Search results for: problem-based learning approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19178

Search results for: problem-based learning approach

15548 Hybrid Approach for Face Recognition Combining Gabor Wavelet and Linear Discriminant Analysis

Authors: A: Annis Fathima, V. Vaidehi, S. Ajitha

Abstract:

Face recognition system finds many applications in surveillance and human computer interaction systems. As the applications using face recognition systems are of much importance and demand more accuracy, more robustness in the face recognition system is expected with less computation time. In this paper, a hybrid approach for face recognition combining Gabor Wavelet and Linear Discriminant Analysis (HGWLDA) is proposed. The normalized input grayscale image is approximated and reduced in dimension to lower the processing overhead for Gabor filters. This image is convolved with bank of Gabor filters with varying scales and orientations. LDA, a subspace analysis techniques are used to reduce the intra-class space and maximize the inter-class space. The techniques used are 2-dimensional Linear Discriminant Analysis (2D-LDA), 2-dimensional bidirectional LDA ((2D)2LDA), Weighted 2-dimensional bidirectional Linear Discriminant Analysis (Wt (2D)2 LDA). LDA reduces the feature dimension by extracting the features with greater variance. k-Nearest Neighbour (k-NN) classifier is used to classify and recognize the test image by comparing its feature with each of the training set features. The HGWLDA approach is robust against illumination conditions as the Gabor features are illumination invariant. This approach also aims at a better recognition rate using less number of features for varying expressions. The performance of the proposed HGWLDA approaches is evaluated using AT&T database, MIT-India face database and faces94 database. It is found that the proposed HGWLDA approach provides better results than the existing Gabor approach.

Keywords: face recognition, Gabor wavelet, LDA, k-NN classifier

Procedia PDF Downloads 469
15547 Optimal Dynamic Regime for CO Oxidation Reaction Discovered by Policy-Gradient Reinforcement Learning Algorithm

Authors: Lifar M. S., Tereshchenko A. A., Bulgakov A. N., Guda S. A., Guda A. A., Soldatov A. V.

Abstract:

Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy barrier of the reaction. Reaction product yield depends on the interplay between elementary processes - adsorption, activation, reaction, and desorption. These processes, in turn, depend on the inlet feed concentrations, temperature, and pressure. At stationary conditions, the active surface sites may be poisoned by reaction byproducts or blocked by thermodynamically adsorbed gaseous reagents. Thus, the yield of reaction products can significantly drop. On the contrary, the dynamic control accounts for the changes in the surface properties and adjusts reaction parameters accordingly. Therefore dynamic control may be more efficient than stationary control. In this work, a reinforcement learning algorithm has been applied to control the simulation of CO oxidation on a catalyst. The policy gradient algorithm is learned to maximize the CO₂ production rate based on the CO and O₂ flows at a given time step. Nonstationary solutions were found for the regime with surface deactivation. The maximal product yield was achieved for periodic variations of the gas flows, ensuring a balance between available adsorption sites and the concentration of activated intermediates. This methodology opens a perspective for the optimization of catalytic reactions under nonstationary conditions.

Keywords: artificial intelligence, catalyst, co oxidation, reinforcement learning, dynamic control

Procedia PDF Downloads 132
15546 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 142
15545 Reasons to Redesign: Teacher Education for a Brighter Tomorrow

Authors: Deborah L. Smith

Abstract:

To review our program and determine the best redesign options, department members gathered feedback and input through focus groups, analysis of data, and a review of the current research to ensure that the changes proposed were not based solely on the state’s new professional standards. In designing course assignments and assessments, we listened to a variety of constituents, including students, other institutions of higher learning, MDE webinars, host teachers, literacy clinic personnel, and other disciplinary experts. As a result, we are designing a program that is more inclusive of a variety of field experiences for growth. We have determined ways to improve our program by connecting academic disciplinary knowledge, educational psychology, and community building both inside and outside the classroom for professional learning communities. The state’s release of new professional standards led my department members to question what is working and what needs improvement in our program. One aspect of our program that continues to be supported by research and data analysis is the function of supervised field experiences with meaningful feedback. We seek to expand in this area. Other data indicate that we have strengths in modeling a variety of approaches such as cooperative learning, discussions, literacy strategies, and workshops. In the new program, field assignments will be connected to multiple courses, and efforts to scaffold student learning to guide them toward best evidence-based practices will be continuous. Despite running a program that meets multiple sets of standards, there are areas of need that we directly address in our redesign proposal. Technology is ever-changing, so it’s inevitable that improving digital skills is a focus. In addition, scaffolding procedures for English Language Learners (ELL) or other students who struggle is imperative. Diversity, equity, and inclusion (DEI) has been an integral part of our curriculum, but the research indicates that more self-reflection and a deeper understanding of culturally relevant practices would help the program improve. Connections with professional learning communities will be expanded, as will leadership components, so that teacher candidates understand their role in changing the face of education. A pilot program will run in academic year 22/23, and additional data will be collected each semester through evaluations and continued program review.

