Search results for: student-centered teaching and learning
4920 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum
Authors: Abdulrahman Sumayli, Saad M. AlShahrani
Abstract:
For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectivelyKeywords: temperature, pressure variations, machine learning, oil treatment
Procedia PDF Downloads 734919 Quality of Working Life and Occupational Stress in High School Teachers
Authors: S. Silva
Abstract:
Some professions had an increased risk for occupational stress and less quality of working life. Among several professions this risk is particularly preoccupant in teachers, namely high school teachers. This study aims to characterize the work stress in teachers and understand how the work stress influences their quality of working life. One hundred teachers, 60 women and 40 men with mean age of 43,2 years (SD=7,8), from North Portugal teaching in several high schools filled in the following questionnaires: Social-Demographic Questionnaire, Teacher Stress Questionnaire and the Survey of Professional Life, during January to March 2015. The results of our study show that high school teachers have several occupational stressors (M=5) and poor perceived quality of working life. They are unsatisfied with their current job and they refer to a considerable job frustration. 33% referred to no expectations about a better future in these profession and 40% have no career development. There is a strong negative correlation between stress and teacher quality of working life (r=-.775). Moderate levels of stress are related to more favorable quality of working life (r=.632). Stress, frequent in teachers, is a significant predictor of poor quality of working life. There are several stressors affecting the teachers’ performance. Career development is not considered among this professional class and it seems related to current job frustration. Considering the role of high school teacher in the development and learning of students, these results should be taken in consideration when planning the graduation and interventions with teachers.Keywords: career, quality of working life, stress, teachers
Procedia PDF Downloads 3824918 The Effect of Costus igneus Extract on Learning and Memory in Normal and Diabetic Rats
Authors: Shalini Adiga, Shashikant Chetty, Jisha, Shobha Kamath
Abstract:
Background: Moderate impairment of learning and memory has been observed in both type 1 and 2 diabetes mellitus in humans and experimental animals. A Change in glucose utilization and oxidative stress that occur in diabetes are considered the main reasons for cognitive dysfunction. Objective: Costus igneus (CI) which is known to possess hypoglycemic activity was evaluated in this study for its effect on learning and memory in normal and diabetic rats. Methods: Wistar rats were divided into control, CI-alcoholic extract treated normal (250 and 500mg/kg), diabetic control and CI-treated diabetic groups. CI treatment was continued for 4 weeks. For induction of diabetes, a single dose of streptozotocin was injected (30 mg/kg i.p). Entrance latency and time spent in the dark room during acquisition and at 24 and 48h after an aversive shock in a passive avoidance model was used as an index of learning and memory. Glutathione and malondialdehyde levels in brain and blood glucose were measured. Data was analysed using ANOVA. Results: During the three trials in exploration test, the diabetic control rats exhibited no significant change in entrance latency or in the total time spent in the dark compartment. During retention testing, the entrance latency of the diabetic treated groups was two times less at 24h and three times less at 48h after aversive stimulus as compared to diabetic rats. The normal drug-treated rats showed similar behaviour as the saline control. Treatment with CI significantly reduced the raised blood sugar and MDA levels of diabetic rats. Conclusion: Costus igneus prevented the cognitive dysfunction in diabetic rats which can be attributed to its antioxidant and antihyperglycemic activities.Keywords: Costus igneous, diabetes, learning and memory, cognitive dysfunction
Procedia PDF Downloads 3564917 Comparison of Two Online Intervention Protocols on Reducing Habitual Upper Body Postures: A Randomized Trial
Authors: Razieh Karimian, Kim Burton, Mohammad Mehdi Naghizadeh, Maryam Karimian
Abstract:
Introduction: Habitual upper body postures are associated with online learning during the COVID-19 pandemic. This study explored whether adding an exercise routine to an ergonomic advice intervention improves these postures. Methods: In this randomized trial, 42 male adolescent students with a forward head posture were randomly divided into two equal groups, one allocated to ergonomic advice alone and the other to ergonomic advice plus an exercise routine. The angles of forward head, shoulder, and back postures were measured with a photogrammetric profile technique before and after the 8-week intervention period. Findings: During home quarantine, 76% of the students used their mobile phones, while 35% used a table-chair-computer for online learning. While significant reductions of the forward, shoulder, and back angles were found in both groups (P < 0.001), the effect was significantly greater in the exercise group (P < 0.001: forward head, shoulder, and back angles reduced by some 9, 6, and 5 degrees respectively, compared with 4 degrees in the forward head, and 2 degrees in the shoulder and back angles for ergonomic advice alone. Conclusion: The exercise routine produced a greater improvement in habitual upper body postures than ergonomic advice alone, a finding that may extend beyond online learning at home.Keywords: randomized trial, online learning, adolescent, posture, exercise, ergonomic advice
