Search results for: optimum learning outcomes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11762

Search results for: optimum learning outcomes

8192 Spatio-Temporal Data Mining with Association Rules for Lake Van

Authors: Tolga Aydin, M. Fatih Alaeddinoğlu

Abstract:

People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.

Keywords: apriori algorithm, association rules, data mining, spatio-temporal data

Procedia PDF Downloads 374
8191 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome

Authors: Agada N. Ihuoma, Nagata Yasunori

Abstract:

Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.

Keywords: artificial Intelligence, backward elimination, linear regression, solar energy

Procedia PDF Downloads 157
8190 A Selection Approach: Discriminative Model for Nominal Attributes-Based Distance Measures

Authors: Fang Gong

Abstract:

Distance measures are an indispensable part of many instance-based learning (IBL) and machine learning (ML) algorithms. The value difference metrics (VDM) and inverted specific-class distance measure (ISCDM) are among the top-performing distance measures that address nominal attributes. VDM performs well in some domains owing to its simplicity and poorly in others that exist missing value and non-class attribute noise. ISCDM, however, typically works better than VDM on such domains. To maximize their advantages and avoid disadvantages, in this paper, a selection approach: a discriminative model for nominal attributes-based distance measures is proposed. More concretely, VDM and ISCDM are built independently on a training dataset at the training stage, and the most credible one is recorded for each training instance. At the test stage, its nearest neighbor for each test instance is primarily found by any of VDM and ISCDM and then chooses the most reliable model of its nearest neighbor to predict its class label. It is simply denoted as a discriminative distance measure (DDM). Experiments are conducted on the 34 University of California at Irvine (UCI) machine learning repository datasets, and it shows DDM retains the interpretability and simplicity of VDM and ISCDM but significantly outperforms the original VDM and ISCDM and other state-of-the-art competitors in terms of accuracy.

Keywords: distance measure, discriminative model, nominal attributes, nearest neighbor

Procedia PDF Downloads 115
8189 SolarSPELL Case Study: Pedagogical Quality Indicators to Evaluate Digital Library Resources

Authors: Lorena Alemán de la Garza, Marcela Georgina Gómez-Zermeño

Abstract:

This paper presents the SolarSPELL case study that aims to generate information on the use of indicators that help evaluate the pedagogical quality of a digital library resources. SolarSPELL is a solar-powered digital library with WiFi connectivity. It offers a variety of open educational resources selected for their potential for the digital transformation of educational practices and the achievement of the 2030 Agenda for Sustainable Development, adopted by all United Nations Member States. The case study employed a quantitative methodology and the research instrument was applied to 55 teachers, directors and librarians. The results indicate that it is possible to strengthen the pedagogical quality of open educational resources, through actions focused on improving temporal and technological parameters. They also reveal that users believe that SolarSPELL improves the teaching-learning processes and motivates the teacher to improve his or her development. This study provides valuable information on a tool that supports teaching-learning processes and facilitates connectivity with renewable energies that improves the teacher training in active methodologies for ecosystem learning.

Keywords: educational innovation, digital library, pedagogical quality, solar energy, teacher training, sustainable development

Procedia PDF Downloads 122
8188 Developing Wearable EMG Sensor Designed for Parkinson's Disease (PD) Monitoring, and Treatment

Authors: Bulcha Belay Etana

Abstract:

Electromyography is used to measure the electrical activity of muscles for various health monitoring applications using surface electrodes or needle electrodes. Recent developments in electromyogram signal acquisition using textile electrodes open the door for wearable health monitoring which enables patients to monitor and control their health issues outside of traditional healthcare facilities. The aim of this research is therefore to develop and analyze wearable textile electrodes for the acquisition of electromyography signals for Parkinson’s patients and apply an appropriate thermal stimulus to relieve muscle cramping. In order to achieve this, textile electrodes are sewn with a silver-coated thread in an overlapping zigzag pattern into an inextensible fabric, and stainless steel knitted textile electrodes attached to a sleeve were prepared and its electrical characteristics including signal to noise ratio were compared with traditional electrodes. To relieve muscle cramping, a heating element using stainless steel conductive yarn Sewn onto a cotton fabric, coupled with a vibration system were developed. The system was integrated using a microcontroller and a Myoware muscle sensor so that when muscle cramping occurs, measured by the system activates the heating elements and vibration motors. The optimum temperature considered for treatment was 35.50c, so a Temperature measurement system was incorporated to deactivate the heating system when the temperature reaches this threshold, and the signals indicating muscle cramping have subsided. The textile electrode exhibited a signal to noise ratio of 6.38dB while the signal to noise ratio of the traditional electrode was 7.05dB. The rise time of the developed heating element was about 6 minutes to reach the optimum temperature using a 9volt power supply. The treatment of muscle cramping in Parkinson's patients using heat and muscle vibration simultaneously with a wearable electromyography signal acquisition system will improve patients’ livelihoods and enable better chronic pain management.

