procedia PDF Downloads 319
8241 Recovery of Selenium from Scrubber Sludge in Copper Process

Authors: Lakshmikanth Reddy, Bhavin Desai, Chandrakala Kari, Sanjay Sarkar, Pradeep Binu

Abstract:

The sulphur dioxide gases generated as a by-product of smelting and converting operations of copper concentrate contain selenium apart from zinc, lead, copper, cadmium, bismuth, antimony, and arsenic. The gaseous stream is treated in waste heat boiler, electrostatic precipitator and scrubbers to remove coarse particulate matter in order to produce commercial grade sulfuric acid. The gas cleaning section of the acid plant uses water to scrub the smelting gases. After scrubbing, the sludge settled at the bottom of the scrubber, was analyzed in present investigation. It was found to contain 30 to 40 wt% copper and selenium up to 40 wt% selenium. The sludge collected during blow-down is directly recycled to the smelter for copper recovery. However, the selenium is expected to again vaporize due to high oxidation potential during smelting and converting, causing accumulation of selenium in sludge. In present investigation, a roasting process has been developed to recover the selenium before the copper recovery from the sludge at smelter. Selenium is associated with copper in sludge as copper selenide, as determined by X-ray diffraction and electron microscopy. The thermodynamic and thermos-gravimetry study revealed that the copper selenide phase present in the sludge was amenable to oxidation at 600°C forming oxides of copper and selenium (Cu-Se-O). However, the dissociation of selenium from the copper oxide was made possible by sulfatation using sulfur dioxide between 450 to 600°C, resulting into the formation of CuSO₄ (s) and SeO₂ (g). Lab scale trials were carried out in vertical tubular furnace to determine the optimum roasting conditions with respect to roasting time, temperature and molar ratio of O₂:SO₂. Using these optimum conditions, selenium up to 90 wt% in the form of SeO₂ vapors could be recovered from the sludge in a large-scale commercial roaster. Roasted sludge free from the selenium and containing oxides and sulfates of copper could now be recycled in the smelter for copper recovery.

Keywords: copper, selenium, copper selenide, sludge, roasting, SeO₂

Procedia PDF Downloads 205
8240 Spatial Dynamic of Pico- and Nano-Phytoplankton Communities in the Mouth of the Seine River

Authors: M. Schapira, S. Françoise, F. Maheux, O. Pierre-Duplessix, E. Rabiller, B. Simon, R. Le Gendre

Abstract:

Pico- and nano-phytoplankton are abundant and ecologically critical components of the autotrophic communities in the pelagic realm. While the role of physical forcing related to tidal cycle, water mass intrusion, nutrient availability, mixing and stratification on microphytoplankton blooms have been widely investigated, these are often overlooked for pico- and nano-phytoplankton especially in estuarine waters. This study investigates changes in abundances and community composition of pico- and nano-phytoplankton under different estuarine tidal conditions in the mouth of the Seine River in relation to nutrient availability, water column stratification and spatially localized currents. Samples were collected each day at high tide, over spring tide to neap tide cycle, from 21 stations homogeneously distributed in the Seine river month in May 2011. Vertical profiles of temperature, salinity and fluorescence were realized at each sampling station. Sub-surface water samples (i.e. 1 m depth) were collected for nutrients (i.e. N, P and Si), phytoplankton biomass (i.e. Chl a) and pico- and nano-phytoplankton enumeration and identification. Pico- and nano-phytoplankton populations were identified and quantified using flow cytometry. Total abundances tend to decrease from spring tide to neap tide. Samples were characterized by high abundances of Synechococcus and Cryptophyceae. The composition of the pico- and nano-phytoplankton varied greatly under the different estuarine tidal conditions. Moreover, at the scale of the river mouth, the pico- and nano-phytoplankton population exhibited patchy distribution patterns that were closely controlled by water mass intrusion from the Sea, freshwater inputs from the Seine River and the geomorphology of the river mouth. This study highlights the importance of physical forcing to the community composition of pico- and nano-phytoplankton that may be critical for the structure of the pelagic food webs in estuarine and adjacent coastal seas.

Keywords: nanophytoplancton, picophytoplankton, physical forcing, river mouth, tidal cycle

Procedia PDF Downloads 357
8239 Removal of Lead in High Rate Activated Sludge System

Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Mohamed Z. Elshikhipy, Rana Hamouda

Abstract:

The heavy metals pollution in water, sediments and fish of Lake Manzala affected from the disposal of wastewater, industrial and agricultural drainage water into the lake on the environmental situation. A pilot plant with an industrial discharge flow of 135L/h was designed according to the activated sludge plant to simulate between the biological and chemical treatment with the addition of alum to the aeration tank with dosages of 100, 150, 200, and 250 mg/L. The industrial discharge had concentrations of Lead and BOD5 with an average range 1.22, 145mg/L, respectively. That means the average Pb was high up to 25 times than the allowed permissible concentration. The optimization of the chemical-biological process using 200mg/L alum dosage compared has improvement of Lead and BOD5 removal efficiency to 61.76% and 56%, respectively.