Procedia PDF Downloads 704916 Synchronous Courses Attendance in Distance Higher Education: Case Study of a Computer Science Department
Authors: Thierry Eude
Abstract:
The use of videoconferencing platforms adapted to teaching offers students the opportunity to take distance education courses in much the same way as traditional in-class training. The sessions can be recorded and they allow students the option of following the courses synchronously or asynchronously. Three typical profiles can then be distinguished: students who choose to follow the courses synchronously, students who could attend the course in synchronous mode but choose to follow the session off-line, and students who follow the course asynchronously as they cannot attend the course when it is offered because of professional or personal constraints. Our study consists of observing attendance at all distance education courses offered in the synchronous mode by the Computer Science and Software Engineering Department at Laval University during 10 consecutive semesters. The aim is to identify factors that influence students in their choice of attending the distance courses in synchronous mode. It was found that participation tends to be relatively stable over the years for any one semester (fall, winter summer) and is similar from one course to another, although students may be increasingly familiar with the synchronous distance education courses. Average participation is around 28%. There may be deviations, but they concern only a few courses during certain semesters, suggesting that these deviations would only have occurred because of the composition of particular promotions during specific semesters. Furthermore, course schedules have a great influence on the attendance rate. The highest rates are all for courses which are scheduled outside office hours.Keywords: attendance, distance undergraduate education in computer science, student behavior, synchronous e-learning
Procedia PDF Downloads 2874915 Epidemiological Profile of Healthcare Associated Infections in Intensive Care Unit
Authors: Abdessamad Dali-Ali, Houaria Beldjillali, Fouzia Agag, Asmaa Oukebdane, Ramzi Tidjani, Arslane Bettayeb, Khadidja Meddeber, Radia Dali-Yahia, Nori Midoun
Abstract:
Healthcare-associated infections are a real public health problem, especially in intensive care units. The aim of our study was to describe the epidemiological profile and to estimate the incidence of these infections at the intensive care unit of our teaching hospital. A prospective study was conducted, from June 2012 to December 2013. During this period, 305 patients having a duration of hospitalization equal or more than 48 hours were included in the study. In terms of the incidence of healthcare associated infections, nosocomial pneumonia occupied the first position with a cumulative incidence rate of 20.0%, followed by bacteremia (5.6%), central venous catheter infections (4%), and urinary tract infections (3%). In the case of isolated microorganisms, Gram-negative bacilli not enterobacteriaceae occupied the first place with 48.5%, followed by enterobacteria (32.1%). Acinetobacter baumannii was the most common germ (27.6%). Our study showed that the rate of health-care-associated infections was relatively high in the intensive care unit. A control program to reduce all infections is a priority for the Infection Control Associated Committee.Keywords: epidemiological profile, healthcare associated infections, intensive care units, teaching hospital of Oran, Algeria
Procedia PDF Downloads 3054914 Representativity Based Wasserstein Active Regression
Authors: Benjamin Bobbia, Matthias Picard
Abstract:
In recent years active learning methodologies based on the representativity of the data seems more promising to limit overfitting. The presented query methodology for regression using the Wasserstein distance measuring the representativity of our labelled dataset compared to the global distribution. In this work a crucial use of GroupSort Neural Networks is made therewith to draw a double advantage. The Wasserstein distance can be exactly expressed in terms of such neural networks. Moreover, one can provide explicit bounds for their size and depth together with rates of convergence. However, heterogeneity of the dataset is also considered by weighting the Wasserstein distance with the error of approximation at the previous step of active learning. Such an approach leads to a reduction of overfitting and high prediction performance after few steps of query. After having detailed the methodology and algorithm, an empirical study is presented in order to investigate the range of our hyperparameters. The performances of this method are compared, in terms of numbers of query needed, with other classical and recent query methods on several UCI datasets.Keywords: active learning, Lipschitz regularization, neural networks, optimal transport, regression
Procedia PDF Downloads 874913 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning
Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim
Abstract:
Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation
