Search results for: learning assessment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12270

Search results for: learning assessment

8640 Differential Approach to Technology Aided English Language Teaching: A Case Study in a Multilingual Setting

Authors: Sweta Sinha

Abstract:

Rapid evolution of technology has changed language pedagogy as well as perspectives on language use, leading to strategic changes in discourse studies. We are now firmly embedded in a time when digital technologies have become an integral part of our daily lives. This has led to generalized approaches to English Language Teaching (ELT) which has raised two-pronged concerns in linguistically diverse settings: a) the diverse linguistic background of the learner might interfere/ intervene with the learning process and b) the differential level of already acquired knowledge of target language might make the classroom practices too easy or too difficult for the target group of learners. ELT needs a more systematic and differential pedagogical approach for greater efficiency and accuracy. The present research analyses the need of identifying learner groups based on different levels of target language proficiency based on a longitudinal study done on 150 undergraduate students. The learners were divided into five groups based on their performance on a twenty point scale in Listening Speaking Reading and Writing (LSRW). The groups were then subjected to varying durations of technology aided language learning sessions and their performance was recorded again on the same scale. Identifying groups and introducing differential teaching and learning strategies led to better results compared to generalized teaching strategies. Language teaching includes different aspects: the organizational, the technological, the sociological, the psychological, the pedagogical and the linguistic. And a facilitator must account for all these aspects in a carefully devised differential approach meeting the challenge of learner diversity. Apart from the justification of the formation of differential groups the paper attempts to devise framework to account for all these aspects in order to make ELT in multilingual setting much more effective.

Keywords: differential groups, English language teaching, language pedagogy, multilingualism, technology aided language learning

Procedia PDF Downloads 393
8639 Levels of Reflection in Engineers EFL Learners: The Path to Content and Language Integrated Learning Implementation in Chilean Higher Education

Authors: Sebastián Olivares Lizana, Marianna Oyanedel González

Abstract:

This study takes part of a major project based on implementing a CLIL program (Content and Language Integrated Learning) at Universidad Técnica Federico Santa María, a leading Chilean tertiary Institution. It aims at examining the relationship between the development of Reflective Processes (RP) and Cognitive Academic Language Proficiency (CALP) in weekly learning logs written by faculty members, participants of an initial professional development online course on English for Academic Purposes (EAP). Such course was designed with a genre-based approach, and consists of multiple tasks directed to academic writing proficiency. The results of this analysis will be described and classified in a scale of key indicators that represent both the Reflective Processes and the advances in CALP, and that also consider linguistic proficiency and task progression. Such indicators will evidence affordances and constrains of using a genre-based approach in an EFL Engineering CLIL program implementation at tertiary level in Chile, and will serve as the starting point to the design of a professional development course directed to teaching methodologies in a CLIL EFL environment in Engineering education at Universidad Técnica Federico Santa María.

Keywords: EFL, EAL, genre, CLIL, engineering

Procedia PDF Downloads 399
8638 Intensive Intercultural English Language Pedagogy among Parents from Culturally and Linguistically Diverse Backgrounds (CALD)

Authors: Ann Dashwood

Abstract:

Using Standard Australian English with confidence is a cultural expectation of parents of primary school aged children who want to engage effectively with their children’s teachers and school administration. That confidence in support of their children’s learning at school is seldom experienced by parents whose first language is not English. Sharing language with competence in an intercultural environment is the common denominator for meaningful communication and engagement to occur in a school community. Experience in relevant, interactive sessions is known to enhance engagement and participation. The purpose of this paper is to identify a pedagogy for parents otherwise isolated from daily use of functional Australian cultural language learned to engage effectively in their children’s learning at school. The outcomes measure parents’ intercultural engagement with classroom teachers and attention to the school’s administrative procedures using quantitative and qualitative methods. A principled communicative task-based language learning approach, combined with intercultural communication strategies provide the theoretical base for intensive English inquiry-based learning and engagement. The quantitative analysis examines data samples collected by classroom teachers and administrators and parents’ writing samples. Interviews and observations qualitatively inform the study. Currently, significant numbers of projects are active in community centers and schools to enhance English language knowledge of parents from Language Backgrounds Other Than English (LBOTE). The study is significant to explore the effects of an intensive English pedagogy with parents of varied English language backgrounds, by targeting inquiry-based language use for social interactions in the school and wider community, specific engagement and cultural interaction with teachers and school activities and procedures.

