Search results for: time series regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22499

Search results for: time series regression

18899 Musical Composition by Computer with Inspiration from Files of Different Media Types

Authors: Cassandra Pratt Romero, Andres Gomez de Silva Garza

Abstract:

This paper describes a computational system designed to imitate human inspiration during musical composition. The system is called MIS (Musical Inspiration Simulator). The MIS system is inspired by media to which human beings are exposed daily (visual, textual, or auditory) to create new musical compositions based on the emotions detected in said media. After building the system we carried out a series of evaluations with volunteer users who used MIS to compose music based on images, texts, and audio files. The volunteers were asked to judge the harmoniousness and innovation in the system's compositions. An analysis of the results points to the difficulty of computational analysis of the characteristics of the media to which we are exposed daily, as human emotions have a subjective character. This observation will direct future improvements in the system.

Keywords: human inspiration, musical composition, musical composition by computer, theory of sensation and human perception

Procedia PDF Downloads 189
18898 Architectural Robotics in Micro Living Spaces: An Approach to Enhancing Wellbeing

Authors: Timothy Antoniuk

Abstract:

This paper will demonstrate why the most successful and livable cities in the future will require multi-disciplinary designers to develop a deep understanding of peoples’ changing lifestyles, and why new generations of deeply integrated products, services and experiences need to be created. Disseminating research from the UNEP Creative Economy Reports and through a variety of other consumption and economic-based statistics, a compelling argument will be made that it is peoples’ living spaces that offer the easiest and most significant affordances for inducing positive changes to their wellbeing, and to a city’s economic and environmental prosperity. This idea, that leveraging happiness, wellbeing and prosperity through creating new concepts and typologies of ‘home’, puts people and their needs, wants, desires, aspirations and lifestyles at the beginning of the design process, not at the end, as so often occurs with current-day multi-unit housing construction. As an important part of the creative-reflective and statistical comparisons that are necessary for this on-going body of research and practice, Professor Antoniuk created the Micro Habitation Lab (mHabLab) in 2016. By focusing on testing the functional and economic feasibility of activating small spaces with different types of architectural robotics, a variety of movable, expandable and interactive objects have been hybridized and integrated into the architectural structure of the Lab. Allowing the team to test new ideas continually and accumulate thousands of points of feedback from everyday consumers, a series of on-going open houses is allowing the public-at-large to see, physically engage with, and give feedback on the items they find most and least valuable. This iterative approach of testing has exposed two key findings: Firstly, that there is a clear opportunity to improve the macro and micro functionality of small living spaces; and secondly, that allowing people to physically alter smaller elements of their living space lessens feelings of frustration and enhances feelings of pride and a deeper perception of “home”. Equally interesting to these findings is a grouping of new research questions that are being exposed which relate to: The duality of space; how people can be in two living spaces at one time; and how small living spaces is moving the Extended Home into the public realm.

Keywords: architectural robotics, extended home, interactivity, micro living spaces

Procedia PDF Downloads 182
18897 Robotic Logging Technology: The Future of Oil Well Logging

Authors: Nitin Lahkar, Rishiraj Goswami

Abstract:

“Oil Well Logging” or the practice of making a detailed record (a well log) of the geologic formations penetrated by a borehole is an important practice in the Oil and Gas industry. Although a lot of research has been undertaken in this field, some basic limitations still exist. One of the main arenas or venues where plethora of problems arises is in logistically challenged areas. Accessibility and availability of efficient manpower, resources and technology is very time consuming, restricted and often costly in these areas. So, in this regard, the main challenge is to decrease the Non Productive Time (NPT) involved in the conventional logging process. The thought for the solution to this problem has given rise to a revolutionary concept called the “Robotic Logging Technology”. Robotic logging technology promises the advent of successful logging in all kinds of wells and trajectories. It consists of a wireless logging tool controlled from the surface. This eliminates the need for the logging truck to be summoned which in turn saves precious rig time. The robotic logging tool here, is designed such that it can move inside the well by different proposed mechanisms and models listed in the full paper as TYPE A, TYPE B and TYPE C. These types are classified on the basis of their operational technology, movement and conditions/wells in which the tool is to be used. Thus, depending on subsurface conditions, energy sources available and convenience the TYPE of Robotic model will be selected. Advantages over Conventional Logging Techniques: Reduction in Non-Productive time, lesser energy requirements, very fast action as compared to all other forms of logging, can perform well in all kinds of well trajectories (vertical/horizontal/inclined).