Procedia PDF Downloads 994912 Joint Training Offer Selection and Course Timetabling Problems: Models and Algorithms
Authors: Gianpaolo Ghiani, Emanuela Guerriero, Emanuele Manni, Alessandro Romano
Abstract:
In this article, we deal with a variant of the classical course timetabling problem that has a practical application in many areas of education. In particular, in this paper we are interested in high schools remedial courses. The purpose of such courses is to provide under-prepared students with the skills necessary to succeed in their studies. In particular, a student might be under prepared in an entire course, or only in a part of it. The limited availability of funds, as well as the limited amount of time and teachers at disposal, often requires schools to choose which courses and/or which teaching units to activate. Thus, schools need to model the training offer and the related timetabling, with the goal of ensuring the highest possible teaching quality, by meeting the above-mentioned financial, time and resources constraints. Moreover, there are some prerequisites between the teaching units that must be satisfied. We first present a Mixed-Integer Programming (MIP) model to solve this problem to optimality. However, the presence of many peculiar constraints contributes inevitably in increasing the complexity of the mathematical model. Thus, solving it through a general purpose solver may be performed for small instances only, while solving real-life-sized instances of such model requires specific techniques or heuristic approaches. For this purpose, we also propose a heuristic approach, in which we make use of a fast constructive procedure to obtain a feasible solution. To assess our exact and heuristic approaches we perform extensive computational results on both real-life instances (obtained from a high school in Lecce, Italy) and randomly generated instances. Our tests show that the MIP model is never solved to optimality, with an average optimality gap of 57%. On the other hand, the heuristic algorithm is much faster (in about the 50% of the considered instances it converges in approximately half of the time limit) and in many cases allows achieving an improvement on the objective function value obtained by the MIP model. Such an improvement ranges between 18% and 66%.Keywords: heuristic, MIP model, remedial course, school, timetabling
Procedia PDF Downloads 6114911 Understanding of the Impact of Technology in Collaborative Programming for Children
Authors: Nadia Selene Molina-Moreno, Maria Susana Avila-Garcia, Marco Bianchetti, Marcelina Pantoja-Flores
Abstract:
Visual Programming Tools available are a great tool for introducing children to programming and to develop a skill set for algorithmic thinking. On the other hand, collaborative learning and pair programming within the context of programming activities, has demonstrated to have social and learning benefits. However, some of the online tools available for programming for children are not designed to allow simultaneous and equitable participation of the team members since they allow only for a single control point. In this paper, a report the work conducted with children playing a user role is presented. A preliminary study to cull ideas, insights, and design considerations for a formal programming course for children aged 8-10 using collaborative learning as a pedagogical approach was conducted. Three setups were provided: 1) lo-fi prototype, 2) PC, 3) a 46' multi-touch single display groupware limited by the application to a single touch entry. Children were interviewed at the end of the sessions in order to know their opinions about teamwork and the different setups defined. Results are mixed regarding the setup, but they agree to like teamwork.Keywords: children, collaborative programming, visual programming, multi-touch tabletop, lo-fi prototype
Procedia PDF Downloads 3164910 Promoting Personhood and Citizenship Amongst Individuals with Learning Disabilities: An Occupational Therapy Approach
Authors: Rebecca Haythorne
Abstract:
Background: Agendas continuously emphasise the need to increase work based training and opportunities for individuals with learning disabilities. However research and statistics suggest that there is still significant stigma and stereotypes as to what they can contribute, or gain from being part of the working environment. Method: To tackles some of these prejudices an Occupational Therapy based intervention was developed for learning disability service users working at a social enterprise farm. The intervention aimed to increase positive public perception around individual capabilities and encourage individuals with learning disabilities to take ownership and be proud of their individual personhood and citizenship. This was achieved by using components of the Model of Human Occupation to tailor the intervention to individual values, skills and working contributions. The final project involved making creative wall art for public viewing, focusing on 'who works there and what they do'. This was accompanied by a visitor information guide, allowing individuals to tell visitors about themselves, the work they do and why it is meaningful to them. Outcomes: The intervention has helped to increased metal well-being and confidence of learning disability service users “people will know I work here now” and “I now have something to show my family about the work I do at the farm”. The intervention has also increased positive public perception and community awareness “you can really see the effort that’s gone into doing this” and “it’s a really visual experience to see people you don’t expect to see doing this type of work”. Resources left behind have further supported individuals to take ownership in creating more wall art to be sold at the farm shop. Conclusion: the intervention developed has helped to improve mental well-being of both service users and staff and improve community awareness. Due to this, the farm has decided to roll out the intervention to other areas of the social enterprise and is considering having more Occupational Therapy involvement in the future.Keywords: citizenship, intervention, occupational therapy, personhood