Keywords: engagement, intercultural communication, language teaching pedagogy, LBOTE, school community

Procedia PDF Downloads 123
8637 Application of Digital Tools for Improving Learning

Authors: José L. Jiménez

Abstract:

The use of technology in the classroom is an issue that is constantly evolving. Digital age students learn differently than their teachers did, so now the teacher should be constantly evolving their methods and teaching techniques to be more in touch with the student. In this paper a case study presents how were used some of these technologies by accompanying a classroom course, this in order to provide students with a different and innovative experience as their teacher usually presented the activities to develop. As students worked in the various activities, they increased their digital skills by employing unknown tools that helped them in their professional training. The twenty-first century teacher should consider the use of Information and Communication Technologies in the classroom thinking in skills that students of the digital age should possess. It also takes a brief look at the history of distance education and it is also highlighted the importance of integrating technology as part of the student's training.

Keywords: digital tools, on-line learning, social networks, technology

Procedia PDF Downloads 406
8636 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms

Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna

Abstract:

In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.

Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove

Procedia PDF Downloads 305
8635 Knowledge, Attitude, and Practices of Nurses on the Pain Assessment and Management in Level 3 Hospitals in Manila

Authors: Florence Roselle Adalin, Misha Louise Delariarte, Fabbette Laire Lagas, Sarah Emanuelle Mejia, Lika Mizukoshi, Irish Paullen Palomeno, Gibrianne Alistaire Ramos, Danica Pauline Ramos, Josefina Tuazon, Jo Leah Flores

Abstract:

Pain, often a missed and undertreated symptom, affects the quality of life of individuals. Nurses are key players in providing effective pain management to decrease morbidity and mortality of patients in pain. Nurses’ knowledge and attitude on pain greatly affect their ability on assessment and management. The Pain Society of the Philippines recognized the inadequacy and inaccessibility of data on the knowledge, skills, and attitude of nurses on pain management in the country. This study may be the first of its kind in the county, giving it the potential to contribute greatly to nursing education and practice through providing valuable baseline data. Objectives: This study aims to describe the level of knowledge and attitude, and current practices of nurses on pain assessment and management; and determine the relationship of nurses’ knowledge and attitude with years of experience, training on pain management and clinical area of practice. Methodology: A survey research design was employed. Four hospitals were selected through purposive sampling. A total of 235 Medical-Surgical Unit and Intensive Care Unit (ICU) nurses participated in the study. The tool used is a combination of demographic survey, Nurses’ Knowledge and Attitude Survey Regarding Pain (NKASRP), Acute Pain Evidence Based Practice Questionnaire (APEBPQ) with self-report questions on non-pharmacologic pain management. The data obtained was analysed using descriptive statistics, two sample T-tests for clinical areas and training; and Pearson product correlation to identify relationship of level of knowledge and attitude with years of experience. Results and Analysis: The mean knowledge and attitude score of the nurses was 47.14%. Majority answered ‘most of the time’ or ‘all the time’ on 84.12% of practice items on pain assessment, implementation of non-pharmacologic interventions, evaluation and documentation. Three of 19 practice items describing morphine and opioid administration in special populations were only done ‘a little of the time’. Most utilized non-pharmacologic interventions were deep breathing exercises (79.66%), massage therapy (27.54%), and ice therapy (26.69%). There was no significant relationship between knowledge scores and years of clinical experience (p = 0.05, r= -0.09). Moreover, there was not enough evidence to show difference in nurses’ knowledge and attitude scores in relation to presence of training (p = 0.41) or areas (Medical-Surgical or ICU) of clinical practice (p = 0.53). Conclusion and Recommendations: Findings of the study showed that the level of knowledge and attitude of nurses on pain assessment and management is suboptimal; and no relationship between nurses’ knowledge and attitude and years of experience. It is recommended that further studies look into the nursing curriculum on pain education, culture-specific pain management protocols and evidence-based practices in the country.

Keywords: knowledge and attitude, nurses, pain management, practices on pain management

Procedia PDF Downloads 350
8634 Clinical Audit of Selected Nephrology Nursing Procedures Performed in Nephrology Unit of AIIMS with a View to Develop Nephrology Nursing Procedure Protocol

Authors: Mamta Thakur, Dr. Shashi Mawar, Ms. Levis Murry, Dr. D.k.sharma

Abstract:

Aim: The aim of this study is to develop nephrology nursing procedure protocol after clinical audit of current nephrology nursing practices. Materials and methods: This descriptive observational study was conducted on 40 nurses who were working in Nephrology Department of AIIMS, New Delhi to observe their current practices to assess the existing gaps in the practice. The nurses were enrolled through total enumerative sampling. Sociodemographic profile of nurses and clinical profile for site of procedure was collected. Observation checklist was formed on the basis of standard nursing practices, which included 7 dimensions for hemodialysis procedure and 3 dimensions for procedure of assisting renal biopsy. Based on the gaps identified, nephrology nursing procedure protocol will be developed. Nurses were observed during two shifts, and each nurse was observed once. Scoring of items were done in each dimension, and for acceptable practices, nurses have to score ≥80% in each dimension. Results: Data was analyzed using descriptive statistics. Majority of nurses (73.7%) in nephrology ward and (80.9%) in hemodialysis unit have not undergone any special training in nephrology. Most of nurses (80.9%) followed the acceptable nursing practices for procedure of connection for hemodialysis. None of nurses followed the acceptable level (≥80%) of nursing practices for the procedure of predialysis assessment, the procedure for site preparation, during dialysis assessment and post dialysis assessment. None (100%) showed the acceptable level of nursing practices for all the dimensions of assisting renal biopsy procedure. Nephrology nursing procedure protocol was developed by researcher following a rigorous process, and this will reduce the gaps in the nursing practice. Conclusion: Clinical audit found that there were gaps in the existing nursing practices compared to the standardised nursing practices for procedure of hemodialysis and assisting renal biopsy, and these gaps have been addressed by the development of the protocol.

Keywords: nursing practice, nephrology nursing procedure, nursing protocol, renal biopsy, hemodialysis

Procedia PDF Downloads 105
8633 The Impact of Neonatal Methamphetamine on Spatial Learning and Memory of Females in Adulthood

Authors: Ivana Hrebickova, Maria Sevcikova, Romana Slamberova

Abstract:

The present study was aimed at evaluation of cognitive changes following scheduled neonatal methamphetamine exposure in combination with long-term exposure in adulthood of female Wistar rats. Pregnant mothers were divided into two groups: group with indirect exposure (methamphetamine in dose 5 mg/ml/kg, saline in dose 1 ml/kg) during early lactation period (postnatal day 1–11) - progeny of these mothers were exposed to the effects of methamphetamine or saline indirectly via the breast milk; and the second group with direct exposure – all mothers were left intact for the entire lactation period, while progeny was treated with methamphetamine (5 mg/ml/kg) by injection or the control group, which was received needle pick (shame, not saline) at the same time each day of period of application (postnatal day 1–11). Learning ability and memory consolidation were tested in the Morris Water Maze, which consisted of three types of tests: ‘Place Navigation Test ‘; ‘Probe Test ‘; and ‘Memory Recall Test ‘. Adult female progeny were injected daily, after completion last trial with saline or methamphetamine (1 mg/ml/kg). We compared the effects of indirect/direct neonatal methamphetamine exposure and adult methamphetamine treatment on cognitive function of female rats. Statistical analyses showed that neonatal methamphetamine exposure worsened spatial learning and ability to remember the position of the platform. The present study demonstrated that direct methamphetamine exposure has more significant impact on process of learning and memory than indirect exposure. Analyses of search strategies (thigmotaxis, scanning) used by females during the Place Navigation Test and Memory Recall Test confirm all these results.

Keywords: methamphetamine, Morris water maze, neonatal exposure, strategies, Wistar rats

Procedia PDF Downloads 267
8632 Fraud Detection in Credit Cards with Machine Learning

Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf

Abstract:

Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.

Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine

Procedia PDF Downloads 151
8631 Analysis of Subjective Indicators of Quality of Life in Makurdi

Authors: Irene Doosuur Mngutyo

Abstract:

The preliminary stages in the development of human communities are the formation of a correct understanding of people’s needs. However, perception of human needs is highly subjective and difficult to aggregate. Quality of life measurements are an appropriate means for achieving an understanding of Human needs. Hence this study endeavors to measure quality of life in Makurdi using subjective indices to measure three aspects of subjective wellbeing. A sample of 400 respondents achieved by applying the Taro Yamane formula to Makurdi’s projected population. Questionnaires were randomly distributed to residents of nine wards in Makurdi. Findings from a pilot study( N=100) demonstrated that among the 2 aspects of overall quality of life investigated,22% had a mean low overall assessment of quality of life now being3on the scale and an even poorer assessment for projected quality in the next five years by 17%(3)although an equal percentage are hopeful for a better life(10)in the next five years.60% of the respondents record very rare positive feelings while only 10% have positive feelings always on the eudaimonic scale69%strongly agree that they have a purposeful and meaningful life. Findings indicate good social ties as a strong indicator for perceived good feelings and even though quality of life is perceived as low there is optimism for the future.

