Search results for: problem diagnostic
4629 Assessment of Exhaust Emissions and Fuel Consumption from Means of Transport in Agriculture
Authors: Jerzy Merkisz, Piotr Lijewski, Pawel Fuc, Maciej Siedlecki, Andrzej Ziolkowski, Sylwester Weymann
Abstract:
The paper discusses the problem of load transport using farm tractors and road tractor units. This type of carriage of goods is often done with farm vehicles. The tests were performed with the PEMS equipment (Portable Emission Measurement System) under actual traffic conditions. The vehicles carried a load of 20000 kg. This research method is one of the most desired because it provides reliable information on the actual vehicle emissions and fuel consumption (carbon balance method). For the tests, a route was selected that simulated a trip from a small town to a food-processing facility located in a city. The analysis of the obtained results gave a clear answer as to what vehicles need to be used for the carriage of this type of cargo in terms of exhaust emissions and fuel consumption.Keywords: emission, transport, fuel consumption, PEMS
Procedia PDF Downloads 5324628 Electrophoretic Light Scattering Based on Total Internal Reflection as a Promising Diagnostic Method
Authors: Ekaterina A. Savchenko, Elena N. Velichko, Evgenii T. Aksenov
Abstract:
The development of pathological processes, such as cardiovascular and oncological diseases, are accompanied by changes in molecular parameters in cells, tissues, and serum. The study of the behavior of protein molecules in solutions is of primarily importance for diagnosis of such diseases. Various physical and chemical methods are used to study molecular systems. With the advent of the laser and advances in electronics, optical methods, such as scanning electron microscopy, sedimentation analysis, nephelometry, static and dynamic light scattering, have become the most universal, informative and accurate tools for estimating the parameters of nanoscale objects. The electrophoretic light scattering is the most effective technique. It has a high potential in the study of biological solutions and their properties. This technique allows one to investigate the processes of aggregation and dissociation of different macromolecules and obtain information on their shapes, sizes and molecular weights. Electrophoretic light scattering is an analytical method for registration of the motion of microscopic particles under the influence of an electric field by means of quasi-elastic light scattering in a homogeneous solution with a subsequent registration of the spectral or correlation characteristics of the light scattered from a moving object. We modified the technique by using the regime of total internal reflection with the aim of increasing its sensitivity and reducing the volume of the sample to be investigated, which opens the prospects of automating simultaneous multiparameter measurements. In addition, the method of total internal reflection allows one to study biological fluids on the level of single molecules, which also makes it possible to increase the sensitivity and the informativeness of the results because the data obtained from an individual molecule is not averaged over an ensemble, which is important in the study of bimolecular fluids. To our best knowledge the study of electrophoretic light scattering in the regime of total internal reflection is proposed for the first time, latex microspheres 1 μm in size were used as test objects. In this study, the total internal reflection regime was realized on a quartz prism where the free electrophoresis regime was set. A semiconductor laser with a wavelength of 655 nm was used as a radiation source, and the light scattering signal was registered by a pin-diode. Then the signal from a photodetector was transmitted to a digital oscilloscope and to a computer. The autocorrelation functions and the fast Fourier transform in the regime of Brownian motion and under the action of the field were calculated to obtain the parameters of the object investigated. The main result of the study was the dependence of the autocorrelation function on the concentration of microspheres and the applied field magnitude. The effect of heating became more pronounced with increasing sample concentrations and electric field. The results obtained in our study demonstrated the applicability of the method for the examination of liquid solutions, including biological fluids.Keywords: light scattering, electrophoretic light scattering, electrophoresis, total internal reflection
Procedia PDF Downloads 2174627 Elevated Celiac Antibodies and Abnormal Duodenal Biopsies Associated with IBD Markers: Possible Role of Altered Gut Permeability and Inflammation in Gluten Related Disorders
Authors: Manav Sabharwal, Ruda Rai Md, Candace Parker, James Ridley
Abstract:
Wheat is one of the most commonly consumed grains worldwide, which contains gluten. Nowadays, gluten intake is considered to be a trigger for GRDs, including Celiac disease (CD), a common genetic disease affecting 1% of the US population, non-celiac gluten sensitivity (NCGS) and wheat allergy. NCGS is being recognized as an acquired gluten-sensitive enteropathy that is prevalent across age, ethnic and geographic groups. The cause of this entity is not fully understood, and recent studies suggest that it is more common in participants with irritable bowel syndrome (IBS), with iron deficiency anemia, symptoms of fatigue, and has considerable overlap in symptoms with IBS and Crohn’s disease. However, these studies were lacking in availability of complete serologies, imaging tests and/or pan-endoscopy. We performed a prospective study of 745 adult patients who presented to an outpatient clinic for evaluation of chronic upper gastro-intestinal symptoms and subsequently underwent an upper endoscopic (EGD) examination as standard of care. Evaluation comprised of comprehensive celiac antibody panel, inflammatory bowel disease (IBD) serologic markers, duodenal biopsies and Small Bowel Video Capsule Endoscopy (VCE), when available. At least 6 biopsy specimens were obtained from the duodenum and proximal jejunum during EGD, and CD3+ Intraepithelial lymphocytes (IELs) and villous architecture were evaluated by a single experienced pathologist, and VCE was performed by a single experienced gastroenterologist. Of the 745 patients undergoing EGD, 12% (93/745) patients showed elevated CD3+ IELs in the duodenal biopsies. 52% (387/745) completed a comprehensive CD panel and 7.2% (28/387) were positive for at least 1 CD antibody (Tissue transglutaminase (tTG), being the most common antibody in 65% (18/28)). Of these patients, 18% (5/28) showed increased duodenal CD3+ IELs, but 0% showed villous blunting or distortion to meet criteria for CD. Surprisingly, 43% (12/28) were positive for at 1 IBD serology (ASCA, ANCA or expanded IBD panel (LabCorp)). Of these 28 patients, 29% (8/28) underwent a SB VCE, of which 100 % (8/8) showed significant jejuno-ileal mucosal lesions diagnostic for IBD. Findings of abnormal CD antibodies (7.2%, 28/387) and increased CD3+ IELs on duodenal biopsy (12%, 93/745) were observed frequently in patients with UGI symptoms undergoing EGD in an outpatient clinic. None met criteria for CD, and a high proportion (43%, 12/28) showed evidence of overlap with IBD. This suggests a potential causal link of acquired GRDs to underlying inflammation and gut mucosal barrier disruption. Further studies to investigate a role for abnormal antigen presentation of dietary gluten to gut associated lymphoid tissue as a cause are justified. This may explain a high prevalence of GRDs in the population and correlation with IBS, IBD and other gut inflammatory disorders.Keywords: celiac, gluten sensitive enteropathy, lymphocitic enteritis, IBS, IBD
Procedia PDF Downloads 1724626 A Semiparametric Approach to Estimate the Mode of Continuous Multivariate Data
Authors: Tiee-Jian Wu, Chih-Yuan Hsu
Abstract:
Mode estimation is an important task, because it has applications to data from a wide variety of sources. We propose a semi-parametric approach to estimate the mode of an unknown continuous multivariate density function. Our approach is based on a weighted average of a parametric density estimate using the Box-Cox transform and a non-parametric kernel density estimate. Our semi-parametric mode estimate improves both the parametric- and non-parametric- mode estimates. Specifically, our mode estimate solves the non-consistency problem of parametric mode estimates (at large sample sizes) and reduces the variability of non-parametric mode estimates (at small sample sizes). The performance of our method at practical sample sizes is demonstrated by simulation examples and two real examples from the fields of climatology and image recognition.Keywords: Box-Cox transform, density estimation, mode seeking, semiparametric method
Procedia PDF Downloads 2864625 Biobutanol Production from Date Palm Waste by Clostridium acetobutylicum
Authors: Diya Alsafadi, Fawwaz Khalili, Mohammad W. Amer
Abstract:
Butanol is an important industrial solvent and potentially a better liquid transportation biofuel than ethanol. The cost of feedstock is one key problem associated with the biobutanol production. Date palm is sugar-rich fruit and highly abundant. Thousands of tons of date wastes that generated from date processing industries are thrown away each year and imposing serious environmental problems. To exploit the utilization of renewable biomass feedstock, date palm waste was utilized for butanol production by Clostridium acetobutylicum DSM 1731. Fermentation conditions were optimized by investigating several parameters that affect the production of butanol such as temperature, substrate concentration and pH. The highest butanol yield (1.0 g/L) and acetone, butanol, and ethanol (ABE) content (1.3 g/L) were achieved at 20 g/L date waste, pH 5.0 and 37 °C. These results suggest that date palm waste can be used for biobutanol production.Keywords: biofuel, acetone-butanol-ethanol fermentation, date palm waste, Clostridium acetobutylicum
Procedia PDF Downloads 3584624 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression
Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras
Abstract:
In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression
Procedia PDF Downloads 1254623 Heart Failure Identification and Progression by Classifying Cardiac Patients
Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan
Abstract:
Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.Keywords: decision tree, heart failure, data mining, classification model
Procedia PDF Downloads 4054622 Improving Sales through Inventory Reduction: A Retail Chain Case Study
Authors: M. G. Mattos, J. E. Pécora Jr, T. A. Briso
Abstract:
Today's challenging business environment, with unpredictable demand and volatility, requires a supply chain strategy that handles uncertainty and risks in the right way. Even though inventory models have been previously explored, this paper seeks to apply these concepts on a practical situation. This study involves the inventory replenishment problem, applying techniques that are mainly based on mathematical assumptions and modeling. The primary goal is to improve the retailer’s supply chain processes taking store differences when setting the various target stock levels. Through inventory review policy, picking piece implementation and minimum exposure definition, we were able not only to promote the inventory reduction as well as improve sales results. The inventory management theory from literature review was then tested on a single case study regarding a particular department in one of the largest Latam retail chains.Keywords: inventory, distribution, retail, risk, safety stock, sales, uncertainty
Procedia PDF Downloads 2714621 Lipschitz Classifiers Ensembles: Usage for Classification of Target Events in C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev
Abstract:
This paper introduces an original method for guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers. The solution was obtained as a finite closed set of alternative hypotheses, which contains an object of classification with a probability of not less than the specified value. Thus, the classification is represented by a set of hypothetical classes. In this case, the smaller the cardinality of the discrete set of hypothetical classes is, the higher is the classification accuracy. Experiments have shown that if the cardinality of the classifiers ensemble is increased then the cardinality of this set of hypothetical classes is reduced. The problem of the guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers is relevant in the multichannel classification of target events in C-OTDR monitoring systems. Results of suggested approach practical usage to accuracy control in C-OTDR monitoring systems are present.Keywords: Lipschitz classifiers, confidence set, C-OTDR monitoring, classifiers accuracy, classifiers ensemble
Procedia PDF Downloads 4974620 Body Image Dissatisfaction of Females: A Holistic Therapeutic Approach
Authors: Katy Eleanor Addinall
Abstract:
Women’s body image dissatisfaction is a widespread problem, and it is present in all age groups, on every socioeconomic level, in all occupations, all cultures, and religions. Body image dissatisfaction is a broad term that is used to vary from normal discontent of a woman about one or more of her physical attributes to extreme negative causes, for example, an eating disorder. South African women were examined, and an empirical qualitative study was done to evaluate the women’s thoughts and feelings regarding their bodies. The causes and effects of body image dissatisfaction were examined, and social science literature was used to determine the etiology of body image dissatisfaction, which confirmed that it is multifactorial. A variety of therapeutic aids were studied, and cognitive behavioural therapy appeared to be the most effective. Every woman is an individual with an individual body image and must be approached as an individual holistic being. Thus, a holistic pragmatic model was developed as a possible aid in the woman’s healing process.Keywords: body, body image, females, woman, therapy, dissatisfaction, holistic, cognitive behavioural therapy
Procedia PDF Downloads 1454619 Corporate Cash Holdings and the Effect of Chaebol Affiliated on the Implied Cost of Equity Capital: Evidence from Korea
Authors: Hongmin Chun
Abstract:
This paper examines corporate cash holdings and their effect on the cost of equity capital. In addition, this study examines the potentially different effects when the firm belongs to chaebol and non-chaebol groups. Chaebol is a South Korean form of business conglomerate. Chaebol is typically global multinationals and owns numerous international enterprises, controlled by a chairman with power over all the operations. The overall empirical result suggests that higher cash holdings are a risk increasing factor which holds for the chaebol group of firms. This result is valid in a battery of robustness tests and 2SLS regressions. In Korea, higher cash holdings represent a risk premium factor that is closely related to the overinvestment and agency problems between managers and shareholders.Keywords: cash holdings, implied cost of equity capital, chaebol, agency problem
Procedia PDF Downloads 1814618 Adaptive Few-Shot Deep Metric Learning
Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian
Abstract:
Whereas currently the most prevalent deep learning methods require a large amount of data for training, few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.Keywords: few-shot learning, triplet network, adaptive margin, deep learning
Procedia PDF Downloads 1744617 Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy
Authors: Samira-Sadat JamaliDinan, Haidar Almohri, Mohammad-Reza Nazem-Zadeh
Abstract:
Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set.Keywords: temporal lobe epilepsy, machine learning, clustering, magnetoencephalography
Procedia PDF Downloads 1624616 Quantitative Wide-Field Swept-Source Optical Coherence Tomography Angiography and Visual Outcomes in Retinal Artery Occlusion
Authors: Yifan Lu, Ying Cui, Ying Zhu, Edward S. Lu, Rebecca Zeng, Rohan Bajaj, Raviv Katz, Rongrong Le, Jay C. Wang, John B. Miller
Abstract:
Purpose: Retinal artery occlusion (RAO) is an ophthalmic emergency that can lead to poor visual outcome and is associated with an increased risk of cerebral stroke and cardiovascular events. Fluorescein angiography (FA) is the traditional diagnostic tool for RAO; however, wide-field swept-source optical coherence tomography angiography (WF SS-OCTA), as a nascent imaging technology, is able to provide quick and non-invasive angiographic information with a wide field of view. In this study, we looked for associations between OCT-A vascular metrics and visual acuity in patients with prior diagnosis of RAO. Methods: Patients with diagnoses of central retinal artery occlusion (CRAO) or branched retinal artery occlusion (BRAO) were included. A 6mm x 6mm Angio and a 15mm x 15mm AngioPlex Montage OCT-A image were obtained for both eyes in each patient using the Zeiss Plex Elite 9000 WF SS-OCTA device. Each 6mm x 6mm image was divided into nine Early Treatment Diabetic Retinopathy Study (ETDRS) subfields. The average measurement of the central foveal subfield, inner ring, and outer ring was calculated for each parameter. Non-perfusion area (NPA) was manually measured using 15mm x 15mm Montage images. A linear regression model was utilized to identify a correlation between the imaging metrics and visual acuity. A P-value less than 0.05 was considered to be statistically significant. Results: Twenty-five subjects were included in the study. For RAO eyes, there was a statistically significant negative correlation between vision and retinal thickness as well as superficial capillary plexus vessel density (SCP VD). A negative correlation was found between vision and deep capillary plexus vessel density (DCP VD) without statistical significance. There was a positive correlation between vision and choroidal thickness as well as choroidal volume without statistical significance. No statistically significant correlation was found between vision and the above metrics in contralateral eyes. For NPA measurements, no significant correlation was found between vision and NPA. Conclusions: This is the first study to our best knowledge to investigate the utility of WF SS-OCTA in RAO and to demonstrate correlations between various retinal vascular imaging metrics and visual outcomes. Further investigations should explore the associations between these imaging findings and cardiovascular risk as RAO patients are at elevated risk for symptomatic stroke. The results of this study provide a basis to understand the structural changes involved in visual outcomes in RAO. Furthermore, they may help guide management of RAO and prevention of cerebral stroke and cardiovascular accidents in patients with RAO.Keywords: OCTA, swept-source OCT, retinal artery occlusion, Zeiss Plex Elite
Procedia PDF Downloads 1454615 Biogas Production Using Water Hyacinth as a Means of Waste Management Control at Hartbeespoort Dam, South Africa
Authors: Trevor Malambo Simbayi, Diane Hildebrandt, Tonderayi Matambo
Abstract:
The rapid growth of population in recent decades has resulted in an increased need for energy to meet human activities. As energy demands increase, the need for other sources of energy other than fossil fuels, increases in turn. Furthermore, environmental concerns such as global warming due to the use of fossil fuels, depleting fossil fuel reserves and the rising cost of oil have contributed to an increased interest in renewables sources of energy. Biogas is a renewable source of energy produced through the process of anaerobic digestion (AD) and it offers a two-fold solution; it provides an environmentally friendly source of energy and its production helps to reduce the amount of organic waste taken to landfills. This research seeks to address the waste management problem caused by an aquatic weed called water hyacinth (Eichhornia crassipes) at the Hartbeespoort (Harties) Dam in the North West Province of South Africa, through biogas production of the weed. Water hyacinth is a category 1 invasive species and it is deemed to be the most problematic aquatic weed. This weed is said to double its size in the space of five days. Eutrophication in the Hartbeespoort Dam has manifested itself through the excessive algae bloom and water hyacinth infestation. A large amount of biomass from water hyacinth and algae are generated per annum from the two hundred hectare surface area of the dam exposed to the sun. This biomass creates a waste management problem. Water hyacinth when in full bloom can cover nearly half of the surface of Hartbeespoort Dam. The presence of water hyacinth in the dam has caused economic and environmental problems. Economic activities such as fishing, boating, and recreation, are hampered by the water hyacinth’s prolific growth. This research proposes the use of water hyacinth as a feedstock or substrate for biogas production in order to find an economic and environmentally friendly means of waste management for the communities living around the Hartbeespoort Dam. In order to achieve this objective, water hyacinth will be collected from the dam and it will be mechanically pretreated before anaerobic digestion. Pretreatment is required for lignocellulosic materials like water hyacinth because such materials are called recalcitrant solid materials. Cow manure will be employed as a source of microorganisms needed for biogas production to occur. Once the water hyacinth and the cow dung are mixed, they will be placed in laboratory anaerobic reactors. Biogas production will be monitored daily through the downward displacement of water. Characterization of the substrates (cow manure and water hyacinth) to determine the nitrogen, sulfur, carbon and hydrogen, total solids (TS) and volatile solids (VS). Liquid samples from the anaerobic digesters will be collected and analyzed for volatile fatty acids (VFAs) composition by means of a liquid gas chromatography machine.Keywords: anaerobic digestion, biogas, waste management, water hyacinth