Procedia PDF Downloads 4744909 A Positive Neuroscience Perspective for Child Development and Special Education
Authors: Amedeo D'Angiulli, Kylie Schibli
Abstract:
Traditionally, children’s brain development research has emphasized the limitative aspects of disability and impairment, electing as an explanatory model the classical clinical notions of brain lesion or functional deficit. In contrast, Positive Educational Neuroscience (PEN) is a new approach that emphasizes strengths and human flourishing related to the brain by exploring how learning practices have the potential to enhance neurocognitive flexibility through neuroplastic overcompensation. This mini-review provides an overview of PEN and shows how it links to the concept of neurocognitive flexibility. We provide examples of how the present concept of neurocognitive flexibility can be applied to special education by exploring examples of neuroplasticity in the learning domain, including: (1) learning to draw in congenitally totally blind children, and (2) music training in children from disadvantaged neighborhoods. PEN encourages educators to focus on children’s strengths by recognizing the brain’s capacity for positive change and to incorporate activities that support children’s individual development.Keywords: neurocognitive development, positive educational neuroscience, sociocultural approach, special education
Procedia PDF Downloads 2464908 An Investigation of the Relevant Factors of Unplanned Readmission within 14 Days of Discharge in a Regional Teaching Hospital in South Taiwan
Authors: Xuan Hua Huang, Shu Fen Wu, Yi Ting Huang, Pi Yueh Lee
Abstract:
Background: In Taiwan, the Taiwan healthcare care Indicator Series regards the rate of hospital readmission as an important indicator of healthcare quality. Unplanned readmission not only effects patient’s condition but also increase healthcare utilization rate and healthcare costs. Purpose: The purpose of this study was explored the effects of adult unplanned readmission within 14 days of discharge at a regional teaching hospital in South Taiwan. Methods: The retrospectively review design was used. A total 495 participants of unplanned readmissions and 878 of non-readmissions within 14 days recruited from a regional teaching hospital in Southern Taiwan. The instruments used included the Charlson Comorbidity Index, and demographic characteristics, and disease-related variables. Statistical analyses were performed with SPSS version 22.0. The descriptive statistics were used (means, standard deviations, and percentage) and the inferential statistics were used T-test, Chi-square test and Logistic regression. Results: The unplanned readmissions within 14 days rate was 36%. The majorities were 268 males (54.1%), aged >65 were 318 (64.2%), and mean age was 68.8±14.65 years (23-98years). The mean score for the comorbidities was 3.77±2.73. The top three diagnosed of the readmission were digestive diseases (32.7%), respiratory diseases (15.2%), and genitourinary diseases (10.5%). There were significant relationships among the gender, age, marriage, comorbidity status, and discharge planning services (χ2: 3.816-16.474, p: 0.051~0.000). Logistic regression analysis showed that old age (OR = 1.012, 95% CI: 1.003, 1.021), had the multi-morbidity (OR = 0.712~4.040, 95% CI: 0.559~8.522), had been consult with discharge planning services (OR = 1.696, 95% CI: 1.105, 2.061) have a higher risk of readmission. Conclusions: This study finds that multi-morbidity was independent risk factor for unplanned readmissions at 14 days, recommended that the interventional treatment of the medical team be provided to provide integrated care for multi-morbidity to improve the patient's self-care ability and reduce the 14-day unplanned readmission rate.Keywords: unplanned readmission, comorbidities, Charlson comorbidity index, logistic regression
Procedia PDF Downloads 1524907 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification
Procedia PDF Downloads 3514906 ROOP: Translating Sequential Code Fragments to Distributed Code Fragments Using Deep Reinforcement Learning
Authors: Arun Sanjel, Greg Speegle
Abstract:
Every second, massive amounts of data are generated, and Data Intensive Scalable Computing (DISC) frameworks have evolved into effective tools for analyzing such massive amounts of data. Since the underlying architecture of these distributed computing platforms is often new to users, building a DISC application can often be time-consuming and prone to errors. The automated conversion of a sequential program to a DISC program will consequently significantly improve productivity. However, synthesizing a user’s intended program from an input specification is complex, with several important applications, such as distributed program synthesizing and code refactoring. Existing works such as Tyro and Casper rely entirely on deductive synthesis techniques or similar program synthesis approaches. Our approach is to develop a data-driven synthesis technique to identify sequential components and translate them to equivalent distributed operations. We emphasize using reinforcement learning and unit testing as feedback mechanisms to achieve our objectives.Keywords: program synthesis, distributed computing, reinforcement learning, unit testing, DISC