Keywords: DEI, field experiences, program redesign, teacher preparation

Procedia PDF Downloads 173
15544 Analyzing Tools and Techniques for Classification In Educational Data Mining: A Survey

Authors: D. I. George Amalarethinam, A. Emima

Abstract:

Educational Data Mining (EDM) is one of the newest topics to emerge in recent years, and it is concerned with developing methods for analyzing various types of data gathered from the educational circle. EDM methods and techniques with machine learning algorithms are used to extract meaningful and usable information from huge databases. For scientists and researchers, realistic applications of Machine Learning in the EDM sectors offer new frontiers and present new problems. One of the most important research areas in EDM is predicting student success. The prediction algorithms and techniques must be developed to forecast students' performance, which aids the tutor, institution to boost the level of student’s performance. This paper examines various classification techniques in prediction methods and data mining tools used in EDM.

Keywords: classification technique, data mining, EDM methods, prediction methods

Procedia PDF Downloads 119
15543 Method to Create Signed Word - Application in Teaching and Learning Vietnamese Sign Language

Authors: Nguyen Thi Kim Thoa

Abstract:

Vietnam currently has about two million five hundred deaf/hard of hearing people. Although the issue of Vietnamese Sign Language (VSL) education has received attention from the State, there are still many issues that need to be resolved, such as policies, teacher training in both knowledge and teaching methods, education programs, and textbook compilation. Furthermore, the issue of research on VSL has not yet attracted the attention of linguists. Using the quantitative description method, the article will analyze, synthesize, and compare to find methods to create signed words in VSL, such as based on external shape characteristics, operational characteristics, operating methods, and basic meanings, from which we can see the special nature of signed words, the division of word types and the morphological meaning of creating new words through sign methods. From the results of this research, the aspect of ‘visual culture’ will be clarified in Vietnamese Deaf Culture. Through that, we also develop a number of vocabulary teaching methods (such as teaching vocabulary through a group of methods of forming signed words, teaching vocabulary using mind maps, and teaching vocabulary through culture...), with the aim of further improving the effectiveness of teaching and learning VSL in Vietnam. The research results also provide deaf people in Vietnam with a scientific and effective method of learning vocabulary, helping them quickly integrate into the community. The article will be a useful reference for linguists who want to research VSL.

Keywords: Vietnamese sign language (VSL), signed word, teaching, method

Procedia PDF Downloads 40
15542 Implementation of Learning Disability Annual Review Clinics to Ensure Good Patient Care, Safety, and Equality in Covid-19: A Two Pass Audit in General Practice

Authors: Liam Martin, Martha Watson

Abstract:

Patients with learning disabilities (LD) are at increased risk of physical and mental illness due to health inequality. To address this, NICE recommends that people from the age of 14 with a learning disability should have an annual LD health check. This consultation should include a holistic review of the patient’s physical, mental and social health needs with a view of creating an action plan to support the patient’s care. The expected standard set by the Quality and Outcomes Framework (QOF) is that each general practice should review at least 75% of their LD patients annually. During COVID-19, there have been barriers to primary care, including health anxiety, the shift to online general practice and the increase in GP workloads. A surgery in North London wanted to assess whether they were falling short of the expected standard for LD patient annual reviews in order to optimize care post Covid-19. A baseline audit was completed to assess how many LD patients were receiving their annual reviews over the period of 29th September 2020 to 29th September 2021. This information was accessed using EMIS Web Health Care System (EMIS). Patients included were aged 14 and over as per QOF standards. Doctors were not notified of this audit taking place. Following the results of this audit, the creation of learning disability clinics was recommended. These clinics were recommended to be on the ground floor and should be a dedicated time for LD reviews. A re-audit was performed via the same process 6 months later in March 2022. At the time of the baseline audit, there were 71 patients aged 14 and over that were on the LD register. 54% of these LD patients were found to have documentation of an annual LD review within the last 12 months. None of the LD patients between the ages of 14-18 years old had received their annual review. The results were discussed with the practice, and dedicated clinics were set up to review their LD patients. A second pass of the audit was completed 6 months later. This showed an improvement, with 84% of the LD patients registered at the surgery now having a documented annual review within the last 12 months. 78% of the patients between the ages of 14-18 years old had now been reviewed. The baseline audit revealed that the practice was not meeting the expected standard for LD patient’s annual health checks as outlined by QOF, with the most neglected patients being between the ages of 14-18. Identification and awareness of this vulnerable cohort is important to ensure measures can be put into place to support their physical, mental and social wellbeing. Other practices could consider an audit of their annual LD health checks to make sure they are practicing within QOF standards, and if there is a shortfall, they could consider implementing similar actions as used here; dedicated clinics for LD patient reviews.

Keywords: COVID-19, learning disability, learning disability health review, quality and outcomes framework

Procedia PDF Downloads 88
15541 EFL Learners’ Perceptions in Using Online Tools in Developing Writing Skills

Authors: Zhikal Qadir Salih, Hanife Bensen

Abstract:

As the advent of modern technology continues to make towering impacts on everything, its relevance permeates to all spheres, language learning, and writing skills in particular not an exception. This study aimed at finding out how EFL learners perceive online tools to improve their writing skills. The study was carried out at Tishk University. Copies of the questionnaire were distributed to the participants, in order to elicit their perceptions. The collected data were subjected to descriptive and inferential statistics. The outcome revealed that the participants have positive perceptions about online tools in using them to enhance their writing skills. The study however found out that both gender and the class level of the participants do not make any significant difference in their perceptions about the use of online tools, as far as writing skill is concerned. Based on these outcomes, relevant recommendations were made.