Keywords: quality of life, subjective indicators, development, urban planning

Procedia PDF Downloads 402
8630 Pakistan’s Taxation System: A Critical Appraisal

Authors: Khalid Javed, Rashid Mahmood

Abstract:

The constitution empowers the Federal Government to collect taxes on income other than agricultural income, taxes on capital value, customs, excise duties and sales taxes. The Central Board of Revenue (CBR) and its subordinate departments administer the tax system. Each of the three principal taxes has a different history and different set of issues. For a large number of income tax payers the core of the business process is pre-audit and assessment by a tax official. This process gives considerable discretion to tax officials, with potential for abuse. Moreover, this process is also not tenable as the number of taxpayers increase. The report is focused on a total overhaul of the process and organization of income tax. Sales tax is recent and its process and organization is adjusted to the needs of an expanding tax base. These are based on self-assessment and selective audit. Similarly, in customs the accent is on accelerating and broadening the changes begun in recent years. Before long, central excise will be subsumed in sales tax. During the nineties, despite many changes in the tax regime and introduction of withholding and presumptive taxes, Federal Government tax to GDP ratio has varied narrowly around eleven percent. The tax base has grown but still remains narrow and skewed. The number of income tax filers is around one million.

Keywords: central board of revenue, GDP, sale tax, income tax

Procedia PDF Downloads 448
8629 Data Quality on Regular Immunization Programme at Birkod District: Somali Region, Ethiopia

Authors: Eyob Seife, Tesfalem Teshome, Bereket Seyoum, Behailu Getachew, Yohans Demis

Abstract:

Developing countries continue to face preventable communicable diseases, such as vaccine-preventable diseases. The Expanded Programme on Immunization (EPI) was established by the World Health Organization in 1974 to control these diseases. Health data use is crucial in decision-making, but ensuring data quality remains challenging. The study aimed to assess the accuracy ratio, timeliness, and quality index of regular immunization programme data in the Birkod district of the Somali Region, Ethiopia. For poor data quality, technical, contextual, behavioral, and organizational factors are among contributors. The study used a quantitative cross-sectional design conducted in September 2022GC using WHO-recommended data quality self-assessment tools. The accuracy ratio and timeliness of reports on regular immunization programmes were assessed for two health centers and three health posts in the district for one fiscal year. Moreover, the quality index assessment was conducted at the district level and health facilities by trained assessors. The study found poor data quality in the accuracy ratio and timeliness of reports at all health units, which includes zeros. Overreporting was observed for most facilities, particularly at the health post level. Health centers showed a relatively better accuracy ratio than health posts. The quality index assessment revealed poor quality at all levels. The study recommends that responsible bodies at different levels improve data quality using various approaches, such as the capacitation of health professionals and strengthening the quality index components. The study highlighted the need for attention to data quality in general, specifically at the health post level, and improving the quality index at all levels, which is essential.

Keywords: Birkod District, data quality, quality index, regular immunization programme, Somali Region-Ethiopia

Procedia PDF Downloads 92
8628 Creative Experience and Revisit Intention of Handmade Oriental Parasol Umbrella in Kaohsiung

Authors: Yi-Ju Lee

Abstract:

This study identified the hypothesised relationship between creative experience, and revisit intention of handmade oriental parasol umbrella in Kaohsiung, Taiwan. A face-to-face questionnaire survey was administered in Meinong town, Kaohsiung. The components of creative experience were found as “sense of achievement”, “unique learning” and “interaction with instructors” in creative tourism. The result also revealed significant positive relationships between creative experience and revisit intention in handmade activities. This paper provides additional suggestions for enhancing revisit intention and guidance regarding creative tourism.

Keywords: creative tourism, sense of achievement, unique learning, interaction with instructors, folk art

Procedia PDF Downloads 281
8627 Evolving Convolutional Filter Using Genetic Algorithm for Image Classification

Authors: Rujia Chen, Ajit Narayanan

Abstract:

Convolutional neural networks (CNN), as typically applied in deep learning, use layer-wise backpropagation (BP) to construct filters and kernels for feature extraction. Such filters are 2D or 3D groups of weights for constructing feature maps at subsequent layers of the CNN and are shared across the entire input. BP as a gradient descent algorithm has well-known problems of getting stuck at local optima. The use of genetic algorithms (GAs) for evolving weights between layers of standard artificial neural networks (ANNs) is a well-established area of neuroevolution. In particular, the use of crossover techniques when optimizing weights can help to overcome problems of local optima. However, the application of GAs for evolving the weights of filters and kernels in CNNs is not yet an established area of neuroevolution. In this paper, a GA-based filter development algorithm is proposed. The results of the proof-of-concept experiments described in this paper show the proposed GA algorithm can find filter weights through evolutionary techniques rather than BP learning. For some simple classification tasks like geometric shape recognition, the proposed algorithm can achieve 100% accuracy. The results for MNIST classification, while not as good as possible through standard filter learning through BP, show that filter and kernel evolution warrants further investigation as a new subarea of neuroevolution for deep architectures.