Procedia PDF Downloads 1154905 Overall Student Satisfaction at Tabor School of Education: An Examination of Key Factors Based on the AUSSE SEQ
Authors: Francisco Ben, Tracey Price, Chad Morrison, Victoria Warren, Willy Gollan, Robyn Dunbar, Frank Davies, Mark Sorrell
Abstract:
This paper focuses particularly on the educational aspects that contribute to the overall educational satisfaction rated by Tabor School of Education students who participated in the Australasian Survey of Student Engagement (AUSSE) conducted by the Australian Council for Educational Research (ACER) in 2010, 2012 and 2013. In all three years of participation, Tabor ranked first especially in the area of overall student satisfaction. By using a single level path analysis in relation to the AUSSE datasets collected using the Student Engagement Questionnaire (SEQ) for Tabor School of Education, seven aspects that contribute to overall student satisfaction have been identified. There appears to be a direct causal link between aspects of the Supportive Learning Environment, Work Integrated Learning, Career Readiness, Academic Challenge, and overall educational satisfaction levels. A further three aspects, being Student and Staff Interactions, Active Learning, and Enriching Educational Experiences, indirectly influence overall educational satisfaction levels.Keywords: attrition, retention, educational experience, pre-service teacher education, student satisfaction
Procedia PDF Downloads 3574904 A Machine Learning Approach for Detecting and Locating Hardware Trojans
Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He
Abstract:
The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.Keywords: hardware trojans, physical properties, machine learning, hardware security
Procedia PDF Downloads 1534903 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN
Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo
Abstract:
This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.Keywords: PM2.5 forecast, machine learning, convLSTM, DNN
Procedia PDF Downloads 604902 COVID-19 Analysis with Deep Learning Model Using Chest X-Rays Images
Authors: Uma Maheshwari V., Rajanikanth Aluvalu, Kumar Gautam
Abstract:
The COVID-19 disease is a highly contagious viral infection with major worldwide health implications. The global economy suffers as a result of COVID. The spread of this pandemic disease can be slowed if positive patients are found early. COVID-19 disease prediction is beneficial for identifying patients' health problems that are at risk for COVID. Deep learning and machine learning algorithms for COVID prediction using X-rays have the potential to be extremely useful in solving the scarcity of doctors and clinicians in remote places. In this paper, a convolutional neural network (CNN) with deep layers is presented for recognizing COVID-19 patients using real-world datasets. We gathered around 6000 X-ray scan images from various sources and split them into two categories: normal and COVID-impacted. Our model examines chest X-ray images to recognize such patients. Because X-rays are commonly available and affordable, our findings show that X-ray analysis is effective in COVID diagnosis. The predictions performed well, with an average accuracy of 99% on training photographs and 88% on X-ray test images.Keywords: deep CNN, COVID–19 analysis, feature extraction, feature map, accuracy
Procedia PDF Downloads 844901 The Contribution of Vygotsky's Social and Cultural Theory to the Understanding of Cognitive Development
Authors: Salah Eddine Ben Fadhel
Abstract:
Lev Vygotsky (1896–1934) was one of the most significant psychologists of the twentieth century despite his short life. His cultural-historical theory is still inspiring many researchers today. At the same time, we observe in many studies a lack of understanding of his thoughts. Vygotsky poses in this theory the contribution of society to individual development and learning. Thus, it suggests that human learning is largely a social and cultural process, further mentioning the influence of interactions between people and the culture in which they live. In this presentation, we highlight, on the one hand, the strong points of the theory by highlighting the major questions it raises and its contribution to developmental psychology in general. On the other hand, we will demonstrate what Vygotsky's theory brings today to the understanding of the cognitive development of children and adolescents. The major objective is to better understand the cognitive mechanisms involved in the learning process in children and adolescents and, therefore, demonstrate the complex nature of psychological development. The main contribution is to provide conceptual insight, which allows us to better understand the importance of the theory and its major pedagogical implications.Keywords: vygotsky, society, culture, history
Procedia PDF Downloads 704900 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning
Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V
Abstract:
The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network
Procedia PDF Downloads 1474899 The Rigor and Relevance of the Mathematics Component of the Teacher Education Programmes in Jamaica: An Evaluative Approach
Authors: Avalloy McCarthy-Curvin
Abstract:
For over fifty years there has been widespread dissatisfaction with the teaching of Mathematics in Jamaica. Studies, done in the Jamaican context highlight that teachers at the end of training do not have a deep understanding of the mathematics content they teach. Little research has been done in the Jamaican context that targets the advancement of contextual knowledge on the problem to ultimately provide a solution. The aim of the study is to identify what influences this outcome of teacher education in Jamaica so as to remedy the problem. This study formatively evaluated the curriculum documents, assessments and the delivery of the curriculum that are being used in teacher training institutions in Jamaica to determine their rigor -the extent to which written document, instruction, and the assessments focused on enabling pre-service teachers to develop deep understanding of mathematics and relevance- the extent to which the curriculum document, instruction, and the assessments are focus on developing the requisite knowledge for teaching mathematics. The findings show that neither the curriculum document, instruction nor assessments ensure rigor and enable pre-service teachers to develop the knowledge and skills they need to teach mathematics effectively.Keywords: relevance, rigor, deep understanding, formative evaluation
Procedia PDF Downloads 2434898 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning
Authors: Hossein Havaeji, Tony Wong, Thien-My Dao
Abstract:
1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning
Procedia PDF Downloads 1274897 Hear My Voice: The Educational Experiences of Disabled Students
Authors: Karl Baker-Green, Ian Woolsey
Abstract:
Historically, a variety of methods have been used to access the student voice within higher education, including module evaluations and informal classroom feedback. However, currently, the views articulated in student-staff-committee meetings bear the most weight and can therefore have the most significant impact on departmental policy. Arguably, these forums are exclusionary as several students, including those who experience severe anxiety, might feel unable to participate in this face-to-face (large) group activities. Similarly, students who declare a disability, but are not in possession of a learning contract, are more likely to withdraw from their studies than those whose additional needs have been formally recognised. It is also worth noting that whilst the number of disabled students in Higher Education has increased in recent years, the percentage of those who have been issued a learning contract has decreased. These issues foreground the need to explore the educational experiences of students with or without a learning contract in order to identify their respective aspirations and needs and therefore help shape education policy. This is in keeping with the ‘Nothing about us without us’, agenda, which recognises that disabled individuals are best placed to understand their own requirements and the most effective strategies to meet these.Keywords: education, student voice, student experience, student retention
Procedia PDF Downloads 984896 Cross-Tier Collaboration between Preservice and Inservice Language Teachers in Designing Online Video-Based Pragmatic Assessment
Authors: Mei-Hui Liu
Abstract:
This paper reports the progression of language teachers’ learning to assess students’ speech act performance via online videos in a cross-tier professional growth community. This yearlong research project collected multiple data sources from several stakeholders, including 12 preservice and 4 inservice English as a foreign language (EFL) teachers, 4 English professionals, and 82 high school students. Data sources included surveys, (focus group) interviews, online reflection journals, online video-based assessment items/scores, and artifacts related to teacher professional learning. The major findings depicted the effectiveness of this proposed learning module on language teacher development in pragmatic assessment as well as its impact on student learning experience. All these teachers appreciated this professional learning experience which enhanced their knowledge in assessing students’ pragmalinguistic and sociopragmatic performance in an English speech act (i.e., making refusals). They learned how to design online video-based assessment items by attending to specific linguistic structures, semantic formula, and sociocultural issues. They further became aware of how to sharpen pragmatic instructional skills in the near future after putting theories into online assessment and related classroom practices. Additionally, data analysis revealed students’ achievement in and satisfaction with the designed online assessment. Yet, during the professional learning process most participating teachers encountered challenges in reaching a consensus on selecting appropriate video clips from available sources to present the sociocultural values in English-speaking refusal contexts. Also included was to construct test items which could testify the influence of interlanguage transfer on students’ pragmatic performance in various conversational scenarios. With pedagogical implications and research suggestions, this study adds to the increasing amount of research into integrating preservice and inservice EFL teacher education in pragmatic assessment and relevant instruction. Acknowledgment: This research project is sponsored by the Ministry of Science and Technology in the Republic of China under the grant number of MOST 106-2410-H-029-038.Keywords: cross-tier professional development, inservice EFL teachers, pragmatic assessment, preservice EFL teachers, student learning experience