Keywords: electromyography, heating textile, vibration therapy, parkinson’s disease, wearable electronic textile

Procedia PDF Downloads 135
8187 Testing a Motivational Model of Physical Education on Contextual Outcomes and Total Moderate to Vigorous Physical Activity of Middle School Students

Authors: Arto Grasten

Abstract:

Given the rising trend in obesity in children and youth, age-related decline in moderate- to- vigorous-intensity physical activity (MVPA) in several Western, African, and Asian countries in addition to limited evidence of behavioral, affective, cognitive outcomes in physical education, it is important to clarify the motivational processes in physical education classes behind total MVPA engagement. The present study examined the full sequence of the Hierarchical Model of Motivation in physical education including motivational climate, basic psychological needs, intrinsic motivation, contextual behavior, affect, cognition, total MVPA, and associated links to body mass index (BMI) and gender differences. A cross-sectional data comprised self-reports and objective assessments of 770 middle school students (Mage = 13.99 ± .81 years, 52% of girls) in North-East Finland. In order to test the associations between motivational climate, psychological needs, intrinsic motivation, cognition, behavior, affect, and total MVPA, a path model was implemented. Indirect effects between motivational climate and cognition, behavior, affect and total MVPA were tested by setting basic needs and intrinsic motivation as mediators into the model. The findings showed that direct and indirect paths for girls and boys associated with different contextual outcomes and girls’ indirect paths were not related with total MVPA. Precisely, task-involving climate-mediated by physical competence and intrinsic motivation related to enjoyment, importance, and graded assessments within girls, whereas task-involving climate associated with enjoyment and importance via competence and autonomy, and total MVPA via autonomy, intrinsic motivation, and importance within boys. Physical education assessments appeared to be essential in motivating students to participate in greater total MVPA. BMI was negatively linked with competence and relatedness only among girls. Although, the current and previous empirical findings supported task-involving teaching methods in physical education, in some cases, ego-involving climate should not be totally avoided. This may indicate that girls and boys perceive physical education classes in a different way. Therefore, both task- and ego-involving teaching practices can be useful ways of driving behavior in physical education classes.

Keywords: achievement goal theory, assessment, enjoyment, hierarchical model of motivation, physical activity, self-determination theory

Procedia PDF Downloads 281
8186 Evaluating the Social Learning Processes Involved in Developing Community-Informed Wildfire Risk Reduction Strategies in the Prince Albert Forest Management Area

Authors: Carly Madge, Melanie Zurba, Ryan Bullock

Abstract:

The Boreal Forest has experienced some of the most drastic climate change-induced temperature rises in Canada, with average winter temperatures increasing by 3°C since 1948. One of the main concerns of the province of Saskatchewan, and particularly wildfire managers, is the increased risk of wildfires due to climate change. With these concerns in mind Sakaw Askiy Management Inc., a forestry corporation located in Prince Albert, Saskatchewan with operations in the Boreal Forest biome, is developing wildfire risk reduction strategies that are supported by the shareholders of the corporation as well as the stakeholders of the Prince Albert Forest Management Area (which includes citizens, hunters, trappers, cottage owners, and outfitters). In the past, wildfire management strategies implemented through harvesting have been received with skepticism by some community members of Prince Albert. Engagement of the stakeholders of the Prince Albert Management Area through the development of the wildfire risk reduction strategies aims to reduce this skepticism and rebuild some of the trust that has been lost between industry and community. This research project works with the framework of social learning, which is defined as the learning that occurs when individuals come together to form a group with the purpose of understanding environmental challenges and determining appropriate responses to them. The project evaluates the social learning processes that occur through the development of the risk reduction strategies and how the learning has allowed Sakaw to work towards implementing the strategies into their forest harvesting plans. The incorporation of wildfire risk reduction strategies works to increase the adaptive capacity of Sakaw, which in this case refers to the ability to adjust to climate change, moderate potential damages, take advantage of opportunities, and cope with consequences. Using semi-structured interviews and wildfire workshop meetings shareholders and stakeholders shared their knowledge of wildfire, their main wildfire concerns, and changes they would like to see made in the Prince Albert Forest Management Area. Interviews and topics discussed in the workshops were inductively coded for themes related to learning, adaptive capacity, areas of concern, and preferred methods of wildfire risk reduction strategies. Analysis determined that some of the learning that has occurred has resulted through social interactions and the development of networks oriented towards wildfire and wildfire risk reduction strategies. Participants have learned new knowledge and skills regarding wildfire risk reduction. The formation of wildfire networks increases access to information on wildfire and the social capital (trust and strengthened relations) of wildfire personnel. Both factors can be attributed to increases in adaptive capacity. Interview results were shared with the General Manager of Sakaw, where the areas of concern and preferred strategies of wildfire risk reduction will be considered and accounted for in the implementation of new harvesting plans. This research also augments the growing conceptual and empirical evidence of the important role of learning and networks in regional wildfire risk management efforts.