Keywords: robotic logging technology, innovation, geology, geophysics

Procedia PDF Downloads 318
18896 Understanding Hydrodynamic in Lake Victoria Basin in a Catchment Scale: A Literature Review

Authors: Seema Paul, John Mango Magero, Prosun Bhattacharya, Zahra Kalantari, Steve W. Lyon

Abstract:

The purpose of this review paper is to develop an understanding of lake hydrodynamics and the potential climate impact on the Lake Victoria (LV) catchment scale. This paper briefly discusses the main problems of lake hydrodynamics and its’ solutions that are related to quality assessment and climate effect. An empirical methodology in modeling and mapping have considered for understanding lake hydrodynamic and visualizing the long-term observational daily, monthly, and yearly mean dataset results by using geographical information system (GIS) and Comsol techniques. Data were obtained for the whole lake and five different meteorological stations, and several geoprocessing tools with spatial analysis are considered to produce results. The linear regression analyses were developed to build climate scenarios and a linear trend on lake rainfall data for a long period. A potential evapotranspiration rate has been described by the MODIS and the Thornthwaite method. The rainfall effect on lake water level observed by Partial Differential Equations (PDE), and water quality has manifested by a few nutrients parameters. The study revealed monthly and yearly rainfall varies with monthly and yearly maximum and minimum temperatures, and the rainfall is high during cool years and the temperature is high associated with below and average rainfall patterns. Rising temperatures are likely to accelerate evapotranspiration rates and more evapotranspiration is likely to lead to more rainfall, drought is more correlated with temperature and cloud is more correlated with rainfall. There is a trend in lake rainfall and long-time rainfall on the lake water surface has affected the lake level. The onshore and offshore have been concentrated by initial literature nutrients data. The study recommended that further studies should consider fully lake bathymetry development with flow analysis and its’ water balance, hydro-meteorological processes, solute transport, wind hydrodynamics, pollution and eutrophication these are crucial for lake water quality, climate impact assessment, and water sustainability.

Keywords: climograph, climate scenarios, evapotranspiration, linear trend flow, rainfall event on LV, concentration

Procedia PDF Downloads 104
18895 Performance Evaluation of a Piano Key Weir

Authors: M. Shaheer Ali, Talib Mansoor

Abstract:

The Piano Key Weir (PKW) is a particular shape of labyrinth weir, using up- and/or downstream overhangs. The horizontal rectangular labyrinth shape allows to multiply the crest length for a given weir width. With the increasing demand of power, it is becoming greatly essential to increase the storage capacity of existing dams without neglecting their safety. The present aims at comparing the performance of piano key weirs in respect to the normal sharp-crested weirs. The discharge v/s head data for the piano key weir and normal sharp-crested weir obtained from the experimental study were compared and analysed using regression analysis. Piano key weir was found to perform doubly w.r.t a normal weir. The flow profiles show the parabolic nature of flow and the nappe interference in the inlet keys.

Keywords: crest length, flow profile, labyrinth weir, normal weir, nappe interference, overhangs, piano key weir

Procedia PDF Downloads 298
18894 Simulation of Maximum Power Point Tracking in a Photovoltaic System: A Circumstance Using Pulse Width Modulation Analysis

Authors: Asowata Osamede

Abstract:

Optimized gain in respect to output power of stand-alone photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers in general does not promote development to the public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0o north, with a corresponding tilt angle of 36 o, 26o and 16o. The load employed in this set-up are three Lead Acid Batteries (LAB). The percentage fully charged, charging and not charging conditions are observed for all three batteries. The results obtained in this research is used to draw the conclusion that would provide a benchmark for researchers and scientist worldwide. This is done so as to have an idea of the best tilt and orientation angles for maximum power point in a basic off-grid PV system. A quantitative analysis would be employed in this research. Quantitative research tends to focus on measurement and proof. Inferential statistics are frequently used to generalize what is found about the study sample to the population as a whole. This would involve: selecting and defining the research question, deciding on a study type, deciding on the data collection tools, selecting the sample and its size, analyzing, interpreting and validating findings Preliminary results which include regression analysis (normal probability plot and residual plot using polynomial 6) showed the maximum power point in the system. The best tilt angle for maximum power point tracking proves that the 36o tilt angle provided the best average on time which in turns put the system into a pulse width modulation stage.

Keywords: power-conversion, meteonorm, PV panels, DC-DC converters

Procedia PDF Downloads 151
18893 Learning Traffic Anomalies from Generative Models on Real-Time Observations

Authors: Fotis I. Giasemis, Alexandros Sopasakis

Abstract:

This study focuses on detecting traffic anomalies using generative models applied to real-time observations. By integrating a Graph Neural Network with an attention-based mechanism within the Spatiotemporal Generative Adversarial Network framework, we enhance the capture of both spatial and temporal dependencies in traffic data. Leveraging minute-by-minute observations from cameras distributed across Gothenburg, our approach provides a more detailed and precise anomaly detection system, effectively capturing the complex topology and dynamics of urban traffic networks.