Procedia PDF Downloads 1984614 Scale Prototype to Estimate the Resistance to Lateral Displacement Buried Pipes and submerged in non-Cohesive Soils
Authors: Enrique Castañeda, Tomas Hernadez, Mario Ulloa
Abstract:
Recent studies related to submarine pipelines under high pressure, temperature and buried, forces us to make bibliographical and documentary research to make us of references applicable to our problem. This paper presents an experimental methodology to the implementation of results obtained in a scale model, bibliography soil mechanics and finite element simulation. The model consists of a tank of 0.60 x 0.90 x 0.60 basis equipped high side windows, tires and digital hardware devices for measuring different variables to be applied to the model, where the mechanical properties of the soil are determined, simulation of drag a pipeline buried in a non-cohesive seafloor of the Gulf of Mexico, estimate the failure surface and application of each of the variables for the determination of mechanical elements.Keywords: static friction coefficient, maximum passive force resistant soil, normal, tangential stress
Procedia PDF Downloads 3664613 Generic Early Warning Signals for Program Student Withdrawals: A Complexity Perspective Based on Critical Transitions and Fractals
Authors: Sami Houry
Abstract:
Complex systems exhibit universal characteristics as they near a tipping point. Among them are common generic early warning signals which precede critical transitions. These signals include: critical slowing down in which the rate of recovery from perturbations decreases over time; an increase in the variance of the state variable; an increase in the skewness of the state variable; an increase in the autocorrelations of the state variable; flickering between different states; and an increase in spatial correlations over time. The presence of the signals has management implications, as the identification of the signals near the tipping point could allow management to identify intervention points. Despite the applications of the generic early warning signals in various scientific fields, such as fisheries, ecology and finance, a review of literature did not identify any applications that address the program student withdrawal problem at the undergraduate distance universities. This area could benefit from the application of generic early warning signals as the program withdrawal rate amongst distance students is higher than the program withdrawal rate at face-to-face conventional universities. This research specifically assessed the generic early warning signals through an intensive case study of undergraduate program student withdrawal at a Canadian distance university. The university is non-cohort based due to its system of continuous course enrollment where students can enroll in a course at the beginning of every month. The assessment of the signals was achieved through the comparison of the incidences of generic early warning signals among students who withdrew or simply became inactive in their undergraduate program of study, the true positives, to the incidences of the generic early warning signals among graduates, the false positives. This was achieved through significance testing. Research findings showed support for the signal pertaining to the rise in flickering which is represented in the increase in the student’s non-pass rates prior to withdrawing from a program; moderate support for the signals of critical slowing down as reflected in the increase in the time a student spends in a course; and moderate support for the signals on increase in autocorrelation and increase in variance in the grade variable. The findings did not support the signal on the increase in skewness of the grade variable. The research also proposes a new signal based on the fractal-like characteristic of student behavior. The research also sought to extend knowledge by investigating whether the emergence of a program withdrawal status is self-similar or fractal-like at multiple levels of observation, specifically the program level and the course level. In other words, whether the act of withdrawal at the program level is also present at the course level. The findings moderately supported self-similarity as a potential signal. Overall, the assessment of the signals suggests that the signals, with the exception with the increase of skewness, could be utilized as a predictive management tool and potentially add one more tool, the fractal-like characteristic of withdrawal, as an additional signal in addressing the student program withdrawal problem.Keywords: critical transitions, fractals, generic early warning signals, program student withdrawal
Procedia PDF Downloads 1884612 Environmental Liability of Architects: Architects Destroying the City in Designed and Creative Way, Dhaka City
Authors: Md. Ratin
Abstract:
This paper aims to show how Dhaka city is getting destroyed and the creator and guide of the city – the architects destroying the city in more designed and creative way. The liability of architects should be first and foremost to make the would, country, city a better living environment. As without it where the architects will do their design? To make a better living environment architects should conserve the tress, river and other related ingredient related to the environment. This paper attempts to show how cutting down trees and filling rivers causing more problem than having a great architecture in those places. For increasing people in a city like Dhaka, we need more shelter. But for providing those architects building more living spaces. But as a liability of an architect, one should give something back to the environment too. With time the city’s greenery and water body are getting vanished like magic. And for this, the architects should be blamed for giving us a disastrous future. The analysis is based on literature survey and survey by questionnaire, interviews of users.Keywords: architect, environment, liability, river
Procedia PDF Downloads 3494611 The Psychological Impact of Industrial Noise on Workers
Authors: Beriache Abderazik
Abstract:
It is clear that the psychological effects of noise and physiological eloquent on the workers, what will inevitably affect the performance of both productivity and efficiency in all its aspects, industrial noise became among the most prominent modern professional problems, That require study and analysis in order to arrive at solutions and ways that you can reduce the effects of industrial noise. These factors, in addition to other reasons, made us try in this research to know the real impact of industrial noise on the professional satisfaction of workers. In light of this title we have identified the following general problem: - Is the professional satisfaction factor varies depending on the noise level in the work environment? For the purpose of ascertaining the veracity of the assumptions, we have a comparative study between two samples of equal workers, the first sample is working under the influence of industrial noise severe about (100 Db), and the second sample is working under the influence of industrial noise is low (about 63 Db), and applied them test the professional satisfaction. The results support the hypotheses and confirm all sincerity.Keywords: industrial noise, job satisfaction, the psychological effects of noise, work environment
Procedia PDF Downloads 5854610 Annealing Process Study at Galvanizing Line: Characterization and Implication Inherent to Lead Entrainment
Authors: Marcelo Franzkowiak Stahlschmidt
Abstract:
This paper discusses the experiments carried out based on the wire drawing process analysis and later annealing on lead furnace on a galvanizing line. Using Design of Experiments methodology, the aim of this work is to understand the occurrence of lead entrainment originating from the annealed wires in order to decrease this problem. Wire samples were collected from wire drawing machines and galvanizing line and submitted to surface roughness analysis and its implications on lead drag out based on wire speed, wire diameter, lead bath temperature, thermal capacity of the lead kettle, wire surface condition, wire roughness and wire superficial cleanliness. Proposals to decrease lead drag out were made in order to increase wire drawing machines and galvanizing line performance.Keywords: wire drawing process, galvanizing, heat treatment, lead
Procedia PDF Downloads 6424609 Data Science/Artificial Intelligence: A Possible Panacea for Refugee Crisis
Authors: Avi Shrivastava
Abstract:
In 2021, two heart-wrenching scenes, shown live on television screens across countries, painted a grim picture of refugees. One of them was of people clinging onto an airplane's wings in their desperate attempt to flee war-torn Afghanistan. They ultimately fell to their death. The other scene was the U.S. government authorities separating children from their parents or guardians to deter migrants/refugees from coming to the U.S. These events show the desperation refugees feel when they are trying to leave their homes in disaster zones. However, data paints a grave picture of the current refugee situation. It also indicates that a bleak future lies ahead for the refugees across the globe. Data and information are the two threads that intertwine to weave the shimmery fabric of modern society. Data and information are often used interchangeably, but they differ considerably. For example, information analysis reveals rationale, and logic, while data analysis, on the other hand, reveals a pattern. Moreover, patterns revealed by data can enable us to create the necessary tools to combat huge problems on our hands. Data analysis paints a clear picture so that the decision-making process becomes simple. Geopolitical and economic data can be used to predict future refugee hotspots. Accurately predicting the next refugee hotspots will allow governments and relief agencies to prepare better for future refugee crises. The refugee crisis does not have binary answers. Given the emotionally wrenching nature of the ground realities, experts often shy away from realistically stating things as they are. This hesitancy can cost lives. When decisions are based solely on data, emotions can be removed from the decision-making process. Data also presents irrefutable evidence and tells whether there is a solution or not. Moreover, it also responds to a nonbinary crisis with a binary answer. Because of all that, it becomes easier to tackle a problem. Data science and A.I. can predict future refugee crises. With the recent explosion of data due to the rise of social media platforms, data and insight into data has solved many social and political problems. Data science can also help solve many issues refugees face while staying in refugee camps or adopted countries. This paper looks into various ways data science can help solve refugee problems. A.I.