Keywords: adaptive capacity, community-engagement, social learning, wildfire risk reduction

Procedia PDF Downloads 147
8185 Site-based Internship Experiences: From Research to Implementation and Community Collaboration

Authors: Jamie Sundvall, Lisa Jennings

Abstract:

Site based field internship learning (SBL) is an educational approach within a Master’s of Social Work (MSW) university field placement department that promotes a more streamlined approach to the integration of theory and evidence based practices for social work students. The SBL model is founded on research in the field, consideration of current work force needs, United States national trends of MSW graduate skill and knowledge deficits, educational trends in students pursing a master’s degree in social work, and current social problems that require unique problem solving skills. This study explores the use of site-based learning in a hybrid social work program. In this setting, site based learning pairs online education courses and social work field education to create training opportunities for social work students within their own community and cultural context. Students engage in coursework in an online setting with both synchronous and asynchronous features that facilitate development of core competencies for MSW students. Through the SBL model, students are then partnered with faculty in a virtual course room and a university vetted site within their community. The study explores how this model of learning creates community partnerships, through which students engage in a learning loop to develop social work skills, while preparing students to address current community, social, and global issues with the engagement of technology. The goal of SBL is to more effectively equip social work students for practice according to current workforce demands, provide access to education and care to populations who have limited access, and create self-sustainable partnerships. Further, the model helps students learn integration of evidence based practices and helps instructors more effectively teach integration of ethics into practice. The study found that the SBL model increases the influence and professional relevance of the social work profession, and ultimately facilitates stronger approaches to integrating theory into practice. Current implementation of the practice in the United States will be presented in the study. dditionally, future research conceptualization of SBL models will be presented, in order to collaborate on advancing best approaches of translating theory into practice, according to the current needs of the profession and needs of social work students.

Keywords: collaboration, fieldwork, research, site-based learning, technology

Procedia PDF Downloads 125
8184 Science Education in Nigeria: Issues and Challenges

Authors: Ogbeta I. Joseph, Habiba B. A. Awwalu, Otokiti Jimoh

Abstract:

This paper entitled science education in Nigeria issues and challenges highlighted the role of science education to the development of science and technology in Nigeria. Science embraces every attempt of human to explore and manage the natural world, the contribution of science education to the technological development of the nation, the role of science education in ICT development, the importance of mathematics in the development of science education, the paper also analyzed the challenges facing the development of science education to include corruption, insecurity, and political instability, the paper concluded by encouraging the government and other stakeholders in educational sector to pay more attention to the teaching and learning of science in our schools. Therefore recommended the development that emphasizes should be on the teaching and learning of science base subjects in the school.

Keywords: education, science, technology and national development, challenges

Procedia PDF Downloads 588
8183 Deepfake Detection for Compressed Media

Authors: Sushil Kumar Gupta, Atharva Joshi, Ayush Sonawale, Sachin Naik, Rajshree Khande

Abstract:

The usage of artificially created videos and audio by deep learning is a major problem of the current media landscape, as it pursues the goal of misinformation and distrust. In conclusion, the objective of this work targets generating a reliable deepfake detection model using deep learning that will help detect forged videos accurately. In this work, CelebDF v1, one of the largest deepfake benchmark datasets in the literature, is adopted to train and test the proposed models. The data includes authentic and synthetic videos of high quality, therefore allowing an assessment of the model’s performance against realistic distortions.

Keywords: deepfake detection, CelebDF v1, convolutional neural network (CNN), xception model, data augmentation, media manipulation

Procedia PDF Downloads 10
8182 The Impact of Failure-tolerant Restaurant Culture on Curbing Employees’ Withdrawal Behavior: The Roles of Psychological Empowerment and Mindful Leadership

Authors: Omar Alsetoohy, Mohamed Ezzat, Mahmoud Abou Kamar

Abstract:

The success of a restaurant or hotel depends very much on the quality and quantity of its human resources. Thus, establishing a competitive edge through human assets requires careful attention to the practices that best leverage these assets. Usually, hotel or restaurant employees recognize customer defection as an unfavorable or unpleasant occurrence associated with failure. These failures could be in handling, communication, learning, or encouragement. Besides, employees could be afraid of blame from their colleagues and managers, which prevents them from freely discussing these mistakes with them. Such behaviors, in turn, would push employees to withdraw from the workplace. However, we have a good knowledge of the leadership outcomes, but less is known about how and why these effects occur. Accordingly, mindful leaders usually analyze the causes and underlying mechanisms of failures for work improvement. However, despite the excessive literature in the field of leadership and employee behaviors, to date, no research studies had investigated the impact of a failure-tolerant restaurant culture on the employees’ withdrawal behaviors considering the moderating role of psychological empowerment and mindful leadership. Thus, this study seeks to investigate the impact of a failure-tolerant culture on the employees’ withdrawal behaviors in fast-food restaurants in Egypt considering the moderating effects of employee empowerment and mindful leaders. This study may contribute to the existing literature by filling the gap between failure-tolerant cultures and employee withdrawal behaviors in the hospitality literature. The study may also identify the best practices for restaurant operators and managers to deal with employees' failures as an improvement tool for their performance.