Procedia PDF Downloads 2634895 Cognitive and Metacognitive Space in the Task Design at Postgraduate Taught Level
Authors: Mei Lin, Lana Yj Liu, Thin Ngoc Pham
Abstract:
Postgraduate taught (PGT) students’ learning strategies align with what the learning task constitutes and the environment that the task creates. Cognitively, they can discover new perspectives, challenge general assumptions, establish clear connections, and synthesise information. Metacognitively, their engagement is conducive to the development of planning, monitoring, and evaluating strategies. Given that there has been a lack of longitudinal insights into international PGT students’ experiences of the cognitive and metacognitive space created in the tasks, this paper presentation aims to fill the gaps by longitudinally exploring (1) the fundamentals of task designs to create cognitive and metacognitive space and (2) the opportunities and challenges of multicultural group discussions as a pedagogical approach for the implementation of cognitive and metacognitive space in the learning tasks. Data were collected from the two rounds of semi-structured interviews with 11 international PGT students in two programmes at a UK university -at the end of semester one and at the end of semester two. The findings show that the task designs, to create cognitive and metacognitive space, need to include four interconnected factors: clarity, relevance, motivation, and practicality. In addition, international PGT students perceived that they practised and developed their cognitive and metacognitive abilities while getting immersed in multicultural group discussions. The findings, from the learners’ point of view, make some pedagogy-related suggestions to the task designs at the master’s level, particularly how to engage students in learning during their transition into higher education in a different cultural setting.Keywords: cognitive space, master students, metacognitive space, task design
Procedia PDF Downloads 624894 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis
Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy
Abstract:
Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.Keywords: associated cervical cancer, data mining, random forest, logistic regression
Procedia PDF Downloads 894893 The Views of German Preparatory Language Programme Students about German Speaking Activity
Authors: Eda Üstünel, Seval Karacabey
Abstract:
The students, who are enrolled in German Preparatory Language Programme at the School of Foreign Languages, Muğla Sıtkı Koçman University, Turkey, learn German as a foreign language for two semesters in an academic year. Although the language programme is a skills-based one, the students lack German speaking skills due to their fear of making language mistakes while speaking in German. This problem of incompetency in German speaking skills exists also in their four-year departmental study at the Faculty of Education. In order to address this problem we design German speaking activities, which are extra-curricular activities. With the help of these activities, we aim to lead Turkish students of German language to speak in the target language, to improve their speaking skills in the target language and to create a stress-free atmosphere and a meaningful learning environment to communicate in the target language. In order to achieve these aims, an ERASMUS+ exchange staff (a German trainee teacher of German as a foreign language), who is from Schwabisch Gmünd University, Germany, conducted out-of-class German speaking activities once a week for three weeks in total. Each speaking activity is lasted for one and a half hour per week. 7 volunteered students of German preparatory language programme attended the speaking activity for three weeks. The activity took place at a cafe in the university campus, that’s the reason, we call it as an out-of-class activity. The content of speaking activity is not related to the topics studied at the units of coursebook, that’s the reason, we call this activity as extra-curricular one. For data collection, three tools are used. A questionnaire, which is an adapted version of Sabo’s questionnaire, is applied to seven volunteers. An interview session is then held with each student on individual basis. The interview questions are developed so as to ask students to expand their answers that are given at the questionnaires. The German trainee teacher wrote fieldnotes, in which the teacher described the activity in the light of her thoughts about what went well and which areas were needed to be improved. The results of questionnaires show that six out of seven students note that such an acitivity must be conducted by a native speaker of German. Four out of seven students emphasize that they like the way that the activities are designed in a learner-centred fashion. All of the students point out that they feel motivated to talk to the trainee teacher in German. Six out of seven students note that the opportunity to communicate in German with the teacher and the peers enable them to improve their speaking skills, the use of grammatical rules and the use of vocabulary.Keywords: Learning a Foreign Language, Speaking Skills, Teaching German as a Foreign Language, Turkish Learners of German Language