Keywords: neuroevolution, convolutional neural network, genetic algorithm, filters, kernels

Procedia PDF Downloads 190
8626 Shear Reinforcement of Stone Columns During Soil Liquefaction

Authors: Zeineb Ben Salem, Wissem Frikha, Mounir Bouassida

Abstract:

The aim of this paper is to assess the effectiveness of stone columns as a liquefaction countermeasure focusing on shear reinforcementbenefit. In fact, stone columns which have high shear modulus relative to the surrounding soils potentially can carry higher shear stress levels. Thus, stone columns provide shear reinforcement and decrease the Cyclic Shear Stress Ratio CSR to which the treated soils would be subjected during an earthquake. In order to quantify the level of shear stress reduction in reinforced soil, several approaches have been developed. Nevertheless, the available approaches do not take into account the improvement of the soil parameters, mainly the shear modulusdue to stone columns installation. Indeed, in situ control tests carried out before and after the installation of stone columns based upon the results of collected data derived from 24 case histories have given evidence of the improvement of the existing soil properties.In this paper, the assessment of shear reinforcement of stone columns that accounts such improvement of the soil parameters due to stone column installation is investigated. Comparative results indicate that considering the improvement effects considerably affect the assessment of shear reinforcement for liquefaction analysis of reinforced soil by stone columns.

Keywords: stone column, liquefaction, shear reinforcement, CSR, soil improvement

Procedia PDF Downloads 155
8625 Desing of PSS and SVC to Improve Power System Stability

Authors: Mahmoud Samkan

Abstract:

In this paper, the design and assessment of new coordination between Power System Stabilizers (PSSs) and Static Var Compensator (SVC) in a multimachine power system via statistical method are proposed. The coordinated design problem of PSSs and SVC over a wide range of loading conditions is handled as an optimization problem. The Bacterial Swarming Optimization (BSO), which synergistically couples the Bacterial Foraging (BF) with the Particle Swarm Optimization (PSO), is employed to seek for optimal controllers parameters. By minimizing the proposed objective function, in which the speed deviations between generators are involved; stability performance of the system is enhanced. To compare the capability of PSS and SVC, both are designed independently, and then in a coordinated manner. Simultaneous tuning of the BSO based coordinated controller gives robust damping performance over wide range of operating conditions and large disturbance in compare to optimized PSS controller based on BSO (BSOPSS) and optimized SVC controller based on BSO (BSOSVC). Moreover, a statistical T test is executed to validate the robustness of coordinated controller versus uncoordinated one.

Keywords: SVC, PSSs, multimachine power system, coordinated design, bacteria swarm optimization, statistical assessment

Procedia PDF Downloads 378
8624 Early Prediction of Cognitive Impairment in Adults Aged 20 Years and Older using Machine Learning and Biomarkers of Heavy Metal Exposure

Authors: Ali Nabavi, Farimah Safari, Mohammad Kashkooli, Sara Sadat Nabavizadeh, Hossein Molavi Vardanjani

Abstract:

Cognitive impairment presents a significant and increasing health concern as populations age. Environmental risk factors such as heavy metal exposure are suspected contributors, but their specific roles remain incompletely understood. Machine learning offers a promising approach to integrate multi-factorial data and improve the prediction of cognitive outcomes. This study aimed to develop and validate machine learning models to predict early risk of cognitive impairment by incorporating demographic, clinical, and biomarker data, including measures of heavy metal exposure. A retrospective analysis was conducted using 2011-2014 National Health and Nutrition Examination Survey (NHANES) data. The dataset included participants aged 20 years and older who underwent cognitive testing. Variables encompassed demographic information, medical history, lifestyle factors, and biomarkers such as blood and urine levels of lead, cadmium, manganese, and other metals. Machine learning algorithms were trained on 90% of the data and evaluated on the remaining 10%, with performance assessed through metrics such as accuracy, area under curve (AUC), and sensitivity. Analysis included 2,933 participants. The stacking ensemble model demonstrated the highest predictive performance, achieving an AUC of 0.778 and a sensitivity of 0.879 on the test dataset. Key predictors included age, gender, hypertension, education level, urinary cadmium, and blood manganese levels. The findings indicate that machine learning can effectively predict the risk of cognitive impairment using a comprehensive set of clinical and environmental exposure data. Incorporating biomarkers of heavy metal exposure improved prediction accuracy and highlighted the role of environmental factors in cognitive decline. Further prospective studies are recommended to validate the models and assess their utility over time.