Keywords: failure-tolerant culture, employees’ withdrawal behaviors psychological empowerment, mindful leadership, restaurants

Procedia PDF Downloads 108
8181 The Significance of Childhood in Shaping Family Microsystems from the Perspective of Biographical Learning: Narratives of Adults

Authors: Kornelia Kordiak

Abstract:

The research is based on a biographical approach and serves as a foundation for understanding individual human destinies through the analysis of the context of life experiences. It focuses on the significance of childhood in shaping family micro-worlds from the perspective of biographical learning. In this case, the family micro-world is interpreted as a complex of beliefs and judgments about elements of the ‘total universe’ based on the individual's experiences. The main aim of the research is to understand the importance of childhood in shaping family micro-worlds from the perspective of reflection on biographical learning. Additionally, it contributes to a deeper understanding of the familial experiences of the studied individuals who form these family micro-worlds and the course of the biographical learning process in the subjects. Biographical research aligns with an interpretative paradigm, where individuals are treated as active interpreters of the world, giving meaning to their experiences and actions based on their own values and beliefs. The research methods used in the project—narrative interview method and analysis of personal documents—enable obtaining a multidimensional perspective on the phenomenon under study. Narrative interviews serve as the main data collection method, allowing researchers to delve into various life contexts of individuals. Analysis of these narratives identifies key moments and life patterns, as well as discovers the significance of childhood in shaping family micro-worlds. Moreover, analysis of personal documents such as diaries or photographs enriches the understanding of the studied phenomena by providing additional contexts and perspectives. The research will be conducted in three phases: preparatory, main, and final. The anticipated schedule includes preparation of research tools, selection of research sample, conducting narrative interviews and analysis of personal documents, as well as analysis and interpretation of collected research material. The narrative interview method and document analysis will be utilized to capture various contexts and interpretations of childhood experiences and family relations. The research will contribute to a better understanding of family dynamics and individual developmental processes. It will allow for the identification and understanding of mechanisms of biographical learning and their significance in shaping identity and family relations. Analysis of adult narratives will enable the identification of factors determining patterns of behavior and attitudes in adult life, which may have significant implications for pedagogical practice.

Keywords: childhood, adulthood, biographical learning, narrative interview, analysis of personal documents, family micro-worlds

Procedia PDF Downloads 28
8180 Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach

Authors: Surajit Chakrabarty, Piyush Chauhan, Subhasis Panda, Sujoy Bhattacharya

Abstract:

A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed.

Keywords: deep learning, hidden Markov model, pothole, speed breaker

Procedia PDF Downloads 144
8179 Analysis of Pangasinan State University: Bayambang Students’ Concerns Through Social Media Analytics and Latent Dirichlet Allocation Topic Modelling Approach

Authors: Matthew John F. Sino Cruz, Sarah Jane M. Ferrer, Janice C. Francisco

Abstract:

COVID-19 pandemic has affected more than 114 countries all over the world since it was considered a global health concern in 2020. Different sectors, including education, have shifted to remote/distant setups to follow the guidelines set to prevent the spread of the disease. One of the higher education institutes which shifted to remote setup is the Pangasinan State University (PSU). In order to continue providing quality instructions to the students, PSU designed Flexible Learning Model to still provide services to its stakeholders amidst the pandemic. The model covers the redesigning of delivering instructions in remote setup and the technology needed to support these adjustments. The primary goal of this study is to determine the insights of the PSU – Bayambang students towards the remote setup implemented during the pandemic and how they perceived the initiatives employed in relation to their experiences in flexible learning. In this study, the topic modelling approach was implemented using Latent Dirichlet Allocation. The dataset used in the study. The results show that the most common concern of the students includes time and resource management, poor internet connection issues, and difficulty coping with the flexible learning modality. Furthermore, the findings of the study can be used as one of the bases for the administration to review and improve the policies and initiatives implemented during the pandemic in relation to remote service delivery. In addition, further studies can be conducted to determine the overall sentiment of the other stakeholders in the policies implemented at the University.