Keywords: traffic, anomaly detection, GNN, GAN

Procedia PDF Downloads 14
18892 Biosorption of Lead (II) from Aqueous Solution Using Marine Algae Chlorella pyrenoidosa

Authors: Pramod Kumar, A. V. N. Swamy, C. V. Sowjanya, C. V. Ramachandra Murthy

Abstract:

Biosorption is one of the effective methods for the removal of heavy metal ions from aqueous solutions. Results are presented showing the sorption of Pb(II) from solutions by biomass of commonly available marine algae Chlorella sp. The ability of marine algae Chlorella pyrenoidosa to remove heavy metal ion (Pb(II)) from aqueous solutions has been studied in this work. The biosorption properties of the biosorbent like equilibrium agitation time, optimum pH, temperature and initial solute concentration were investigated on metal uptake by showing respective profiles. The maximum metal uptake was found to be 10.27 mg/g. To achieve this metal uptake, the optimum conditions were found to be 30 min as equilibrium agitation time, 4.6 as optimum pH, 60 ppm of initial solute concentration. Lead concentration is determined by atomic absorption spectrometer. The process was found to be well fitted for pseudo-second order kinetics.

Keywords: biosorption, heavy metal ions, agitation time, metal uptake, aqueous solution

Procedia PDF Downloads 374
18891 Uterine Cervical Cancer; Early Treatment Assessment with T2- And Diffusion-Weighted MRI

Authors: Susanne Fridsten, Kristina Hellman, Anders Sundin, Lennart Blomqvist

Abstract:

Background: Patients diagnosed with locally advanced cervical carcinoma are treated with definitive concomitant chemo-radiotherapy. Treatment failure occurs in 30-50% of patients with very poor prognoses. The treatment is standardized with risk for both over-and undertreatment. Consequently, there is a great need for biomarkers able to predict therapy outcomes to allow for individualized treatment. Aim: To explore the role of T2- and diffusion-weighted magnetic resonance imaging (MRI) for early prediction of therapy outcome and the optimal time point for assessment. Methods: A pilot study including 15 patients with cervical carcinoma stage IIB-IIIB (FIGO 2009) undergoing definitive chemoradiotherapy. All patients underwent MRI four times, at baseline, 3 weeks, 5 weeks, and 12 weeks after treatment started. Tumour size, size change (∆size), visibility on diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) and change of ADC (∆ADC) at the different time points were recorded. Results: 7/15 patients relapsed during the study period, referred to as "poor prognosis", PP, and the remaining eight patients are referred to "good prognosis", GP. The tumor size was larger at all time points for PP than for GP. The ∆size between any of the four-time points was the same for PP and GP patients. The sensitivity and specificity to predict prognostic group depending on a remaining tumor on DWI were highest at 5 weeks and 83% (5/6) and 63% (5/8), respectively. The combination of tumor size at baseline and remaining tumor on DWI at 5 weeks in ROC analysis reached an area under the curve (AUC) of 0.83. After 12 weeks, no remaining tumor was seen on DWI among patients with GP, as opposed to 2/7 PP patients. Adding ADC to the tumor size measurements did not improve the predictive value at any time point. Conclusion: A large tumor at baseline MRI combined with a remaining tumor on DWI at 5 weeks predicted a poor prognosis.

Keywords: chemoradiotherapy, diffusion-weighted imaging, magnetic resonance imaging, uterine cervical carcinoma

Procedia PDF Downloads 148
18890 Performance and Lifetime of Tandem Organic Solar Cells

Authors: Guillaume Schuchardt, Solenn Berson, Gerard Perrier

Abstract:

Multi-junction solar cell configurations, where two sub-cells with complementary absorption are stacked and connected in series, offer an exciting approach to tackle the single junction limitations of organic solar cells and improve their power conversion efficiency. However, the augmentation of the number of layers has, as a consequence, to increase the risk of reducing the lifetime of the cell due to the ageing phenomena present at the interfaces. In this work, we study the intrinsic degradation mechanisms, under continuous illumination AM1.5G, inert atmosphere and room temperature, in single and tandem organic solar cells using Impedance Spectroscopy, IV Curves, External Quantum Efficiency, Steady-State Photocarrier Grating, Scanning Kelvin Probe and UV-Visible light.

Keywords: single and tandem organic solar cells, intrinsic degradation mechanisms, characterization: SKP, EQE, SSPG, UV-Visible, Impedance Spectroscopy, optical simulation

Procedia PDF Downloads 366
18889 Validation of Global Ratings in Clinical Performance Assessment

Authors: S. J. Yune, S. Y. Lee, S. J. Im, B. S. Kam, S. Y. Baek

Abstract:

This study aimed to determine the reliability of clinical performance assessments, having been emphasized by ability-based education, and professors overall assessment methods. We addressed the following problems: First, we try to find out whether there is a difference in what we consider to be the main variables affecting the clinical performance test according to the evaluator’s working period and the number of evaluation experience. Second, we examined the relationship among the global rating score (G), analytic global rating score (Gc), and the sum of the analytical checklists (C). What are the main factors affecting clinical performance assessments in relation to the numbers of times the evaluator had administered evaluations and the length of their working period service? What is the relationship between overall assessment score and analytic checklist score? How does analytic global rating with 6 components in OSCE and 4 components in sub-domains (Gc) CPX: aseptic practice, precision, systemic approach, proficiency, successfulness, and attitude overall assessment score and task-specific analytic checklist score sum (C) affect the professor’s overall global rating assessment score (G)? We studied 75 professors who attended a 2016 Bugyeoung Consortium clinical skills performances test evaluating third and fourth year medical students at the Pusan National University Medical school in South Korea (39 prof. in OSCE, 36 prof. in CPX; all consented to participate in our study). Each evaluator used 3 forms; a task-specific analytic checklist, subsequent analytic global rating scale with sub-6 domains, and overall global scale. After the evaluation, the professors responded to the questionnaire on the important factors of clinical performance assessment. The data were analyzed by frequency analysis, correlation analysis, and hierarchical regression analysis using SPSS 21.0. Their understanding of overall assessment was analyzed by dividing the subjects into groups based on experiences. As a result, they considered ‘precision’ most important in overall OSCE assessment, and ‘precise accuracy physical examination’, ‘systemic approaches to taking patient history’, and ‘diagnostic skill capability’ in overall CPX assessment. For OSCE, there was no clear difference of opinion about the main factors, but there was for CPX. Analytic global rating scale score, overall rating scale score, and analytic checklist score had meaningful mutual correlations. According to the regression analysis results, task-specific checklist score sum had the greatest effect on overall global rating. professors regarded task-specific analytic checklist total score sum as best reflecting overall OSCE test score, followed by aseptic practice, precision, systemic approach, proficiency, successfulness, and attitude on a subsequent analytic global rating scale. For CPX, subsequent analytic global rating scale score, overall global rating scale score, and task-specific checklist score had meaningful mutual correlations. These findings support explanations for validity of professors’ global rating in clinical performance assessment.

Keywords: global rating, clinical performance assessment, medical education, analytic checklist

Procedia PDF Downloads 237
18888 Synthesis of Novel Uracil Non-nucleosides Analogues of the Reverse Transcriptase Inhibitors Emivirine and TNK-651

Authors: Nasser R. El-Brollosy, Roberta Loddo

Abstract:

6-Benzyl-1-(ethoxymethyl)-5-isopropyluracil (Emivirine) and its corresponding 1-benzyloxymethyl analogue (TNK-651) showed high activity against HIV-1. The present study describes synthesis of novel emivirine analogues by reaction of chloromethyl ethyl ether with uracils having 5-ethyl / isopropyl and 6-(3,5-dimethoxybenzyl) substituents. A series of new TNK-651 analogues substituted at N-1 with phenoxyethoxymethyl moiety was prepared on treatment of the corresponding uracils with bis(phenoxyethoxy) methane. The newly synthesized non-nucleosides were tested for biological activity against wild type HIV-1 IIIB as well as the resistant strains N119 (Y181C), A17 (K103N + Y181C), and the triple mutant EFVR (K103R + V179D + P225H) in MT-4 cells. Some of the tested compounds showed good activities. Among them 6-(3,5-dimethylbenzyl)-5-ethyl-1-[2-(phenoxyethyl) oxymethyl]uracil which showed inhibitory potency higher than emivirine against both wild type HIV-1 and the tested mutant strains.

Keywords: Emivirine, HIV, non-nucleoside reverse transcriptase, uracils

Procedia PDF Downloads 268
18887 Optically Active Material Based on Bi₂O₃@Yb³⁺, Nd³⁺ with High Intensity of Upconversion Luminescence in Red and Green Region

Authors: D. Artamonov, A. Tsibulnikova, I. Samusev, V. Bryukhanov, A. Kozhevnikov

Abstract:

The synthesis and luminescent properties of Yb₂O₃, Nd₂O₃@Bi₂O₃ complex with upconversion generation are discussed in this work. The obtained samples were measured in the visible region of the spectrum under excitation with a wavelength of 980 nm. The studies showed that the obtained complexes have a high degree of stability and intense luminescence in the wavelength range of 400-750 nm. Consideration of the time dependence of the intensity of the upconversion luminescence allowed us to conclude that the enhancement of the intensity occurs in the time interval from 5 to 30 min, followed by the appearance of a stationary mode.

Keywords: lasers, luminescence, upconversion photonics, rare earth metals

Procedia PDF Downloads 92
18886 Real-Time Scheduling and Control of Supply Chain Networks: Challenges and Graph-Based Solution Approach

Authors: Jens Ehm

Abstract:

Manufacturing in supply chains requires an efficient organisation of production and transport processes in order to guarantee the supply of all partners within the chain with the material that is needed for the reliable fulfilment of tasks. If one partner is not able to supply products for a certain period, these products might be missing as the working material for the customer to perform the next manufacturing step, potentially as supply for further manufacturing steps. This way, local disruptions can influence the whole supply chain. In order to avoid material shortages, an efficient scheduling of tasks is necessary. However, the occurrence of unexpected disruptions cannot be eliminated, so that a modification of the schedule should be arranged as fast as possible. This paper discusses the challenges for the implementation of real-time scheduling and control methods and presents a graph-based approach that enables the integrated scheduling of production and transport processes for multiple supply chain partners and offers the potential for quick adaptations to parts of the initial schedule.