Keywords: industrial wastewater, activated sludge, BOD5, lead, alum salt

Procedia PDF Downloads 518
8238 Utilization of Mango (Mangifera Indica) Seeds as an Organic Liquid Fertilizer in Bok-Choy (Brassica Rapa)

Authors: Bryan Emmanuel B. Marcelo, Frances Laura C. Galvez, Cyra Aleera T. Asanza, Ava Venice P. Garin

Abstract:

The present study experimented with the utilization of mango (Mangifera indica) seeds as a fertilizer in the hydroponic farming of Bok Choy. The seeds were dried, mixed with EM Bokashi, and fermented for 14 days. The solution was then diluted into several ratios or concentrations: 25%: 1 part mango seed solution, 3 parts water; 50%: 2 parts mango seed solution, 2 parts water; 75%: 3 parts mango seed solution, 1 part water. 5 cups of soil with Bok Choy seeds were each planted in different containers for different concentrations of fertilizer. The fermentation of the nutrient solution lasted exactly 14 days and was directly brought to the lab for nutrient analysis and testing. In the data presented by the researchers in a span of 14 days, the study assessed varied mango seed fertilizer concentrations on Bok Choy growth. Despite an acidic pH (4.19) and moderate electrical conductivity, the 75% concentration yielded the highest growth (2.1cm) over 14 days, followed by 50%, 0, and 25%. Leaf count was consistently highest at 75%, and the leaf color remained #8CAA50 across concentrations. This emphasizes the importance of precise fertilizer application, with the 75% concentration showing optimal growth, the highest leaf count, and prevention of leaf withering until Day 14. Overall, these findings contribute to understanding bok choy’s adaptability and responses to different nutrient conditions.

Keywords: dilution ratios, organic liquid fertilizer, hydroponic farming, growth asssessment

Procedia PDF Downloads 51
8237 Feasibility and Energy Efficiency Analysis of Chilled Water Radiant Cooling System of Office Apartment in Nigeria’s Tropical Climate City

Authors: Rasaq Adekunle Olabomi

Abstract:

More than 30% of the global building energy consumption is attributed to heating, ventilation and air-conditioning (HVAC) due to increasing urbanization and the need for more personal comfort. While heating is predominant in the temperate regions (especially during winter), comfort cooling is constantly needed in tropical regions such as Nigeria. This makes cooling a major contributor to the peak electrical load in the tropics. Meanwhile, the high solar energy availability in the tropical climate region presents a higher application potentials for solar thermal cooling systems; more so, the need for cooling mostly coincides with the solar energy availability. In addition to huge energy consumption, conventional (compressor type) air-conditioning systems mostly use refrigerants that are regarded as environmental unfriendly because of their ozone depletion potentials; this has made the alternative cooling systems to become popular in the present time. The better thermal capacity and less pumping power requirement of chilled water than chilled air has also made chilled water a preferred option over the chilled air cooling system. Radiant floor chilled water cooling is particularly is also considered suitable for spaces such as meeting room, seminar hall, auditorium, airport arrival and departure halls among others. This study did the analysis of the feasibility and energy efficiency of solar thermal chilled water for radiant flood cooling of an office apartment in a tropical climate city in Nigeria with a view to recommend its up-scaling. The analysis considered the weather parameters including available solar irradiance (kWh/m2-day) as well as the technical details of the solar thermal cooling systems to determine the feasibility. Project cost, its energy savings, emission reduction potentials and cost-to-benefits ration are used to analyze its energy efficiency as well as the viability of the cooling system. The techno-economic analysis of the proposed system, carried out using RETScreen software shows that its viability in but SWOT analysis of policy and institutional framework to promote solar energy utilization for the cooling systems shows weakness such as poor infrastructure and inadequate local capacity for technological development as major challenges.

Keywords: cooling load, absorption cooling system, coefficient of performance, radiant floor, cost saving, emission reduction

Procedia PDF Downloads 27
8236 Evaluation of Non-Staggered Body-Fitted Grid Based Solution Method in Application to Supercritical Fluid Flows

Authors: Suresh Sahu, Abhijeet M. Vaidya, Naresh K. Maheshwari

Abstract:

The efforts to understand the heat transfer behavior of supercritical water in supercritical water cooled reactor (SCWR) are ongoing worldwide to fulfill the future energy demand. The higher thermal efficiency of these reactors compared to a conventional nuclear reactor is one of the driving forces for attracting the attention of nuclear scientists. In this work, a solution procedure has been described for solving supercritical fluid flow problems in complex geometries. The solution procedure is based on non-staggered grid. All governing equations are discretized by finite volume method (FVM) in curvilinear coordinate system. Convective terms are discretized by first-order upwind scheme and central difference approximation has been used to discretize the diffusive parts. k-ε turbulence model with standard wall function has been employed. SIMPLE solution procedure has been implemented for the curvilinear coordinate system. Based on this solution method, 3-D Computational Fluid Dynamics (CFD) code has been developed. In order to demonstrate the capability of this CFD code in supercritical fluid flows, heat transfer to supercritical water in circular tubes has been considered as a test problem. Results obtained by code have been compared with experimental results reported in literature.