Keywords: COVID-19, topic modelling, students’ sentiment, flexible learning, Latent Dirichlet allocation

Procedia PDF Downloads 122
8178 Learning Curve Effect on Materials Procurement Schedule of Multiple Sister Ships

Authors: Vijaya Dixit Aasheesh Dixit

Abstract:

Shipbuilding industry operates in Engineer Procure Construct (EPC) context. Product mix of a shipyard comprises of various types of ships like bulk carriers, tankers, barges, coast guard vessels, sub-marines etc. Each order is unique based on the type of ship and customized requirements, which are engineered into the product right from design stage. Thus, to execute every new project, a shipyard needs to upgrade its production expertise. As a result, over the long run, holistic learning occurs across different types of projects which contributes to the knowledge base of the shipyard. Simultaneously, in the short term, during execution of a project comprising of multiple sister ships, repetition of similar tasks leads to learning at activity level. This research aims to capture above learnings of a shipyard and incorporate learning curve effect in project scheduling and materials procurement to improve project performance. Extant literature provides support for the existence of such learnings in an organization. In shipbuilding, there are sequences of similar activities which are expected to exhibit learning curve behavior. For example, the nearly identical structural sub-blocks which are successively fabricated, erected, and outfitted with piping and electrical systems. Learning curve representation can model not only a decrease in mean completion time of an activity, but also a decrease in uncertainty of activity duration. Sister ships have similar material requirements. The same supplier base supplies materials for all the sister ships within a project. On one hand, this provides an opportunity to reduce transportation cost by batching the order quantities of multiple ships. On the other hand, it increases the inventory holding cost at shipyard and the risk of obsolescence. Further, due to learning curve effect the production scheduled of each consequent ship gets compressed. Thus, the material requirement schedule of every next ship differs from its previous ship. As more and more ships get constructed, compressed production schedules increase the possibility of batching the orders of sister ships. This work aims at integrating materials management with project scheduling of long duration projects for manufacturing of multiple sister ships. It incorporates the learning curve effect on progressively compressing material requirement schedules and addresses the above trade-off of transportation cost and inventory holding and shortage costs while satisfying budget constraints of various stages of the project. The activity durations and lead time of items are not crisp and are available in the form of probabilistic distribution. A Stochastic Mixed Integer Programming (SMIP) model is formulated which is solved using evolutionary algorithm. Its output provides ordering dates of items and degree of order batching for all types of items. Sensitivity analysis determines the threshold number of sister ships required in a project to leverage the advantage of learning curve effect in materials management decisions. This analysis will help materials managers to gain insights about the scenarios: when and to what degree is it beneficial to treat a multiple ship project as an integrated one by batching the order quantities and when and to what degree to practice distinctive procurement for individual ship.

Keywords: learning curve, materials management, shipbuilding, sister ships

Procedia PDF Downloads 502
8177 Teaching Method in Situational Crisis Communication Theory: A Literature Review

Authors: Proud Arunrangsiwed

Abstract:

Crisis management strategies could be found in various curriculums, not only in schools of business, but also schools of communication. Young students, such as freshmen and sophomores of undergraduate schools, may not care about learning crisis management strategies. Moreover, crisis management strategies are not a topic art students are familiar with. The current paper discusses a way to adapt entertainment media into a crisis management lesson, and the importance of learning crisis management strategies in the school of animation. Students could learn crisis management strategies by watching movies with content about a crisis and responding to crisis responding. The students should then participate in follow up discussions related to the strategies that were used to address the crisis, as well as their success in solving the crisis.

Keywords: situational crisis communication theory, crisis response strategies, media effect, unintentional effect

Procedia PDF Downloads 323
8176 Application and Evaluation of Teaching-Learning Guides Based on Swebok for the Requirements Engineering Area

Authors: Mauro Callejas-Cuervo, Andrea Catherine Alarcon-Aldana, Lorena Paola Castillo-Guerra

Abstract:

The software industry requires highly-trained professionals, capable of developing the roles integrated in the cycle of software development. That is why a large part of the task is the responsibility of higher education institutions; often through a curriculum established to orientate the academic development of the students. It is so that nowadays there are different models that support proposals for the improvement of the curricula for the area of Software Engineering, such as ACM, IEEE, ABET, Swebok, of which the last stands out, given that it manages and organises the knowledge of Software Engineering and offers a vision of theoretical and practical aspects. Moreover, it has been applied by different universities in the pursuit of achieving coverage in delivering the different topics and increasing the professional quality of future graduates. This research presents the structure of teaching and learning guides from the objectives of training and methodological strategies immersed in the levels of learning of Bloom’s taxonomy with which it is intended to improve the delivery of the topics in the area of Requirements Engineering. Said guides were implemented and validated in a course of Requirements Engineering of the Systems and Computer Engineering programme in the Universidad Pedagógica y Tecnológica de Colombia (Pedagogical and Technological University of Colombia) using a four stage methodology: definition of the evaluation model, implementation of the guides, guide evaluation, and analysis of the results. After the collection and analysis of the data, the results show that in six out of the seven topics proposed in the Swebok guide, the percentage of students who obtained total marks within the 'High grade' level, that is between 4.0 and 4.6 (on a scale of 0.0 to 5.0), was higher than the percentage of students who obtained marks within the 'Acceptable' range of 3.0 to 3.9. In 86% of the topics and the strategies proposed, the teaching and learning guides facilitated the comprehension, analysis, and articulation of the concepts and processes of the students. In addition, they mainly indicate that the guides strengthened the argumentative and interpretative competencies, while the remaining 14% denotes the need to reinforce the strategies regarding the propositive competence, given that it presented the lowest average.