Keywords: cognitive impairment, heavy metal exposure, predictive models, aging

Procedia PDF Downloads 6
8623 Students' Experience Perception in Courses Taught in New Delivery Modes Compared to Traditional Modes

Authors: Alejandra Yanez, Teresa Benavides, Zita Lopez

Abstract:

Even before COVID-19, one of the most important challenges that Higher Education faces today is the need for innovative educational methodologies and flexibility. We could all agree that one of the objectives of Higher Education is to provide students with a variety of intellectual and practical skills that, at the same time, will help them develop competitive advantages such as adaptation and critical thinking. Among the strategic objectives of Universidad de Monterrey (UDEM) has been to provide flexibility and satisfaction to students in the delivery modes of the academic offer. UDEM implemented a methodology that combines face to face with synchronous and asynchronous as delivery modes. UDEM goal, in this case, was to implement new technologies and different teaching methodologies that will improve the students learning experience. In this study, the experience of students during courses implemented in new delivery mode was compared with students in courses with traditional delivery modes. Students chose openly either way freely. After everything students around the world lived in 2020 and 2021, one can think that the face to face (traditional) delivery mode would be the one chosen by students. The results obtained in this study reveal that both delivery modes satisfy students and favor their learning process. We will show how the combination of delivery modes provides flexibility, so the proposal is that universities can include them in their academic offer as a response to the current student's learning interests and needs.

Keywords: flexibility, new delivery modes, student satisfaction, academic offer

Procedia PDF Downloads 105
8622 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 138
8621 Parent’s Expectations and School Achievement: Longitudinal Perspective among Chilean Pupils

Authors: Marine Hascoet, Valentina Giaconi, Ludivine Jamain

Abstract:

The aim of our study is to examine if the family socio-economic status (SES) has an influence on students’ academic achievement. We first make the hypothesis that the more their families have financial and social resources, the more students succeed at school. We second make the hypothesis that this family SES has also an impact on parents’ expectations about their children educational outcomes. Moreover, we want to study if that parents’ expectations play the role of mediator between parents’ socio-economic status and the student’ self-concept and academic outcome. We test this model with a longitudinal design thanks to the census-based assessment from the System of Measurement of the Quality of Education (SIMCE). The SIMCE tests aim to assess all the students attending to regular education in a defined level. The sample used in this study came from the SIMCE assessments done three times: in 4th, 8th and 11th grade during the years 2007, 2011 and 2014 respectively. It includes 156.619 students (75.084 boys and 81.535 girls) that had valid responses for the three years. The family socio-economic status was measured at the first assessment (in 4th grade). The parents’ educational expectations and the students’ self-concept were measured at the second assessment (in 8th grade). The achievement score was measured twice; once when children were in 4th grade and a second time when they were in 11th grade. To test our hypothesis, we have defined a structural equation model. We found that our model fit well the data (CFI = 0.96, TLI = 0.95, RMSEA = 0.05, SRMR = 0.05). Both family SES and prior achievements predict parents’ educational expectations and effect of SES is important in comparison to the other coefficients. These expectations predict students’ achievement three years later (with prior achievement controlled) but not their self-concept. Our model explains 51.9% of the achievement in the 11th grade. Our results confirm the importance of the parents’ expectations and the significant role of socio-economic status in students’ academic achievement in Chile.

Keywords: Chilean context, parent’s expectations, school achievement, self-concept, socio-economic status

Procedia PDF Downloads 143
8620 Using Gene Expression Programming in Learning Process of Rough Neural Networks

Authors: Sanaa Rashed Abdallah, Yasser F. Hassan

Abstract:

The paper will introduce an approach where a rough sets, gene expression programming and rough neural networks are used cooperatively for learning and classification support. The Objective of gene expression programming rough neural networks (GEP-RNN) approach is to obtain new classified data with minimum error in training and testing process. Starting point of gene expression programming rough neural networks (GEP-RNN) approach is an information system and the output from this approach is a structure of rough neural networks which is including the weights and thresholds with minimum classification error.

Keywords: rough sets, gene expression programming, rough neural networks, classification

Procedia PDF Downloads 386
8619 A Sense of Belonging: Music Learning and School Connectedness

Authors: Johanna Gamboa-Kroesen

Abstract:

School connectedness, or the sense of belonging at school, is a critical factor in adolescent health, academic achievement, and socioemotional well-being. In educational research, the construct of the psychological sense of school membership is often referred to as school engagement, school bonding, or school attachment. While current research recognizes school connectedness as integral to a child’s mental health and academic success, many schools have yet to develop adequate interventions to promote a child’s overall sense of belonging at school. However, prior researches in music education indicates that, among other benefits, music classrooms may provide an environment where students feel they belong. While studies indicates that music learning environments, specifically performing ensemble learning environments, instill a sense of school connectedness and, more broadly, contribute to a student’s socio-emotional development, there has been inadequate research on how the actions of music teachers contribute to this phenomenon. The purpose of this study was to examine the relationship between school connectedness and music learning environments with middle school music students enrolled in a school-based music ensemble. In addition, the study aimed to provide a descriptive analysis of the instructional practices that music teachers use to promote an inclusive environment in their classrooms and an overall sense of belonging in their students. Using 191 student surveys of school membership, student reflective writings, 5 teacher interviews, and 10 classroom observations, this study examined the relationship between 7th and 8th-grade student-reported levels of connectedness within their school-based music ensemble and teacher instructional practice. The study found that students reported high levels of positive school membership within their music classes. Students who participate in school-based orchestra ensembles reported a positive change in emotional state during music instruction. In addition, evidence in this study found that music teachers use instructional practices to build connectedness through de-emphasizing competition and strengthening a student’s sense of relational value within their music learning experience. The findings offer implications for future music teacher instruction to create environments of inclusion, strengthen student-teacher relationships, and promote strategies that enhance student connection to school.