Procedia PDF Downloads 3234892 The Emotional Education in the Development of Intercultural Competences
Authors: Montserrrat Dopico Gonzalez, Ramon Lopez Facal
Abstract:
The development of a critical, open and plural citizenship constitutes one of the main challenges of the school institution in the present multicultural societies. Didactics in Social Sciences has conducted important contributions to the development of active methodologies to promote the development of the intercultural competencies of the student body. Research in intercultural education has demonstrated the efficiency of the cooperative learning techniques to improve the intercultural relations in the classroom. Our study proposes to check the effect that, concerning the development of intercultural competencies of the student body, the emotional education can have in the context of the use of active methodologies such as the learning by projects and the cooperative learning. To that purpose, a programme of intervention based on activities focussed on controversial issues related to cultural diversity has been implemented in several secondary schools. Through a methodology which combines intercultural competence scales with interviews and also with the analysis of the school body’s productions, the persistence of stereotypes against immigration and the efficacy of the introduction of emotional education elements in the development of intercultural competencies have both been observed.Keywords: active methodologies, didactics in social sciences, intercultural competences, intercultural education
Procedia PDF Downloads 1584891 COVID-19’s Impact on the Use of Media, Educational Performance, and Learning in Children and Adolescents with ADHD Who Engaged in Virtual Learning
Authors: Christina Largent, Tazley Hobbs
Abstract:
Objective: A literature review was performed to examine the existing research on COVID-19 lockdown as it relates to ADHD child/adolescent individuals, media use, and impact on educational performance/learning. It was surmised that with the COVID-19 shut-down and transition to remote learning, a less structured learning environment, increased screen time, in addition to potential difficulty accessing school resources would impair ADHD individuals’ performance and learning. A resulting increase in the number of youths diagnosed and treated for ADHD would be expected. As of yet, there has been little to no published data on the incidence of ADHD as it relates to COVID-19 outside of reports from several nonprofit agencies such as CHADD (Children and Adults with Attention-Deficit/Hyperactivity Disorder ), who reported an increased number of calls to their helpline, The New York based Child Mind Institute, who reported an increased number of appointments to discuss medications, and research released from Athenahealth showing an increase in the number of patients receiving new diagnosis of ADHD and new prescriptions for ADHD medications. Methods: A literature search for articles published between 2020 and 2021 from Pubmed, Google Scholar, PsychInfo, was performed. Search phrases and keywords included “covid, adhd, child, impact, remote learning, media, screen”. Results: Studies primarily utilized parental reports, with very few from the perspective of the ADHD individuals themselves. Most findings thus far show that with the COVID-19 quarantine and transition to online learning, ADHD individuals’ experienced decreased ability to keep focused or adhere to the daily routine, as well as increased inattention-related problems, such as careless mistakes or lack of completion in homework, which in turn translated into overall more difficulty with remote learning. To add further injury, one study showed (just on evaluation of two different sites within the US) that school based services for these individuals decreased with the shift to online-learning. Increased screen time, television, social media, and gaming were noted amongst ADHD individuals. One study further differentiated the degree of digital media, identifying individuals with “problematic “ or “non-problematic” use. ADHD children with problematic digital media use suffered from more severe core symptoms of ADHD, negative emotions, executive function deficits, damage to family environment, pressure from life events, and a lower motivation to learn. Conclusions and Future Considerations: Studies found not only was online learning difficult for ADHD individuals but it, in addition to greater use of digital media, was associated with worsening ADHD symptoms impairing schoolwork, in addition to secondary findings of worsening mood and behavior. Currently, data on the number of new ADHD cases, in addition to data on the prescription and usage of stimulants during COVID-19, has not been well documented or studied; this would be well-warranted out of concern for over diagnosing or over-prescribing our youth. It would also be well-worth studying how reversible or long-lasting these negative impacts may be.Keywords: COVID-19, remote learning, media use, ADHD, child, adolescent
Procedia PDF Downloads 128