Keywords: online tools, writing skills, EFL learners, language learning

Procedia PDF Downloads 105
15540 Designing Energy Efficient Buildings for Seasonal Climates Using Machine Learning Techniques

Authors: Kishor T. Zingre, Seshadhri Srinivasan

Abstract:

Energy consumption by the building sector is increasing at an alarming rate throughout the world and leading to more building-related CO₂ emissions into the environment. In buildings, the main contributors to energy consumption are heating, ventilation, and air-conditioning (HVAC) systems, lighting, and electrical appliances. It is hypothesised that the energy efficiency in buildings can be achieved by implementing sustainable technologies such as i) enhancing the thermal resistance of fabric materials for reducing heat gain (in hotter climates) and heat loss (in colder climates), ii) enhancing daylight and lighting system, iii) HVAC system and iv) occupant localization. Energy performance of various sustainable technologies is highly dependent on climatic conditions. This paper investigated the use of machine learning techniques for accurate prediction of air-conditioning energy in seasonal climates. The data required to train the machine learning techniques is obtained using the computational simulations performed on a 3-story commercial building using EnergyPlus program plugged-in with OpenStudio and Google SketchUp. The EnergyPlus model was calibrated against experimental measurements of surface temperatures and heat flux prior to employing for the simulations. It has been observed from the simulations that the performance of sustainable fabric materials (for walls, roof, and windows) such as phase change materials, insulation, cool roof, etc. vary with the climate conditions. Various renewable technologies were also used for the building flat roofs in various climates to investigate the potential for electricity generation. It has been observed that the proposed technique overcomes the shortcomings of existing approaches, such as local linearization or over-simplifying assumptions. In addition, the proposed method can be used for real-time estimation of building air-conditioning energy.

Keywords: building energy efficiency, energyplus, machine learning techniques, seasonal climates

Procedia PDF Downloads 116
15539 Domains of Socialization Interview: Development and Psychometric Properties

Authors: Dilek Saritas Atalar, Cansu Alsancak Akbulut, İrem Metin Orta, Feyza Yön, Zeynep Yenen, Joan Grusec

Abstract:

Objective: The aim of this study was to develop semi-structured Domains of Socialization Interview and its coding manual and to test their psychometric properties. Domains of Socialization Interview was designed to assess maternal awareness regarding effective parenting in five socialization domains (protection, mutual reciprocity, control, guided learning, and group participation) within the framework of the domains-of-socialization approach. Method: A series of two studies were conducted to develop and validate the interview and its coding manual. The pilot study, sampled 13 mothers of preschool-aged children, was conducted to develop the assessment tools and to test their function and clarity. Participants of the main study were 82 Turkish mothers (Xage = 34.25, SD = 3.53) who have children aged between 35-76 months (Xage = 50.75, SD = 11.24). Mothers filled in a questionnaire package including Coping with Children’s Negative Emotions Questionnaire, Social Competence and Behavior Evaluation-30, Child Rearing Questionnaire, and Two Dimensional Social Desirability Questionnaire. Afterward, interviews were conducted online by a single interviewer. Interviews were rated independently by two graduate students based on the coding manual. Results: The relationships of the awareness of effective parenting scores to the other measures demonstrate convergent, discriminant, and predictive validity of the coding manual. Intra-class correlation coefficient estimates were ranged between 0.82 and 0.90, showing high interrater reliability of the coding manual. Conclusion: Taken as a whole, the results of these studies demonstrate the validity and reliability of a new and useful interview to measure maternal awareness regarding effective parenting within the framework of the domains-of-socialization approach.

Keywords: domains of socialization, parenting, interview, assessment

Procedia PDF Downloads 192
15538 Sentiment Analysis: Comparative Analysis of Multilingual Sentiment and Opinion Classification Techniques

Authors: Sannikumar Patel, Brian Nolan, Markus Hofmann, Philip Owende, Kunjan Patel

Abstract:

Sentiment analysis and opinion mining have become emerging topics of research in recent years but most of the work is focused on data in the English language. A comprehensive research and analysis are essential which considers multiple languages, machine translation techniques, and different classifiers. This paper presents, a comparative analysis of different approaches for multilingual sentiment analysis. These approaches are divided into two parts: one using classification of text without language translation and second using the translation of testing data to a target language, such as English, before classification. The presented research and results are useful for understanding whether machine translation should be used for multilingual sentiment analysis or building language specific sentiment classification systems is a better approach. The effects of language translation techniques, features, and accuracy of various classifiers for multilingual sentiment analysis is also discussed in this study.

Keywords: cross-language analysis, machine learning, machine translation, sentiment analysis

Procedia PDF Downloads 717
15537 Investigating the Effect of Metaphor Awareness-Raising Approach on the Right-Hemisphere Involvement in Developing Japanese Learners’ Knowledge of Different Degrees of Politeness

Authors: Masahiro Takimoto

Abstract:

The present study explored how the metaphor awareness-raising approach affects the involvement of the right hemisphere in developing EFL learners’ knowledge regarding the different degrees of politeness embedded within different request expressions. The present study was motivated by theoretical considerations regarding the conceptual projection and the metaphorical idea of politeness is distance, as proposed; this study applied these considerations to develop Japanese learners’ knowledge regarding the different politeness degrees and to explore the connection between the metaphorical concept projection and right-hemisphere dominance. Japanese EFL learners do not know certain language strategies (e.g., English requests can be mitigated with biclausal downgraders, including the if-clause with past-tense modal verbs) and have difficulty adjusting the politeness degrees attached to request expressions according to situations. The present study used a pre/post-test design to reaffirm the efficacy of the cognitive technique and its connection to right-hemisphere involvement by mouth asymmetry technique. Mouth asymmetry measurement has been utilized because speech articulation, normally controlled mainly by one side of the brain, causes muscles on the opposite side of the mouth to move more during speech production. The present research did not administer the delayed post-test because it emphasized determining whether metaphor awareness-raising approaches for developing EFL learners’ pragmatic proficiency entailed right-hemisphere activation. Each test contained an acceptability judgment test (AJT) along with a speaking test in the post-test. The study results show that the metaphor awareness-raising group performed significantly better than the control group with regard to acceptability judgment and speaking tests post-test. These data revealed that the metaphor awareness-raising approach could promote L2 learning because it aided input enhancement and concept projection; through these aspects, the participants were able to comprehend an abstract concept: the degree of politeness in terms of the spatial concept of distance. Accordingly, the proximal-distal metaphor enabled the study participants to connect the newly spatio-visualized concept of distance to the different politeness degrees attached to different request expressions; furthermore, they could recall them with the left side of the mouth being wider than the right. This supported certain findings from previous studies that indicated the possible involvement of the brain's right hemisphere in metaphor processing.

Keywords: metaphor awareness-raising, right hemisphere, L2 politeness, mouth asymmetry

Procedia PDF Downloads 156
15536 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach

Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi

Abstract:

Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.

Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.

Procedia PDF Downloads 75
15535 Machine Learning and Internet of Thing for Smart-Hydrology of the Mantaro River Basin

Authors: Julio Jesus Salazar, Julio Jesus De Lama

Abstract:

the fundamental objective of hydrological studies applied to the engineering field is to determine the statistically consistent volumes or water flows that, in each case, allow us to size or design a series of elements or structures to effectively manage and develop a river basin. To determine these values, there are several ways of working within the framework of traditional hydrology: (1) Study each of the factors that influence the hydrological cycle, (2) Study the historical behavior of the hydrology of the area, (3) Study the historical behavior of hydrologically similar zones, and (4) Other studies (rain simulators or experimental basins). Of course, this range of studies in a certain basin is very varied and complex and presents the difficulty of collecting the data in real time. In this complex space, the study of variables can only be overcome by collecting and transmitting data to decision centers through the Internet of things and artificial intelligence. Thus, this research work implemented the learning project of the sub-basin of the Shullcas river in the Andean basin of the Mantaro river in Peru. The sensor firmware to collect and communicate hydrological parameter data was programmed and tested in similar basins of the European Union. The Machine Learning applications was programmed to choose the algorithms that direct the best solution to the determination of the rainfall-runoff relationship captured in the different polygons of the sub-basin. Tests were carried out in the mountains of Europe, and in the sub-basins of the Shullcas river (Huancayo) and the Yauli river (Jauja) with heights close to 5000 m.a.s.l., giving the following conclusions: to guarantee a correct communication, the distance between devices should not pass the 15 km. It is advisable to minimize the energy consumption of the devices and avoid collisions between packages, the distances oscillate between 5 and 10 km, in this way the transmission power can be reduced and a higher bitrate can be used. In case the communication elements of the devices of the network (internet of things) installed in the basin do not have good visibility between them, the distance should be reduced to the range of 1-3 km. The energy efficiency of the Atmel microcontrollers present in Arduino is not adequate to meet the requirements of system autonomy. To increase the autonomy of the system, it is recommended to use low consumption systems, such as the Ashton Raggatt McDougall or ARM Cortex L (Ultra Low Power) microcontrollers or even the Cortex M; and high-performance direct current (DC) to direct current (DC) converters. The Machine Learning System has initiated the learning of the Shullcas system to generate the best hydrology of the sub-basin. This will improve as machine learning and the data entered in the big data coincide every second. This will provide services to each of the applications of the complex system to return the best data of determined flows.

Keywords: hydrology, internet of things, machine learning, river basin

Procedia PDF Downloads 163
15534 Practice, Observation, and Gender Effects on Students’ Entrepreneurial Skills Development When Teaching through Entrepreneurship Is Adopted: Case of University of Tunis El Manar

Authors: Hajer Chaker Ben Hadj Kacem, Thouraya Slama, Néjiba El Yetim Zribi

Abstract:

This paper analyzes the effects of gender, affiliation, prior work experience, social work, and vicarious learning through family role models on entrepreneurial skills development by students when they have learned through the entrepreneurship method in Tunisia. Authors suggest that these variables enhance the development of students’ entrepreneurial skills when combined with teaching through entrepreneurship. The article assesses the impact of these combinations by comparing their effects on the development of thirteen students’ entrepreneurial competencies, namely entrepreneurial mindset, core self-evaluation, entrepreneurial attitude, entrepreneurial knowledge, creativity, financial literacy, managing ambiguity, marshaling of resources, planning, teaching methods, entrepreneurial teachers, innovative employee, and Entrepreneurial intention. Authors use a two-sample independent t-test to make the comparison, and the results indicate that, when combined with teaching through the entrepreneurship method, students with prior work experience developed better six entrepreneurial skills; students with social work developed better three entrepreneurial skills, men developed better four entrepreneurial skills than women. However, all students developed their entrepreneurial skills through this practical method regardless of their affiliation and their vicarious learning through family role models.