Keywords: production, logistics, integrated scheduling, real-time scheduling

Procedia PDF Downloads 379
18885 Using Podcasts as an Educational Medium to Deliver Education to Pre-Registered Mental Health Nursing Students

Authors: Jane Killough

Abstract:

A podcast series was developed to support learning amongst first-year undergraduate mental health nursing students. Many first-year students do not have any clinical experience and find it difficult to engage with theory, which can present as cumbersome. Further, it can be challenging to relate abstract concepts to everyday mental health practice. Mental health professionals and service users from practice were interviewed on a range of core topics that are key to year one learning. The podcasts were made available, and students could access these recordings at their convenience to fit in with busy daily routines. The aim was to enable meaningful learning by providing access to those who have lived experience and who can, in effect, bring to life the theory being taught in university and essentially bridge the theory and practice gap while fostering working relationships between practice and academics. The student experience will be evaluated using a logic model.

Keywords: education, mental health nursing students, podcast, practice, undergraduate

Procedia PDF Downloads 156
18884 Impulsivity Leads to Compromise Effect

Authors: Sana Maidullah, Ankita Sharma

Abstract:

The present study takes naturalistic decision-making approach to examine the role of personality in information processing in consumer decision making. In the technological era, most of the information comes in form of HTML or similar language via the internet; processing of this situation could be ambiguous, laborious and painful. The present study explores the role of impulsivity in creating an extreme effect on consumer decision making. Specifically, the study explores the role of impulsivity in extreme effect, i.e., extremeness avoidance (compromise effect) and extremeness seeking; the role of demographic variables, i.e. age and gender, in the relation between impulsivity and extreme effect. The study was conducted with the help of a questionnaire and two experiments. The experiment was designed in the form of two shopping websites with two product types: Hotel choice and Mobile choice. Both experimental interfaces were created with the Xampp software, the frontend of interfaces was HTML CSS JAVASCRIPT and backend was PHP MySQL. The mobile experiment was designed to measure the extreme effect and hotel experiment was designed to measure extreme effect with alignability of attributes. To observe the possibilities of the combined effect of individual difference and context effects, the manipulation of price, a number of alignable attributes and number of the non-alignable attributes is done. The study was conducted on 100 undergraduate and post-graduate engineering students within the age range of 18-35. The familiarity and level of use of internet and shopping website were assessed and controlled in the analysis. The analysis was done by using a t-test, ANOVA and regression analysis. The results indicated that the impulsivity leads to compromise effect and at the same time it also increases the relationship between alignability of attribute among choices and the compromise effect. The demographic variables were found to play a significant role in the relationship. The subcomponents of impulsivity were significantly influencing compromise effect, but the cognitive impulsivity was significant for women, and motor impulsivity was significant for males only. The impulsivity was significantly positively predicted by age, though there were no significant gender differences in impulsivity. The results clearly indicate the importance of individual factors in decision making. The present study, with precise and direct results, provides a significant suggestion for market analyst and business providers.

Keywords: impulsivity, extreme effect, personality, alignability, consumer decision making

Procedia PDF Downloads 192
18883 Xiao Qian’s Chinese-To-English Self-Translation in the 1940s

Authors: Xiangyu Yang

Abstract:

Xiao Qian (1910-1999) was a prolific literary translator between Chinese and English in both directions and an influential commentator on Chinese translation practices for nearly 70 years (1931-1998). During his stay in Britain from 1939 to 1946, Xiao self-translated and published a series of short stories, essays, and feature articles. With Pedersen's theoretical framework, the paper finds that Xiao flexibly adopted seven translation strategies (i.e. phonemic retention, specification, direct translation, generalization, substitution, omission, and official equivalent) to deal with the expressions specific to Chinese culture, struggling to seek a balance between adequate translation and acceptable translation in a historical condition of the huge gap between China and the west in the early twentieth century. Besides, the study also discovers that Xiao's translation strategies were greatly influenced by his own translational purpose as well as the literary systems, ideologies, and patronage in China and Britain in the 1940s.

Keywords: self-translation, extralinguistic cultural reference, Xiao Qian, Pedersen

Procedia PDF Downloads 140
18882 Physicochemical Characteristics of Rice Starch Chainat 1 Variety by Physical Modification

Authors: Orose Rugchati, Sarawut Wattanawongpitak

Abstract:

The Chainat 1 variety (CN1) of rice, which generally has high amylose starch, is distributed in the lower part of Northern Thailand. CN1 rice starch can be used in both food and non-food products. In this research, the CN1 rice starch from the wet-milling process was prepared by Pre-Gelatinization (Heat-Moisture Treatments, HMT) under different conditions: percentage of moisture contents (20% and 30%) and duration time in minutes (0, 30, 60, and 90) at a specific temperature 110°C. The physicochemical characteristics of CN1 rice starch modification, such as amylose content, viscosity, swelling, and solubility property, were evaluated and compared with native CN1 rice starch. The results showed that modification CN1 rice starch tends to have some characteristics better than native starch. The appearance color and starch granule of modified CN1 by HMT have more effective characteristics than native starch when increased duration time. The duration time and moisture content are significant factors to the CN1 starch characteristic by HMT. Moreover, physical modification of CN1 starch by HMT can be described as a modified rice starch providing in many applications and the advantage of biodegradability development.