Keywords: pedagogic guide, pedagogic strategies, requirements engineering, Swebok, teaching-learning process

Procedia PDF Downloads 286
8175 Tackling the Digital Divide: Enhancing Video Consultation Access for Digital Illiterate Patients in the Hospital

Authors: Wieke Ellen Bouwes

Abstract:

This study aims to unravel which factors enhance accessibility of video consultations (VCs) for patients with low digital literacy. Thirteen in-depth interviews with patients, hospital employees, eHealth experts, and digital support organizations were held. Patients with low digital literacy received in-home support during real-time video consultations and are observed during the set-up of these consultations. Key findings highlight the importance of patient acceptance, emphasizing video consultations benefits and avoiding standardized courses. The lack of a uniform video consultation system across healthcare providers poses a barrier. Familiarity with support organizations – to support patients in usage of digital tools - among healthcare practitioners enhances accessibility. Moreover, considerations regarding the Dutch General Data Protection Regulation (GDPR) law influence support patients receive. Also, provider readiness to use video consultations influences patient access. Further, alignment between learning styles and support methods seems to determine abilities to learn how to use video consultations. Future research could delve into tailored learning styles and technological solutions for remote access to further explore effectiveness of learning methods.

Keywords: video consultations, digital literacy skills, effectiveness of support, intra- and inter-organizational relationships, patient acceptance of video consultations

Procedia PDF Downloads 74
8174 Study of Individual Parameters on the Enzymatic Glycosidation of Betulinic Acid by Novozyme-435

Authors: A. U. Adamu, Hamisu Abdu, A. A. Saidu

Abstract:

The enzymatic synthesis of 3-O-β-D-glucopyranoside-betulinic acid using Novozyme-435 as a catalyst was studied. The effect of various parameters such as substrate molar ratio, reaction temperature, reaction time, re-used enzymes and amount of enzymes were investigated. The optimum rection conditions for the enzymatic glycosidation of betulinic acid in an organic solvent using Novozym-435 was found to be at 1:1.2 substrate molar ratio, 55oC, 24 h and 180 mg of enzymes with percentage conversion of 88.69 %.

Keywords: betulinic acid, glycosidation, novozyme-435, optimization

Procedia PDF Downloads 426
8173 Embolization of Spinal Dural Arteriovenous Fistulae: Clinical Outcomes and Long-Term Follow-Up: A Multicenter Study

Authors: Walid Abouzeid, Mohamed Shadad, Mostafa Farid, Magdy El Hawary

Abstract:

The most frequent treatable vascular abnormality of the spinal canal is spinal dural arteriovenous fistulae (SDAVFs), which cause progressive para- or quadriplegia mostly affecting elderly males. SDAVFs are present in the thoracolumbar region. The main goal of treatment must be to obliterate the shunting zone via superselective embolization with the usage of a liquid embolic agent. This study aims to evaluate endovascular technique as a safe and efficient approach for the treatment SDAVFs, especially with long-term follow-up clinical outcomes. Study Design: A retrospective clinical case study. From May 2010 to May 2017, 15 patients who had symptoms attributed to SDAVFs underwent the operation in the Departments of Neurosurgery in Suhag, Tanta, and Al-Azhar Universities and Interventional Radiology, Ain Shams University. All the patients had varying degrees of progressive spastic paraparesis with and without sphincteric disturbances. Endovascular embolization was used in all cases. Fourteen were males, with ages ranging from 45 to 74 years old. After the treatment, good outcome was found in five patients (33.3%), a moderate outcome was delineated in six patients (40 %), and four patients revealed a poor outcome (26.7%). Spinal AVF could be treated safely and effectively by the endovascular approach. Generally, there is no correlation between the disappearance of MRI abnormalities and significant clinical improvement. The preclinical state of the patient is directly proportional to the clinical outcome. Due to unexpected responses, embolization should be attempted even the patient is in a bad clinical condition.