Keywords: affiliation, entrepreneurial skills, gender, role models, social work, teaching through entrepreneurship, vicarious learning, work experience

Procedia PDF Downloads 112
15533 On the Influence of Sleep Habits for Predicting Preterm Births: A Machine Learning Approach

Authors: C. Fernandez-Plaza, I. Abad, E. Diaz, I. Diaz

Abstract:

Births occurring before the 37th week of gestation are considered preterm births. A threat of preterm is defined as the beginning of regular uterine contractions, dilation and cervical effacement between 23 and 36 gestation weeks. To author's best knowledge, the factors that determine the beginning of the birth are not completely defined yet. In particular, the incidence of sleep habits on preterm births is weekly studied. The aim of this study is to develop a model to predict the factors affecting premature delivery on pregnancy, based on the above potential risk factors, including those derived from sleep habits and light exposure at night (introduced as 12 variables obtained by a telephone survey using two questionnaires previously used by other authors). Thus, three groups of variables were included in the study (maternal, fetal and sleep habits). The study was approved by Research Ethics Committee of the Principado of Asturias (Spain). An observational, retrospective and descriptive study was performed with 481 births between January 1, 2015 and May 10, 2016 in the University Central Hospital of Asturias (Spain). A statistical analysis using SPSS was carried out to compare qualitative and quantitative variables between preterm and term delivery. Chi-square test qualitative variable and t-test for quantitative variables were applied. Statistically significant differences (p < 0.05) between preterm vs. term births were found for primiparity, multi-parity, kind of conception, place of residence or premature rupture of membranes and interruption during nights. In addition to the statistical analysis, machine learning methods to look for a prediction model were tested. In particular, tree based models were applied as the trade-off between performance and interpretability is especially suitable for this study. C5.0, recursive partitioning, random forest and tree bag models were analysed using caret R-package. Cross validation with 10-folds and parameter tuning to optimize the methods were applied. In addition, different noise reduction methods were applied to the initial data using NoiseFiltersR package. The best performance was obtained by C5.0 method with Accuracy 0.91, Sensitivity 0.93, Specificity 0.89 and Precision 0.91. Some well known preterm birth factors were identified: Cervix Dilation, maternal BMI, Premature rupture of membranes or nuchal translucency analysis in the first trimester. The model also identifies other new factors related to sleep habits such as light through window, bedtime on working days, usage of electronic devices before sleeping from Mondays to Fridays or change of sleeping habits reflected in the number of hours, in the depth of sleep or in the lighting of the room. IF dilation < = 2.95 AND usage of electronic devices before sleeping from Mondays to Friday = YES and change of sleeping habits = YES, then preterm is one of the predicting rules obtained by C5.0. In this work a model for predicting preterm births is developed. It is based on machine learning together with noise reduction techniques. The method maximizing the performance is the one selected. This model shows the influence of variables related to sleep habits in preterm prediction.

Keywords: machine learning, noise reduction, preterm birth, sleep habit

Procedia PDF Downloads 151
15532 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator

Procedia PDF Downloads 252
15531 Top-Down, Middle-Out, Bottom-Up: A Design Approach to Transforming Prison

Authors: Roland F. Karthaus, Rachel S. O'Brien

Abstract:

Over the past decade, the authors have undertaken applied research aimed at enabling transformation within the prison service to improve conditions and outcomes for those living, working and visiting in prisons in the UK and the communities they serve. The research has taken place against a context of reducing resources and public discontent at increasing levels of violence, deteriorating conditions and persistently high levels of re-offending. Top-down governmental policies have mainly been ineffectual and in some cases counter-productive. The prison service is characterised by hierarchical organisation, and the research has applied design thinking at multiple levels to challenge and precipitate change: top-down, middle-out and bottom-up. The research employs three distinct but related approaches, system design (top-down): working at the national policy level to analyse the changing policy context, identifying opportunities and challenges; engaging with the Ministry of Justice commissioners and sector organisations to facilitate debate, introducing new evidence and provoking creative thinking, place-based design (middle-out): working with individual prison establishments as pilots to illustrate and test the potential for local empowerment, creative change, and improved architecture within place-specific contexts and organisational hierarchies, everyday design (bottom-up): working with individuals in the system to explore the potential for localised, significant, demonstrator changes; including collaborative design, capacity building and empowerment in skills, employment, communication, training, and other activities. The research spans a series of projects, through which the methodological approach has developed responsively. The projects include a place-based model for the re-purposing of Ministry of Justice land assets for the purposes of rehabilitation; an evidence-based guide to improve prison design for health and well-being; capacity-based employment, skills and self-build project as a template for future open prisons. The overarching research has enabled knowledge to be developed and disseminated through policy and academic networks. Whilst the research remains live and continuing; key findings are emerging as a basis for a new methodological approach to effecting change in the UK prison service. An interdisciplinary approach is necessary to overcome the barriers between distinct areas of the prison service. Sometimes referred to as total environments, prisons encompass entire social and physical environments which themselves are orchestrated by institutional arms of government, resulting in complex systems that cannot be meaningfully engaged through narrow disciplinary lenses. A scalar approach is necessary to connect strategic policies with individual experiences and potential, through the medium of individual prison establishments, operating as discrete entities within the system. A reflexive process is necessary to connect research with action in a responsive mode, learning to adapt as the system itself is changing. The role of individuals in the system, their latent knowledge and experience and their ability to engage and become agents of change are essential. Whilst the specific characteristics of the UK prison system are unique, the approach is internationally applicable.