Keywords: physicochemical characteristics, physical modification, pre-gelatinization, Heat-Moisture Treatments, rice starch, Chainat 1 variety (CN1)

Procedia PDF Downloads 163
18881 Determinants of Profitability in Indian Pharmaceutical Firms in the New Intellectual Property Rights Regime

Authors: Shilpi Tyagi, D. K. Nauriyal

Abstract:

This study investigates the firm level determinants of profitability of Indian drug and pharmaceutical industry. The study uses inflation adjusted panel data for a period 2000-2013 and applies OLS regression model with Driscoll-Kraay standard errors. It has been found that export intensity, A&M intensity, firm’s market power and stronger patent regime dummy have exercised positive influence on profitability. The negative and statistically significant influence of R&D intensity and raw material import intensity points to the need for firms to adopt suitable investment strategies. The study suggests that firms are required to pay far more attention to optimize their operating expenditures, advertisement and marketing expenditures and improve their export orientation, as part of the long term strategy.

Keywords: Indian pharmaceutical industry, profits, TRIPS, performance

Procedia PDF Downloads 442
18880 The Intention to Use E-Money Transaction: The Moderating Effect of Security in Conceptual Frammework

Authors: Husnil Khatimah, Fairol Halim

Abstract:

This research examines the moderating impact of security on intention to use e-money that adapted from some variables of the TAM (Technology Acceptance Model) and TPB (Theory of Planned Behavior). This study will use security as moderating variable and finds these relationship depends on customer intention to use e-money as payment tools. The conceptual framework of e-money transactions was reviewed to understand behavioral intention of consumers from perceived usefulness, perceived ease of use, perceived behavioral control and security. Quantitative method will be utilized as sources of data collection. A total of one thousand respondents will be selected using quota sampling method in Medan, Indonesia. Descriptive analysis and Multiple Regression analysis will be conducted to analyze the data. The article ended with suggestion for future studies.

Keywords: e-money transaction, TAM & TPB, moderating variable, behavioral intention, conceptual paper

Procedia PDF Downloads 459
18879 Third Super-Harmonic Resonance in Vortex-Induced Vibration of a Pipeline Close to the Seabed

Authors: Yiming Jin, Ping Dong

Abstract:

The third super-harmonic resonance of a pipeline close to the seabed is investigated in this paper. To analyse the vortex-induced vibration (VIV) of the pipeline close to the seabed, the classic Van der Pol equation is extended with a nonlinear item. Then, on the base of the multi-scale method, the frequency-response curves of the pipeline with regard to the third super-harmonic resonance are studied with a series of parameters, such as the mass ratio, frequency, damp ratio and gap ratio. On the whole, the numerical results show that the characters of third super-harmonic resonance are quite from that of primary resonance, though with the same trend that the larger is the mass ratio, the smaller impact the gap ratio has on the frequency-response curves of the third super-harmonic resonance.

Keywords: the third super-harmonic resonance, gap ratio, vortex-induced vibration, multi-scale method

Procedia PDF Downloads 434
18878 Distributed Real-Time Range Query Approximation in a Streaming Environment

Authors: Simon Keller, Rainer Mueller

Abstract:

Continuous range queries are a common means to handle mobile clients in high-density areas. Most existing approaches focus on settings in which the range queries for location-based services are more or less static, whereas the mobile clients in the ranges move. We focus on a category called dynamic real-time range queries (DRRQ), assuming that both, clients requested by the query and the inquirers, are mobile. In consequence, the query parameters and the query results continuously change. This leads to two requirements: the ability to deal with an arbitrarily high number of mobile nodes (scalability) and the real-time delivery of range query results. In this paper, we present the highly decentralized solution adaptive quad streaming (AQS) for the requirements of DRRQs. AQS approximates the query results in favor of a controlled real-time delivery and guaranteed scalability. While prior works commonly optimize data structures on the involved servers, we use AQS to focus on a highly distributed cell structure without data structures automatically adapting to changing client distributions. Instead of the commonly used request-response approach, we apply a lightweight streaming method in which no bidirectional communication and no storage or maintenance of queries are required at all.