Keywords: spine, arteriovenous, fistula, endovascular, embolization

Procedia PDF Downloads 108
8172 Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques

Authors: Claus N. Holm, Oliver F. Grooss, Robert A. Alphinas

Abstract:

This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features.

Keywords: hit song science, product life cycle, machine learning, radio

Procedia PDF Downloads 156
8171 Pregnant Women’s Views on a Trial of Posture for Fetal Malposition

Authors: Jennifer A. Barrowclough, Caroline A. Crowther, Bridget Kool

Abstract:

Fetal malposition in labour is associated with adverse maternal and infant health outcomes. Evidence for effective interventions for fetal malposition is inconclusive. The feasibility and design of a randomized controlled trial (RCT) of maternal posture to improve maternal and infant outcomes of malposition should be considered, based on the hypothesis that gravity corrects malposition. The aim was to assess pregnant women’s views on the acceptability of a future trial of maternal posture for fetal malposition in labour, and the enablers and barriers of participation. Method: An online anonymous survey of pregnant women was conducted in Auckland during 2020. Descriptive summaries of quantitative data used chi-square to assess differences in proportions. The influence of maternal characteristics on women’s responses was assessed using cross-tabulation. Free text responses were analysed thematically. Results: Respondents (n=206) were mostly aged26-35 years (75%), of 29-38 weeks gestation (71%), of European (40%) or Asian (36%) ethnicity, were evenly nulliparous or multiparous. Most women (76%) had heard of fetal malposition in labour however only 28% were aware of the use of maternal posture to correct this. Most women (86%) were interested in labour research. Although 37% indicated they would participate in a future RCT of posture for fetal malposition, nearly half (47%) were unsure and a further quarter (15%) indicated they would not participate. Comfort was the predominant concern (22%). Almost half of the respondents (49%) indicated they would consult their partner before deciding on participation in an RCT. Conclusions: Participation in a trial of maternal posture in labour can be enabled through measures to enhance maternal comfort, increased awareness of malposition and the role of posture, and the involvement of partners during trial counselling and recruitment.

Keywords: pregnant women, labour, presentation, posture, randomized controlled trial, survey

Procedia PDF Downloads 163
8170 Augmented Reality in Teaching Children with Autism

Authors: Azadeh Afrasyabi, Ali Khaleghi, Aliakbar Alijarahi

Abstract:

Training at an early age is so important, because of tremendous changes in adolescence, including the formation of character, physical changes and other factors. One of the most sensitive sectors in this field is the children with a disability and are somehow special children who have trouble in communicating with their environment. One of the emerging technologies in the field of education that can be effectively profitable called augmented reality, where the combination of real world and virtual images in real time produces new concepts that can facilitate learning. The purpose of this paper is to propose an effective training method for special and disabled children based on augmented reality. Of course, in particular, the efficiency of augmented reality in teaching children with autism will consider, also examine the various aspect of this disease and different learning methods in this area.

Keywords: technology in education, augmented reality, special education, teaching methods

Procedia PDF Downloads 371
8169 A Radiomics Approach to Predict the Evolution of Prostate Imaging Reporting and Data System Score 3/5 Prostate Areas in Multiparametric Magnetic Resonance

Authors: Natascha C. D'Amico, Enzo Grossi, Giovanni Valbusa, Ala Malasevschi, Gianpiero Cardone, Sergio Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of areas classified PI-RADS (Prostate Imaging Reporting and Data System) 3/5, recognized in multiparametric prostate magnetic resonance with T2-weighted (T2w), diffusion and perfusion sequences with paramagnetic contrast. Methods and Materials: 24 cases undergoing multiparametric prostate MR and biopsy were admitted to this pilot study. Clinical outcome of the PI-RADS 3/5 was found through biopsy, finding 8 malignant tumours. The analysed images were acquired with a Philips achieva 1.5T machine with a CE- T2-weighted sequence in the axial plane. Semi-automatic tumour segmentation was carried out on MR images using 3DSlicer image analysis software. 45 shape-based, intensity-based and texture-based features were extracted and represented the input for preprocessing. An evolutionary algorithm (a TWIST system based on KNN algorithm) was used to subdivide the dataset into training and testing set and select features yielding the maximal amount of information. After this pre-processing 20 input variables were selected and different machine learning systems were used to develop a predictive model based on a training testing crossover procedure. Results: The best machine learning system (three-layers feed-forward neural network) obtained a global accuracy of 90% ( 80 % sensitivity and 100% specificity ) with a ROC of 0.82. Conclusion: Machine learning systems coupled with radiomics show a promising potential in distinguishing benign from malign tumours in PI-RADS 3/5 areas.