Keywords: music education, belonging, instructional practice, school connectedness

Procedia PDF Downloads 70
8618 Beyond Personal Evidence: Using Learning Analytics and Student Feedback to Improve Learning Experiences

Authors: Shawndra Bowers, Allie Brandriet, Betsy Gilbertson

Abstract:

This paper will highlight how Auburn Online’s instructional designers leveraged student and faculty data to update and improve online course design and instructional materials. When designing and revising online courses, it can be difficult for faculty to know what strategies are most likely to engage learners and improve educational outcomes in a specific discipline. It can also be difficult to identify which metrics are most useful for understanding and improving teaching, learning, and course design. At Auburn Online, the instructional designers use a suite of data based student’s performance, participation, satisfaction, and engagement, as well as faculty perceptions, to inform sound learning and design principles that guide growth-mindset consultations with faculty. The consultations allow the instructional designer, along with the faculty member, to co-create an actionable course improvement plan. Auburn Online gathers learning analytics from a variety of sources that any instructor or instructional design team may have access to at their own institutions. Participation and performance data, such as page: views, assignment submissions, and aggregate grade distributions, are collected from the learning management system. Engagement data is pulled from the video hosting platform, which includes unique viewers, views and downloads, the minutes delivered, and the average duration each video is viewed. Student satisfaction is also obtained through a short survey that is embedded at the end of each instructional module. This survey is included in each course every time it is taught. The survey data is then analyzed by an instructional designer for trends and pain points in order to identify areas that can be modified, such as course content and instructional strategies, to better support student learning. This analysis, along with the instructional designer’s recommendations, is presented in a comprehensive report to instructors in an hour-long consultation where instructional designers collaborate with the faculty member on how and when to implement improvements. Auburn Online has developed a triage strategy of priority 1 or 2 level changes that will be implemented in future course iterations. This data-informed decision-making process helps instructors focus on what will best work in their teaching environment while addressing which areas need additional attention. As a student-centered process, it has created improved learning environments for students and has been well received by faculty. It has also shown to be effective in addressing the need for improvement while removing the feeling the faculty’s teaching is being personally attacked. The process that Auburn Online uses is laid out, along with the three-tier maintenance and revision guide that will be used over a three-year implementation plan. This information can help others determine what components of the maintenance and revision plan they want to utilize, as well as guide them on how to create a similar approach. The data will be used to analyze, revise, and improve courses by providing recommendations and models of good practices through determining and disseminating best practices that demonstrate an impact on student success.

Keywords: data-driven, improvement, online courses, faculty development, analytics, course design

Procedia PDF Downloads 62
8617 Distributed Cyber Physical Secure Framework for DC Microgrids: DC Ship Power System Applications

Authors: Grace karimi Muriithi, Behnaz Papari, Ali Arsalan, Christopher Shannon Edrington

Abstract:

Complexity and nonlinearity of the control system design is increasing for DC microgrid applications when the cyber concept associated with the technology constraints will added to the picture. Controllers’ functionality during the critical operation mode is required to guaranteed specifically for a high profile applications such as NAVY DC ship power system (SPS) as an small-scaled DC microgrid. Thus, SPS is susceptible to cyber-attacks and, accordingly, can provide the disastrous effects. In this study, a machine learning (ML) approach is demonstrated to offer the promising performance of SPS for developing an effective and robust functionality over attacks time. Simulation results analysis demonstrate that the proposed method can improve the controllability successfully.

Keywords: controlability, cyber attacks, distribute control, machine learning

Procedia PDF Downloads 117
8616 The Τraits Τhat Facilitate Successful Student Performance in Distance Education: The Case of the Distance Education Unit at European University Cyprus

Authors: Dimitrios Vlachopoulos, George Tsokkas

Abstract:

Although it is not intended to identify distance education students as a homogeneous group, recent research has demonstrated that there are some demographic and personality common traits among most of them that provide the basis for the description of a typical distance learning student. The purpose of this paper is to describe these common traits and to facilitate their learning journey within a distance education program. The described research is an initiative of the Distance Education Unit at the European University Cyprus (Laureate International Universities) in the context of its action for the improvement of the students’ performance.