Keywords: approximation of client distributions, continuous spatial range queries, mobile objects, streaming-based decentralization in spatial mobile environments

Procedia PDF Downloads 148
18877 Unravelling the Impact of Job Resources: Alleviating Job-Related Anxiety to Forster Employee Creativity Within the Oil and Gas Industry

Authors: Nana Kojo Ayimadu Baafi, Kwesi Amponsah-Tawiah

Abstract:

The study investigated the relationship between job-related anxiety and employee creativity. The study further explored the role of job resources in moderating the relationship between job-related anxiety and employee creativity within the oil and gas industries. The study utilized a cross-sectional survey design. A non-probability sampling technique, specifically convenience sampling, was used to sample 1200 participants from multiple companies within the oil and gas industries. The collected data were analyzed using Regression analysis and PROCESS macro for the moderation analysis. The study empirically demonstrated a negative significant relationship between job-related anxiety and employee creativity. It also exhibited that job resources moderated the relationship between job-related anxiety and creativity. This study addresses gaps in previous studies by highlighting the significance of job resources in how job-related anxiety affects employee creativity.

Keywords: employee creativity, job-related anxiety, job resource, human resources

Procedia PDF Downloads 56
18876 Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions

Authors: Betül Özgenç, Soner Kuşlu, Sabri Çolak, Turan Çalban

Abstract:

The aim of this study was investigate the leaching kinetics of ulexite in disodium hydrogen phosphate solutions in a mechanical agitation system. Reaction temperature, concentration of disodium hydrogen phosphate solutions, stirring speed, solid/liquid ratio and ulexite particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction.

Keywords: ulexite, disodium hydrogen phosphate, leaching kinetics

Procedia PDF Downloads 414
18875 Using AI for Analysing Political Leaders

Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu

Abstract:

This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.

Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence

Procedia PDF Downloads 89
18874 Finite Element Analysis of Low-Velocity Impact Damage on Stiffened Composite Panels

Authors: Xuan Sun, Mingbo Tong

Abstract:

To understand the factors which affect impact damage on composite structures, particularly the effects of impact position and ribs. In this paper, a finite element model (FEM) of low-velocity impact damage on the composite structure was established via the nonlinear finite element method, combined with the user-defined materials subroutine (VUMAT) of the ABAQUS software. The structural elements chosen for the investigation comprised a series of stiffened composite panels, representative of real aircraft structure. By impacting the panels at different positions relative to the ribs, the effect of relative position of ribs was found out. Then the simulation results and the experiments data were compared. Finally, the factors which affect impact damage on the structures were discussed. The paper was helpful for the design of stiffened composite structures.

Keywords: stiffened, low-velocity impact, Abaqus, impact energy

Procedia PDF Downloads 625
18873 Forecasting Regional Data Using Spatial Vars

Authors: Taisiia Gorshkova

Abstract:

Since the 1980s, spatial correlation models have been used more often to model regional indicators. An increasingly popular method for studying regional indicators is modeling taking into account spatial relationships between objects that are part of the same economic zone. In 2000s the new class of model – spatial vector autoregressions was developed. The main difference between standard and spatial vector autoregressions is that in the spatial VAR (SpVAR), the values of indicators at time t may depend on the values of explanatory variables at the same time t in neighboring regions and on the values of explanatory variables at time t-k in neighboring regions. Thus, VAR is a special case of SpVAR in the absence of spatial lags, and the spatial panel data model is a special case of spatial VAR in the absence of time lags. Two specifications of SpVAR were applied to Russian regional data for 2000-2017. The values of GRP and regional CPI are used as endogenous variables. The lags of GRP, CPI and the unemployment rate were used as explanatory variables. For comparison purposes, the standard VAR without spatial correlation was used as “naïve” model. In the first specification of SpVAR the unemployment rate and the values of depending variables, GRP and CPI, in neighboring regions at the same moment of time t were included in equations for GRP and CPI respectively. To account for the values of indicators in neighboring regions, the adjacency weight matrix is used, in which regions with a common sea or land border are assigned a value of 1, and the rest - 0. In the second specification the values of depending variables in neighboring regions at the moment of time t were replaced by these values in the previous time moment t-1. According to the results obtained, when inflation and GRP of neighbors are added into the model both inflation and GRP are significantly affected by their previous values, and inflation is also positively affected by an increase in unemployment in the previous period and negatively affected by an increase in GRP in the previous period, which corresponds to economic theory. GRP is not affected by either the inflation lag or the unemployment lag. When the model takes into account lagged values of GRP and inflation in neighboring regions, the results of inflation modeling are practically unchanged: all indicators except the unemployment lag are significant at a 5% significance level. For GRP, in turn, GRP lags in neighboring regions also become significant at a 5% significance level. For both spatial and “naïve” VARs the RMSE were calculated. The minimum RMSE are obtained via SpVAR with lagged explanatory variables. Thus, according to the results of the study, it can be concluded that SpVARs can accurately model both the actual values of macro indicators (particularly CPI and GRP) and the general situation in the regions

Keywords: forecasting, regional data, spatial econometrics, vector autoregression

Procedia PDF Downloads 146
18872 Project Progress Prediction in Software Devlopment Integrating Time Prediction Algorithms and Large Language Modeling

Authors: Dong Wu, Michael Grenn

Abstract:

Managing software projects effectively is crucial for meeting deadlines, ensuring quality, and managing resources well. Traditional methods often struggle with predicting project timelines accurately due to uncertain schedules and complex data. This study addresses these challenges by combining time prediction algorithms with Large Language Models (LLMs). It makes use of real-world software project data to construct and validate a model. The model takes detailed project progress data such as task completion dynamic, team Interaction and development metrics as its input and outputs predictions of project timelines. To evaluate the effectiveness of this model, a comprehensive methodology is employed, involving simulations and practical applications in a variety of real-world software project scenarios. This multifaceted evaluation strategy is designed to validate the model's significant role in enhancing forecast accuracy and elevating overall management efficiency, particularly in complex software project environments. The results indicate that the integration of time prediction algorithms with LLMs has the potential to optimize software project progress management. These quantitative results suggest the effectiveness of the method in practical applications. In conclusion, this study demonstrates that integrating time prediction algorithms with LLMs can significantly improve the predictive accuracy and efficiency of software project management. This offers an advanced project management tool for the industry, with the potential to improve operational efficiency, optimize resource allocation, and ensure timely project completion.

Keywords: software project management, time prediction algorithms, large language models (LLMS), forecast accuracy, project progress prediction

Procedia PDF Downloads 84
18871 Financial Modeling for Net Present Benefit Analysis of Electric Bus and Diesel Bus and Applications to NYC, LA, and Chicago

Authors: Jollen Dai, Truman You, Xinyun Du, Katrina Liu

Abstract:

Transportation is one of the leading sources of greenhouse gas emissions (GHG). Thus, to meet the Paris Agreement 2015, all countries must adopt a different and more sustainable transportation system. From bikes to Maglev, the world is slowly shifting to sustainable transportation. To develop a utility public transit system, a sustainable web of buses must be implemented. As of now, only a handful of cities have adopted a detailed plan to implement a full fleet of e-buses by the 2030s, with Shenzhen in the lead. Every change requires a detailed plan and a focused analysis of the impacts of the change. In this report, the economic implications and financial implications have been taken into consideration to develop a well-rounded 10-year plan for New York City. We also apply the same financial model to the other cities, LA and Chicago. We picked NYC, Chicago, and LA to conduct the comparative NPB analysis since they are all big metropolitan cities and have complex transportation systems. All three cities have started an action plan to achieve a full fleet of e-bus in the decades. Plus, their energy carbon footprint and their energy price are very different, which are the key factors to the benefits of electric buses. Using TCO (Total Cost Ownership) financial analysis, we developed a model to calculate NPB (Net Present Benefit) /and compare EBS (electric buses) to DBS (diesel buses). We have considered all essential aspects in our model: initial investment, including the cost of a bus, charger, and installation, government fund (federal, state, local), labor cost, energy (electricity or diesel) cost, maintenance cost, insurance cost, health and environment benefit, and V2G (vehicle to grid) benefit. We see about $1,400,000 in benefits for a 12-year lifetime of an EBS compared to DBS provided the government fund to offset 50% of EBS purchase cost. With the government subsidy, an EBS starts to make positive cash flow in 5th year and can pay back its investment in 5 years. Please remember that in our model, we consider environmental and health benefits, and every year, $50,000 is counted as health benefits per bus. Besides health benefits, the significant benefits come from the energy cost savings and maintenance savings, which are about $600,000 and $200,000 in 12-year life cycle. Using linear regression, given certain budget limitations, we then designed an optimal three-phase process to replace all NYC electric buses in 10 years, i.e., by 2033. The linear regression process is to minimize the total cost over the years and have the lowest environmental cost. The overall benefits to replace all DBS with EBS for NYC is over $2.1 billion by the year of 2033. For LA, and Chicago, the benefits for electrification of the current bus fleet are $1.04 billion and $634 million by 2033. All NPB analyses and the algorithm to optimize the electrification phase process are implemented in Python code and can be shared.

Keywords: financial modeling, total cost ownership, net present benefits, electric bus, diesel bus, NYC, LA, Chicago

Procedia PDF Downloads 55
18870 Hybrid Molecules: A Promising Approach to Design Potent Antimicrobial and Anticancer Drugs

Authors: Blessing Atim Aderibigbe

Abstract:

A series of amine/ester-linked hybrid compounds containing pharmacophores, such as ursolic acid, oleanolic acid, ferrocene and bisphosphonates, were synthesized in an attempt to develop potent antibacterial and anticancer agents. Their structures were analyzed and confirmed using Nuclear Magnetic Resonance, Fourier Transform Infrared Spectroscopy, and mass spectroscopy. All the synthesized hybrid compounds were evaluated for their antibacterial activities against eleven selected bacterial strains using a serial dilution method. Some of the compounds displayed significant antibacterial activity against most of the bacterial and fungal strains. In addition, the in vitro cytotoxicity of these compounds was also performed against selected cancer cell lines. Some of the compounds were also found to be more active than their parent compounds, revealing the efficacy of designing hybrid molecules using plant-based bioactive agents.

Keywords: ursolic acid, hybrid drugs, oleanolic acid, bisphosphonates

Procedia PDF Downloads 93