-based chatbots can help refugees seek legal help to find asylum in the country they want to settle in. These chatbots can help them find a marketplace where they can find help from the people willing to help. Data science and technology can also help solve refugees' many problems, including food, shelter, employment, security, and assimilation. The refugee problem seems to be one of the most challenging for social and political reasons. Data science and machine learning can help prevent the refugee crisis and solve or alleviate some of the problems that refugees face in their journey to a better life. With the explosion of data in the last decade, data science has made it possible to solve many geopolitical and social issues.Keywords: refugee crisis, artificial intelligence, data science, refugee camps, Afghanistan, Ukraine
Procedia PDF Downloads 754608 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features
Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh
Abstract:
In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve
Procedia PDF Downloads 2664607 Mindfulness and Motivational Based Intervention for Pregnant Women with Tobacco Dependency: Pilot Study
Authors: Ilona Krone
Abstract:
Maternal smoking during pregnancy increases the risk of perinatal/postnatal negative health outcomes; however, only 1 in 5 pregnant smokers quit smoking. That is a clinical and public health problem. Pregnant smokers have negative paternal support, and higher levels of perceived stress than non-smokers and quitters return to smoking in a stressful situation. A crisis like the COVID-19 outbreak causes significant uncertainty and stress. For pregnant women, additional stress may increase due to concerns for their fetus. Strategies targeting maternal stress and isolation may be particularly useful to prevent negative outcomes for women and their fetuses. Within the post-doctoral study, cooperating with leading specialists, an innovative program for pregnant smokers will be developed. Feasibility for reducing craving, distress intolerance, Covid 19 related stress, and fear in pregnant women in Latvia will be assessed.Keywords: COVID 19, mindfulness, motivation, pregnancy, smoking cessation
Procedia PDF Downloads 2244606 Exploiting Non-Uniform Utility of Computing: A Case Study
Authors: Arnab Sarkar, Michael Huang, Chuang Ren, Jun Li
Abstract:
The increasing importance of computing in modern society has brought substantial growth in the demand for more computational power. In some problem domains such as scientific simulations, available computational power still sets a limit on what can be practically explored in computation. For many types of code, there is non-uniformity in the utility of computation. That is not every piece of computation contributes equally to the quality of the result. If this non-uniformity is understood well and exploited effectively, we can much more effectively utilize available computing power. In this paper, we discuss a case study of exploring such non-uniformity in a particle-in-cell simulation platform. We find both the existence of significant non-uniformity and that it is generally straightforward to exploit it. We show the potential of order-of-magnitude effective performance gain while keeping the comparable quality of output. We also discuss some challenges in both the practical application of the idea and evaluation of its impact.Keywords: approximate computing, landau damping, non uniform utility computing, particle-in-cell
Procedia PDF Downloads 2614605 Rheological Properties of Polysulfone-Sepiolite Nanocomposites
Authors: Nilay Tanrıver, Birgül Benli, Nilgün Kızılcan
Abstract:
Polysulfone (PSU) is a specialty engineering polymer having various industrial applications. PSU is especially used in waste water treatment membranes due to its good mechanical properties, structural and chemical stability. But it is a hydrophobic material and therefore its surface aim to pollute easily. In order to resolve this problem and extend the properties of membrane, PSU surface is rendered hydrophilic by addition of the sepiolite nanofibers. Sepiolite is one of the natural clays, which is a hydrate magnesium silicate fiber, also one of the well known layered clays of the montmorillonites where has several unique channels and pores within. It has also moisture durability, strength and low price. Sepiolite channels give great capacity of absorption and good surface properties. In this study, nanocomposites of commercial PSU and Sepiolite were prepared by solvent mixing method. Different organic solvents and their mixtures were used. Rheological characteristics of PSU-Sepiolite solvent mixtures were analyzed, the solubility of nanocomposite content in those mixtures were studied.Keywords: nanocomposite, polysulfone, rheology, sepiolite, solution mixing
Procedia PDF Downloads 4284604 Mean-Field Type Modeling of Non-Local Congestion in Pedestrian Crowd Dynamics
Authors: Alexander Aurell
Abstract:
One of the latest trends in the modeling of human crowds is the mean-field game approach. In the mean-field game approach, the motion of a human crowd is described by a nonstandard stochastic optimal control problem. It is nonstandard since congestion is considered, introduced through a dependence in the performance functional on the distribution of the crowd. This study extends the class of mean-field pedestrian crowd models to allow for non-local congestion and arbitrary, but finitely, many interacting crowds. The new congestion feature grants pedestrians a 'personal space' where crowding is undesirable. The model is treated as a mean-field type game which is derived from a particle picture. This, in contrast to a mean-field game, better describes a situation where the crowd can be controlled by a central planner. The latter is suitable for decentralized situations. Solutions to the mean-field type game are characterized via a Pontryagin-type Maximum Principle.Keywords: congestion, crowd dynamics, interacting populations, mean-field approximation, optimal control
Procedia PDF Downloads 4474603 Identification of Impact Load and Partial System Parameters Using 1D-CNN
Authors: Xuewen Yu, Danhui Dan
Abstract:
The identification of impact load and some hard-to-obtain system parameters is crucial for the activities of analysis, validation, and evaluation in the engineering field. This paper proposes a method that utilizes neural networks based on 1D-CNN to identify the impact load and partial system parameters from measured responses. To this end, forward computations are conducted to provide datasets consisting of the triples (parameter θ, input u, output y). Then neural networks are trained to learn the mapping from input to output, fu|{θ} : y → u, as well as from input and output to parameter, fθ : (u, y) → θ. Afterward, feeding the trained neural networks the measured output response, the input impact load and system parameter can be calculated, respectively. The method is tested on two simulated examples and shows sound accuracy in estimating the impact load (waveform and location) and system parameters.Keywords: convolutional neural network, impact load identification, system parameter identification, inverse problem
Procedia PDF Downloads 1334602 Authentication of Physical Objects with Dot-Based 2D Code
Authors: Michał Glet, Kamil Kaczyński
Abstract:
Counterfeit goods and documents are a global problem, which needs more and more sophisticated methods of resolving it. Existing techniques using watermarking or embedding symbols on objects are not suitable for all use cases. To address those special needs, we created complete system allowing authentication of paper documents and physical objects with flat surface. Objects are marked using orientation independent and resistant to camera noise 2D graphic codes, named DotAuth. Based on the identifier stored in 2D code, the system is able to perform basic authentication and allows to conduct more sophisticated analysis methods, e.g., relying on augmented reality and physical properties of the object. In this paper, we present the complete architecture, algorithms and applications of the proposed system. Results of the features comparison of the proposed solution and other products are presented as well, pointing to the existence of many advantages that increase usability and efficiency in the means of protecting physical objects.Keywords: anti-forgery, authentication, paper documents, security
Procedia PDF Downloads 1364601 Future trends of MED-TVC Desalination Technology
Authors: Irfan Wazeer
Abstract:
Desalination has become one of the major water treatment process in several countries around the world where shortage of water is a serious problem. Energy consumption is a vital economic factor in selecting the type of desalination processes because current desalination processes require large amount of energy which is costly. Multi-effect desalination system with thermal vapor compression (MED-TVC) is particularly more attractive than other thermal desalination systems due to its low energy consumption. MED-TVC is characterized by high performance ratio (PR), easier operation, low maintenance requirements and simple geometry. These attractive features make MED-TVC highly competitive to other well established desalination techniques that include the reverse osmosis (RO) and multi-stage flash desalination (MSF). The primary goal of this paper is to present a preview of some aspects related with the theory of the technology, parametric study of the MED-TVC systems and its development. It will analyzed the current and future aspects of the MED-TVC technology in view of latest installed plants.Keywords: MED-TVC, parallel feed, performance ratio, GOR
Procedia PDF Downloads 2614600 Lateral Torsional Buckling of Steel Thin-Walled Beams with Lateral Restraints
Authors: Ivan Balázs, Jindřich Melcher
Abstract:
Metal thin-walled members have been widely used in building industry. Usually they are utilized as purlins, girts or ceiling beams. Due to slenderness of thin-walled cross-sections these structural members are prone to stability problems (e.g. flexural buckling, lateral torsional buckling). If buckling is not constructionally prevented their resistance is limited by buckling strength. In practice planar members of roof or wall cladding can be attached to thin-walled members. These elements reduce displacement of thin-walled members and therefore increase their buckling strength. If this effect is taken into static assessment more economical sections of thin-walled members might be utilized and certain savings of material might be achieved. This paper focuses on problem of determination of critical load of steel thin-walled beams with lateral continuous restraint which is crucial for lateral torsional buckling assessment.Keywords: beam, buckling, numerical analysis, stability, steel
Procedia PDF Downloads 335