Keywords: architecture, design, policy, prison, system, transformation

Procedia PDF Downloads 137
15530 Education for Sustainable Development Pedagogies: Examining the Influences of Context on South African Natural Sciences and Technology Teaching and Learning

Authors: A. U. Ugwu

Abstract:

Post-Apartheid South African education system had witnessed waves of curriculum reforms. Accordingly, there have been evidences of responsiveness towards local and global challenges of sustainable development over the past decade. In other words, the curriculum shows sensitivity towards issues of Sustainable Development (SD). Moreover, the paradigm of Sustainable Development Goals (SDGs) was introduced by the UNESCO in year 2015. The SDGs paradigm is essentially a vision towards actualizing sustainability in all aspects of the global society. Education for Sustainable Development (ESD) in retrospect entails teaching and learning to actualize the intended UNESCO 2030 SDGs. This paper explores how teaching and learning of ESD can be improved, by drawing from local context of the South African schooling system. Preservice natural sciences and technology teachers in their 2nd to 4th years of study at a university’s college of education in South Africa were contacted as participants of the study. Using qualitative case study research design, the study drew from the views and experiences of five (5) purposively selected participants from a broader study, aiming to closely understating how ESD is implemented pedagogically in teaching and learning. The inquiry employed questionnaires and a focus group discussion as qualitative data generation tools. A qualitative data analysis of generated data was carried out using content and thematic analysis, underpinned by interpretive paradigm. The result of analyzed data, suggests that ESD pedagogy at the location where this research was conducted is largely influenced by contextual factors. Furthermore, the result of the study shows that there is a critical need to employ/adopt local experiences or occurrences while teaching sustainable development. Certain pedagogical approaches such as the use of videos relative to local context should also be considered in order to achieve a more realistic application. The paper recommends that educational institutions through teaching and learning should implement ESD by drawing on local contexts and problems, thereby foregrounding constructivism, appreciating and fostering students' prior knowledge and lived experiences.

Keywords: context, education for sustainable development, natural sciences and technology preservice teachers, qualitative research, sustainable development goals

Procedia PDF Downloads 170
15529 Cigarette Smoke Detection Based on YOLOV3

Authors: Wei Li, Tuo Yang

Abstract:

In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes.

Keywords: deep learning, computer vision, cigarette smoke detection, YOLOV3, color feature extraction

Procedia PDF Downloads 90
15528 The Problem of the Use of Learning Analytics in Distance Higher Education: An Analytical Study of the Open and Distance University System in Mexico

Authors: Ismene Ithai Bras-Ruiz

Abstract:

Learning Analytics (LA) is employed by universities not only as a tool but as a specialized ground to enhance students and professors. However, not all the academic programs apply LA with the same goal and use the same tools. In fact, LA is formed by five main fields of study (academic analytics, action research, educational data mining, recommender systems, and personalized systems). These fields can help not just to inform academic authorities about the situation of the program, but also can detect risk students, professors with needs, or general problems. The highest level applies Artificial Intelligence techniques to support learning practices. LA has adopted different techniques: statistics, ethnography, data visualization, machine learning, natural language process, and data mining. Is expected that any academic program decided what field wants to utilize on the basis of his academic interest but also his capacities related to professors, administrators, systems, logistics, data analyst, and the academic goals. The Open and Distance University System (SUAYED in Spanish) of the University National Autonomous of Mexico (UNAM), has been working for forty years as an alternative to traditional programs; one of their main supports has been the employ of new information and communications technologies (ICT). Today, UNAM has one of the largest network higher education programs, twenty-six academic programs in different faculties. This situation means that every faculty works with heterogeneous populations and academic problems. In this sense, every program has developed its own Learning Analytic techniques to improve academic issues. In this context, an investigation was carried out to know the situation of the application of LA in all the academic programs in the different faculties. The premise of the study it was that not all the faculties have utilized advanced LA techniques and it is probable that they do not know what field of study is closer to their program goals. In consequence, not all the programs know about LA but, this does not mean they do not work with LA in a veiled or, less clear sense. It is very important to know the grade of knowledge about LA for two reasons: 1) This allows to appreciate the work of the administration to improve the quality of the teaching and, 2) if it is possible to improve others LA techniques. For this purpose, it was designed three instruments to determinate the experience and knowledge in LA. These were applied to ten faculty coordinators and his personnel; thirty members were consulted (academic secretary, systems manager, or data analyst, and coordinator of the program). The final report allowed to understand that almost all the programs work with basic statistics tools and techniques, this helps the administration only to know what is happening inside de academic program, but they are not ready to move up to the next level, this means applying Artificial Intelligence or Recommender Systems to reach a personalized learning system. This situation is not related to the knowledge of LA, but the clarity of the long-term goals.