Keywords: distance education students, successful student performance, European University Cyprus, common traits

Procedia PDF Downloads 487
8615 Developing an AI-Driven Application for Real-Time Emotion Recognition from Human Vocal Patterns

Authors: Sayor Ajfar Aaron, Mushfiqur Rahman, Sajjat Hossain Abir, Ashif Newaz

Abstract:

This study delves into the development of an artificial intelligence application designed for real-time emotion recognition from human vocal patterns. Utilizing advanced machine learning algorithms, including deep learning and neural networks, the paper highlights both the technical challenges and potential opportunities in accurately interpreting emotional cues from speech. Key findings demonstrate the critical role of diverse training datasets and the impact of ambient noise on recognition accuracy, offering insights into future directions for improving robustness and applicability in real-world scenarios.

Keywords: artificial intelligence, convolutional neural network, emotion recognition, vocal patterns

Procedia PDF Downloads 59
8614 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition

Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar

Abstract:

In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.

Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers

Procedia PDF Downloads 47
8613 Cognition of Driving Context for Driving Assistance

Authors: Manolo Dulva Hina, Clement Thierry, Assia Soukane, Amar Ramdane-Cherif

Abstract:

In this paper, we presented our innovative way of determining the driving context for a driving assistance system. We invoke the fusion of all parameters that describe the context of the environment, the vehicle and the driver to obtain the driving context. We created a training set that stores driving situation patterns and from which the system consults to determine the driving situation. A machine-learning algorithm predicts the driving situation. The driving situation is an input to the fission process that yields the action that must be implemented when the driver needs to be informed or assisted from the given the driving situation. The action may be directed towards the driver, the vehicle or both. This is an ongoing work whose goal is to offer an alternative driving assistance system for safe driving, green driving and comfortable driving. Here, ontologies are used for knowledge representation.

Keywords: cognitive driving, intelligent transportation system, multimodal system, ontology, machine learning

Procedia PDF Downloads 371
8612 Low Enrollment in Civil Engineering Departments: Challenges and Opportunities

Authors: Alaa Yehia, Ayatollah Yehia, Sherif Yehia

Abstract:

There is a recurring issue of low enrollments across many civil engineering departments in postsecondary institutions. While there have been moments where enrollments begin to increase, civil engineering departments find themselves facing low enrollments at around 60% over the last five years across the Middle East. There are many reasons that could be attributed to this decline, such as low entry-level salaries, over-saturation of civil engineering graduates in the job market, and a lack of construction projects due to the impending or current recession. However, this recurring problem alludes to an intrinsic issue of the curriculum. The societal shift to the usage of high technology such as machine learning (ML) and artificial intelligence (AI) demands individuals who are proficient at utilizing it. Therefore, existing curriculums must adapt to this change in order to provide an education that is suitable for potential and current students. In this paper, In order to provide potential solutions for this issue, the analysis considers two possible implementations of high technology into the civil engineering curriculum. The first approach is to implement a course that introduces applications of high technology in Civil Engineering contexts. While the other approach is to intertwine applications of high technology throughout the degree. Both approaches, however, should meet requirements of accreditation agencies. In addition to the proposed improvement in civil engineering curriculum, a different pedagogical practice must be adapted as well. The passive learning approach might not be appropriate for Gen Z students; current students, now more than ever, need to be introduced to engineering topics and practice following different learning methods to ensure they will have the necessary skills for the job market. Different learning methods that incorporate high technology applications, like AI, must be integrated throughout the curriculum to make the civil engineering degree more attractive to prospective students. Moreover, the paper provides insight on the importance and approach of adapting the Civil Engineering curriculum to address the current low enrollment crisis that civil engineering departments globally, but specifically in the Middle East, are facing.

Keywords: artificial intelligence (AI), civil engineering curriculum, high technology, low enrollment, pedagogy

Procedia PDF Downloads 169
8611 Experience Report about the Inclusion of People with Disabilities in the Process of Testing an Accessible System for Learning Management

Authors: Marcos Devaner, Marcela Alves, Cledson Braga, Fabiano Alves, Wilton Bezerra

Abstract:

This article discusses the inclusion of people with disabilities in the process of testing an accessible system solution for distance education. The accessible system, team profile, methodologies and techniques covered in the testing process are presented. The testing process shown in this paper was designed from the experience with user. The testing process emerged from lessons learned from past experiences and the end user is present at all stages of the tests. Also, lessons learned are reported and how it was possible the maturing of the team and the methods resulting in a simple, productive and effective process.

Keywords: experience report, accessible systems, software testing, testing process, systems, e-learning

Procedia PDF Downloads 400