Keywords: curvilinear coordinate, body-fitted mesh, momentum interpolation, non-staggered grid, supercritical fluids

Procedia PDF Downloads 130
8235 Spatiotemporal Variability of Snow Cover and Snow Water Equivalent over Eurasia

Authors: Yinsheng Zhang

Abstract:

Changes in the extent and amount of snow cover in Eurasia are of great interest because of their vital impacts on the global climate system and regional water resource management. This study investigated the spatial and temporal variability of the snow cover extent (SCE) and snow water equivalent (SWE) of continental Eurasia using the Northern Hemisphere Equal-Area Scalable Earth Grid (EASE-Grid) Weekly SCE data for 1972–2006 and the Global Monthly EASE-Grid SWE data for 1979–2004. The results indicated that, in general, the spatial extent of snow cover significantly decreased during spring and summer, but varied little during autumn and winter over Eurasia in the study period. The date at which snow cover began to disappear in spring has significantly advanced, whereas the timing of snow cover onset in autumn did not vary significantly during 1972–2006. The snow cover persistence period declined significantly in the western Tibetan Plateau as well as the partial area of Central Asia and northwestern Russia but varied little in other parts of Eurasia. ‘Snow-free breaks’ (SFBs) with intermittent snow cover in the cold season were mainly observed in the Tibetan Plateau and Central Asia, causing a low sensitivity of snow cover persistence period to the timings of snow cover onset and disappearance over the areas with shallow snow. The averaged SFBs were 1–14 weeks in the Tibetan Plateau during 1972–2006 and the maximum intermittence could reach 25 weeks in some extreme years. At a seasonal scale, the SWE usually peaked in February or March but fell gradually since April across Eurasia. Both annual mean and annual maximum SWE decreased significantly during 1979–2004 in most parts of Eurasia except for eastern Siberia as well as northwestern and northeastern China.

Keywords: Eurasia, snow cover extent, snow cover persistence period, snow-free breaks, onset and disappearance timings, snow water equivalent

Procedia PDF Downloads 146
8234 Integration of Icf Walls as Diurnal Solar Thermal Storage with Microchannel Solar Assisted Heat Pump for Space Heating and Domestic Hot Water Production

Authors: Mohammad Emamjome Kashan, Alan S. Fung

Abstract:

In Canada, more than 32% of the total energy demand is related to the building sector. Therefore, there is a great opportunity for Greenhouse Gases (GHG) reduction by integrating solar collectors to provide building heating load and domestic hot water (DHW). Despite the cold winter weather, Canada has a good number of sunny and clear days that can be considered for diurnal solar thermal energy storage. Due to the energy mismatch between building heating load and solar irradiation availability, relatively big storage tanks are usually needed to store solar thermal energy during the daytime and then use it at night. On the other hand, water tanks occupy huge space, especially in big cities, space is relatively expensive. This project investigates the possibility of using a specific building construction material (ICF – Insulated Concrete Form) as diurnal solar thermal energy storage that is integrated with a heat pump and microchannel solar thermal collector (MCST). Not much literature has studied the application of building pre-existing walls as active solar thermal energy storage as a feasible and industrialized solution for the solar thermal mismatch. By using ICF walls that are integrated into the building envelope, instead of big storage tanks, excess solar energy can be stored in the concrete of the ICF wall that consists of EPS insulation layers on both sides to store the thermal energy. In this study, two solar-based systems are designed and simulated inTransient Systems Simulation Program(TRNSYS)to compare ICF wall thermal storage benefits over the system without ICF walls. In this study, the heating load and DHW of a Canadian single-family house located in London, Ontario, are provided by solar-based systems. The proposed system integrates the MCST collector, a water-to-water HP, a preheat tank, the main tank, fan coils (to deliver the building heating load), and ICF walls. During the day, excess solar energy is stored in the ICF walls (charging cycle). Thermal energy can be restored from the ICF walls when the preheat tank temperature drops below the ICF wall (discharging process) to increase the COP of the heat pump. The evaporator of the heat pump is taking is coupled with the preheat tank. The provided warm water by the heat pump is stored in the second tank. Fan coil units are in contact with the tank to provide a building heating load. DHW is also delivered is provided from the main tank. It is investigated that the system with ICF walls with an average solar fraction of 82%- 88% can cover the whole heating demand+DHW of nine months and has a 10-15% higher average solar fraction than the system without ICF walls. Sensitivity analysis for different parameters influencing the solar fraction is discussed in detail.