Keywords: academic improvements, analytical techniques, learning analytics, personnel expertise

Procedia PDF Downloads 129
15527 Resource Allocation and Task Scheduling with Skill Level and Time Bound Constraints

Authors: Salam Saudagar, Ankit Kamboj, Niraj Mohan, Satgounda Patil, Nilesh Powar

Abstract:

Task Assignment and Scheduling is a challenging Operations Research problem when there is a limited number of resources and comparatively higher number of tasks. The Cost Management team at Cummins needs to assign tasks based on a deadline and must prioritize some of the tasks as per business requirements. Moreover, there is a constraint on the resources that assignment of tasks should be done based on an individual skill level, that may vary for different tasks. Another constraint is for scheduling the tasks that should be evenly distributed in terms of number of working hours, which adds further complexity to this problem. The proposed greedy approach to solve assignment and scheduling problem first assigns the task based on management priority and then by the closest deadline. This is followed by an iterative selection of an available resource with the least allocated total working hours for a task, i.e. finding the local optimal choice for each task with the goal of determining the global optimum. The greedy approach task allocation is compared with a variant of Hungarian Algorithm, and it is observed that the proposed approach gives an equal allocation of working hours among the resources. The comparative study of the proposed approach is also done with manual task allocation and it is noted that the visibility of the task timeline has increased from 2 months to 6 months. An interactive dashboard app is created for the greedy assignment and scheduling approach and the tasks with more than 2 months horizon that were waiting in a queue without a delivery date initially are now analyzed effectively by the business with expected timelines for completion.

Keywords: assignment, deadline, greedy approach, Hungarian algorithm, operations research, scheduling

Procedia PDF Downloads 149
15526 NextCovps: Design and Stress Analysis of Dome Composite Overwrapped Pressure Vessels using Geodesic Trajectory Approach

Authors: Ammar Maziz, Prateek Gupta, Thiago Vasconcellos Birro, Benoit Gely

Abstract:

Hydrogen as a sustainable fuel has the highest energy density per mass as compared to conventional non-renewable sources. As the world looks to move towards sustainability, especially in the sectors of aviation and automotive, it becomes important to address the issue of storage of hydrogen as compressed gas in high-pressure tanks. To improve the design for the efficient storage and transportation of Hydrogen, this paper presents the design and stress analysis of Dome Composite Overwrapped Pressure Vessels (COPVs) using the geodesic trajectory approach. The geodesic trajectory approach is used to optimize the dome design, resulting in a lightweight and efficient structure. Python scripting is employed to implement the mathematical modeling of the COPV, and after validating the model by comparison to the published paper, stress analysis is conducted using Abaqus commercial code. The results demonstrate the effectiveness of the geodesic trajectory approach in achieving a lightweight and structurally sound dome design, as well as the accuracy and reliability of the stress analysis using Abaqus commercial code. This study provides insights into the design and analysis of COPVs for aerospace applications, with the potential for further optimization and application in other industries.

Keywords: composite overwrapped pressure vessels, carbon fiber, geodesic trajectory approach, dome design, stress analysis, plugin python

Procedia PDF Downloads 95
15525 Y-Y’ Calculus in Physical Sciences and Engineering with Particular Reference to Fundamentals of Soil Consolidation

Authors: Sudhir Kumar Tewatia, Kanishck Tewatia, Anttriksh Tewatia

Abstract:

Advancements in soil consolidation are discussed, and further improvements are proposed with particular reference to Tewatia’s Y-Y’ Approach, which is called the Settlement versus Rate of Settlement Approach in consolidation. A branch of calculus named Y-Y' (or y versus dy/dx) is suggested (as compared to the common X-Y', x versus dy/dx, dy/dx versus x or Newton-Leibniz branch) that solves some complicated/unsolved theoretical and practical problems in physical sciences (Physics, Chemistry, Mathematics, Biology, and allied sciences) and engineering in an amazingly simple and short manner, particularly when independent variable X is unknown and X-Y' Approach can’t be used. Complicated theoretical and practical problems in 1D, 2D, 3D Primary and Secondary consolidations with non-uniform gradual loading and irregularly shaped clays are solved with elementary school level Y-Y' Approach, and it is interesting to note that in X-Y' Approach, equations become more difficult while we move from one to three dimensions, but in Y-Y' Approach even 2D/3D equations are very simple to derive, solve, and use; rather easier sometimes. This branch of calculus will have a far-reaching impact on understanding and solving the problems in different fields of physical sciences and engineering that were hitherto unsolved or difficult to be solved by normal calculus/numerical/computer methods. Some particular cases from soil consolidation that basically creeps and diffusion equations in isolation and in combination with each other are taken for comparison with heat transfer. The Y-Y’ Approach can similarly be applied in wave equations and other fields wherever normal calculus works or fails. Soil mechanics uses mathematical analogies from other fields of physical sciences and engineering to solve theoretical and practical problems; for example, consolidation theory is a replica of the heat equation from thermodynamics with the addition of the effective stress principle. An attempt is made to give them mathematical analogies.

Keywords: calculus, clay, consolidation, creep, diffusion, heat, settlement

Procedia PDF Downloads 98
15524 Beyond Juridical Approaches: The Role of Sociological Approach in Promoting Human Rights of Migrants

Authors: Ali Aghahosseini Dehaghani

Abstract:

Every year in this globalized world, thousands of migrants leave their countries hoping to find a better situation of life in other parts of the world. In this regard, many questions, from a human rights point of view, have been raised about how this phenomenon should be managed in the host countries. Although legal approaches such as legislation and litigation are inevitable in the way to respect the human rights of migrants, there is an increasing consensus about the fact that a strict juridical approach is inadequate to protect as well as to prevent violations of migrants’ rights. Indeed, given the multiplicity of factors that affect and shape the application of these rights and considering the fact that law is a social phenomenon, what is needed is an interdisciplinary approach, which combines both juridical approaches and perspectives from other disciplines. In this respect, a sociological approach is important because it shows the social processes through which human rights of migrants have been constructed or violated in particular social situations. Sociologists who study international migration ask the questions such as how many people migrate, who migrates, why people migrate, what happens to them once they arrive in the host country, how migration affects sending and receiving communities, the extent to which migrants help the economy, the effects of migration on crimes, and how migrants change the local communities. This paper is an attempt to show how sociology can promote human rights of migrants. To this end, the article first explores the usefulness and value of an interdisciplinary approach to realize how and to what extent sociology may improve and promote the human rights of migrants in the destination country. It then examines mechanisms which help to reach to a systematic integration of law and sociological discipline to advance migrants’ rights as well as to encourage legal scholars to consider the implications of societal structures in their works.

Keywords: human rights, migrants, sociological approach, interdisciplinary study

Procedia PDF Downloads 456
15523 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery

Authors: Forouzan Salehi Fergeni

Abstract:

Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.

Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine

Procedia PDF Downloads 53
15522 Regional Advantages Analysis: An Interactive Approach of Comparative and Competitive Advantages

Authors: Abdolrasoul Ghasemi, Ali Arabmazar Yazdi, Yasaman Boroumand, Aliasghar Banouei

Abstract:

In regional studies, choosing an appropriate approach to analyze regional success or failure has always been a challenge. Hence, this study introduces an innovative approach to establish a link between regional success and failure in the past as well as the potential success of a region in the future. The former can be sought in the historical evaluation of comparative advantages, while the latter is portrayed as competitive advantage analysis with a forward-looking approach. Based on the interaction of comparative and competitive advantages, activities are classified into four groups, including activities with no advantage, hidden advantage, fragile advantage and synergistic advantage. In analyzing the comparative advantage of activities, the location quotient method is applied, and in analyzing their competitive advantage, Porter`s diamond model using the survey method is applied. According to the results, the share of no advantage, fragile advantage, hidden advantage and synergic advantage activities are respectively 10%, 42%, 16%, and 32%. Also, to achieve economic development in regional activities, our model provides various levels of priority. First, the activities with synergistic advantage should be prioritized, then the ones with hidden advantage, and finally the activities with fragile advantage.

Keywords: regional advantage, comparative advantage, competitive advantage, Porter's diamond model

Procedia PDF Downloads 355
15521 Stock Price Prediction Using Time Series Algorithms

Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava

Abstract:

This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.

Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series

Procedia PDF Downloads 145
15520 Existential Concerns and Related Manifestations of Higher Learning Institution Students in Ethiopia: A Case Study of Aksum University

Authors: Ezgiamn Abraha Hagos

Abstract:

The primary objective of this study was to assess the existential concerns and related manifestations of higher learning students by investigating their perception of meaningful life and evaluating their purpose in life. In addition, this study was aimed at assessing the manifestations of existential pain among the students. Data was procured using Purpose in Life test (PIL), Well-being Manifestation Measure Scale (WBMMS), and focus group discussion. The total numbers of participants was 478, of which 299 were males and the remaining 179 females. They were selected using a simple random sampling technique. Data was analyzed using two ways. SPSS-version 20 was used to analyze the quantitative part, and narrative modes were utilized to analyze the qualitative data. The research finding revealed that students are involved in risk taking behaviors like alcohol ingestion, drug use, Khat (chat) chewing, and unsafe sex. In line with this it is found out that life in campus was perceived as temporary and as a result the sense of hedonism was prevalent at any cost. Of course, the most important thing for the majority of the students was to know about the purpose of life. Regarding WBMMS, there was no statistically significant difference among males and females and with the exception of the sub-scale of happiness; in all the sub-scales the mean is low. At last, assisting adolescents to develop holistically in terms of body, mind, and spirit is recommended.

Keywords: existential concerns, higher learning institutions, Ethiopia, Aksum University

Procedia PDF Downloads 431
15519 Influence of Readability of Paper-Based Braille on Vertical and Horizontal Dot Spacing in Braille Beginners

Authors: K. Doi, T. Nishimura, H. Fujimoto

Abstract:

The number of people who become visually impaired and do not have sufficient tactile experiences has increased by various disease. Especially, many acquired visually impaired persons due to accidents, disorders, and aging cannot adequately read Braille. It is known that learning Braille requires a great deal of time and the acquisition of various skills. In our previous studies, we reported one of the problems in learning Braille. Concretely, the standard Braille size is too small for Braille beginners. And also we are short of the objective data regarding easily readable Braille size. Therefore, it is necessary to conduct various experiments for evaluating Braille size that would make learning easier for beginners. In this study, for the purpose of investigating easy-to-read conditions of vertical and horizontal dot spacing for beginners, we conducted one Braille reading experiment. In this our experiment, we prepared test pieces by use of our original Braille printer with controlling function of Braille size. We specifically considered Braille beginners with acquired visual impairments who were unfamiliar with Braille. Therefore, ten sighted subjects with no experience of reading Braille participated in this experiment. Size of vertical and horizontal dot spacing was following conditions. Each dot spacing was 2.0, 2.3, 2.5, 2.7, 2.9, 3.1mm. The subjects were asked to read one Braille character with controlled Braille size. The results of this experiment reveal that Braille beginners can read Braille accurately and quickly when both vertical and horizontal dot spacing are 3.1 mm or more. This knowledge will be helpful data in considering Braille size for acquired visually impaired persons.

Keywords: paper-based Braille, vertical and horizontal dot spacing, readability, acquired visual impairment, Braille beginner

Procedia PDF Downloads 180