Keywords: net-zero building, renewable energy, solar thermal storage, microchannel solar thermal collector

Procedia PDF Downloads 121
8233 Breakthrough Highly-Effective Extraction of Perfluoroctanoic Acid Using Natural Deep Eutectic Solvents

Authors: Sana Eid, Ahmad S. Darwish, Tarek Lemaoui, Maguy Abi Jaoude, Fawzi Banat, Shadi W. Hasan, Inas M. AlNashef

Abstract:

Addressing the growing challenge of per- and polyfluoroalkyl substances (PFAS) pollution in water bodies, this study introduces natural deep eutectic solvents (NADESs) as a pioneering solution for the efficient extraction of perfluorooctanoic acid (PFOA), one of the most persistent and concerning PFAS pollutants. Among the tested NADESs, trioctylphosphine oxide: lauric acid (TOPO:LauA) in a 1:1 molar ratio was distinguished as the most effective, achieving an extraction efficiency of approximately 99.52% at a solvent-to-feed (S:F) ratio of 1:2, room temperature, and neutral pH. This efficiency is achieved within a notably short mixing time of only one min, which is significantly less than the time required by conventional methods, underscoring the potential of TOPO:LauA for rapid and effective PFAS remediation. TOPO:LauA maintained consistent performance across various operational parameters, including a range of initial PFOA concentrations (0.1 ppm to 1000 ppm), temperatures (15 °C to 100 °C), pH values (3 to 9), and S:F ratios (2:3 to 1:7), demonstrating its versatility and robustness. Furthermore, its effectiveness was consistently high over seven consecutive extraction cycles, highlighting TOPO:LauA as a sustainable, environmentally friendly alternative to hazardous organic solvents, with promising applications for reliable, repeatable use in combating persistent water pollutants such as PFOA.

Keywords: deep eutectic solvents, natural deep eutectic solvents, perfluorooctanoic acid, water remediation

Procedia PDF Downloads 61
8232 Traditional Rainwater Harvesting Systems: A Sustainable Solution for Non-Urban Populations in the Mediterranean

Authors: S. Fares, K. Mellakh, A. Hmouri

Abstract:

The StorMer project aims to set up a network of researchers to study traditional hydraulic rainwater harvesting systems in the Mediterranean basin, a region suffering from the major impacts of climate change and limited natural water resources. The arid and semi-arid Mediterranean basin has a long history of pioneering water management practices. The region has developed various ancient traditional water management systems, such as cisterns and qanats, to sustainably manage water resources under historical conditions of scarcity. Therefore, the StorMer project brings together Spain, France, Italy, Greece, Jordan and Morocco to explore traditional rainwater harvesting practices and systems in the Mediterranean region and to develop accurate modeling to simulate the performance and sustainability of these technologies under present-day climatic conditions. The ultimate goal of this project was to resuscitate and valorize these practices in the context of contemporary challenges. This project was intended to establish a Mediterranean network to serve as a basis for a more ambitious project. The ultimate objective was to analyze traditional hydraulic systems and create a prototype hydraulic ecosystem using a coupled environmental approach and traditional and ancient know-how, with the aim of reinterpreting them in the light of current techniques. The combination of ‘traditional’ and ‘modern knowledge/techniques’ is expected to lead to proposals for innovative hydraulic systems. The pandemic initially slowed our progress, but in the end it forced us to carry out the fieldwork in Morocco and Saudi Arabia, and so restart the project. With the participation of colleagues from chronologically distant fields (archaeology, sociology), we are now prepared to share our observations and propose the next steps. This interdisciplinary approach should give us a global vision of the project's objectives and challenges. A diachronic approach is needed to tackle the question of the long-term adaptation of societies in a Mediterranean context that has experienced several periods of water stress. The next stage of the StorMer project is the implementation of pilots in non-urbanized regions. These pilots will test the implementation of traditional systems and will be maintained and evaluated in terms of effectiveness, cost and acceptance. Based on these experiences, larger projects will be proposed and could provide information for regional water management policies. One of the most important lessons learned from this project is the highly social nature of managing traditional rainwater harvesting systems. Unlike modern, centralized water infrastructures, these systems often require the involvement of communities, which assume ownership and responsibility for them. This kind of community engagement leads to greater maintenance and, therefore, sustainability of the systems. Knowledge of the socio-cultural characteristics of these communities means that the systems can be adapted to the needs of each location, ensuring greater acceptance and efficiency.

Keywords: oasis, rainfall harvesting, arid regions, Mediterranean

Procedia PDF Downloads 40