Keywords: machine learning, MR prostate, PI-Rads 3, radiomics

Procedia PDF Downloads 188
8168 Second Language Development with an Intercultural Approach: A Pilot Program Applied to Higher Education Students from a Escuela Normal in Atequiza, Mexico

Authors: Frida C. Jaime Franco, C. Paulina Navarro Núñez, R. Jacob Sánchez Nájera

Abstract:

The importance of developing multi-language abilities in our global society is noteworthy. However, the necessity, interest, and consciousness of the significance that the development of another language represents, apart from the mother tongue, is not always the same in all contexts as it is in multicultural communities, especially in rural higher education institutions immersed in small communities. Leading opportunities for digital interaction among learners from Mexico and abroad partners represents scaffolding towards, not only language skills development but also intercultural communicative competences (ICC). This study leads us to consider what should be the best approach to work while applying a program of ICC integrated into the practice of EFL. While analyzing the roots of the language, it is possible to obtain the main objective of learning another language, to communicate with a functional purpose, as well as attaching social practices to the learning process, giving a result of functionality and significance to the target language. Hence, the collateral impact that collaborative learning leads to, aims to contribute to a better global understanding as well as a means of self and other cultural awareness through intercultural communication. While communicating through the target language by online collaboration among students in platforms of long-distance communication, language is used as a tool of interaction to broaden students’ perspectives reaching a substantial improvement with the help of their differences. This process should consider the application of the target language in the inquiry of sociocultural information, expecting the learners to integrate communicative skills to handle cultural differentiation at the same time they apply the knowledge of their target language in a real scenario of communication, despite being through virtual resources.

Keywords: collaborative learning, communicative approach, culture, interaction, interculturalism, target language, virtual partnership

Procedia PDF Downloads 130
8167 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling

Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas

Abstract:

Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.

Keywords: flood forecasting, machine learning, multilayer perceptron network, regression

Procedia PDF Downloads 172
8166 Trauma System in England: An Overview and Future Directions

Authors: Raheel Shakoor Siddiqui, Sanjay Narayana Murthy, Manikandar Srinivas Cheruvu, Kash Akhtar

Abstract:

Major trauma is a dynamic public health epidemic that is continuously evolving. Major trauma care services rely on multi-disciplinary team input involving highly trained pre and in-hospital critical care teams. Pre-hospital critical care teams (PHCCTs), major trauma centres (MTCs), trauma units, and rehabilitation facilities all form an efficient and organised trauma system. England comprises 27 MTCs funded by the National Health Service (NHS). Major trauma care entails enhanced resuscitation protocols coupled with the expertise of dedicated trauma teams and rapid radiological imaging to improve trauma outcomes. Literature reports a change in the demographic of major trauma as elderly patients (silver trauma) with injuries sustained from a fall of 2 metres or less commonly present to services. Evidence of an increasing population age with multiple comorbidities necessitates treatment within the first hour of injury (golden hour) to improve trauma survival outcomes. Staffing and funding pressures within the NHS have subsequently led to a shortfall of available physician-led PHCCTs. Thus, there is a strong emphasis on targeted research and funding to appropriately deploy resources to deprived areas. This review article will discuss the current English trauma system whilst critically appraising present challenges, identifying insufficiencies, and recommending aims for an improved future trauma system in England.

Keywords: trauma, orthopaedics, major trauma, trauma system, trauma network

Procedia PDF Downloads 187
8165 Effects of an Educative Model in Socially Responsible Behavior and Other Psychological Variables

Authors: Gracia V. Navarro, Maria V. Gonzalez, Carlos G. Reed

Abstract:

The eudaimonic perspective in philosophy and psychology suggests that a good life is closely related to developing oneself in order to contribute to the well-being and happiness of other people and of the world as a whole. Educational psychology can help to achieve this through the design and validation of educative models. Since 2004, the University of Concepcion and other Chilean universities apply an educative model to train socially responsible professionals, people that in the exercise of their profession contribute to generate equity for the development and assess the impacts of their decisions, opting for those that serve the common good. The main aim is to identify if a relationship exists between achieved learning, attitudes toward social responsibility, self-attribution of socially responsible behavior, value type, professional behavior observed and, participation in a specific model to train socially responsible (SR) professionals. The Achieved Learning and Attitudes Toward Social Responsibility Questionnaire, interview with employers and Values Questionnaire and Self-attribution of SR Behavior Questionnaire is applied to 394 students and graduates, divided into experimental and control groups (trained and not trained under the educative model), in order to identify the professional behavior of the graduates. The results show that students and graduates perceive cognitive, affective and behavioral learning, with significant differences in attitudes toward social responsibility and self-attribution of SR behavior, between experimental and control. There are also differences in employers' perceptions about the professional practice of those who were trained under the model and those who were not. It is concluded that the educative model has an impact on the learning of social responsibility and educates for a full life. It is also concluded that it is necessary to identify mediating variables of the model effect.

Keywords: educative model, good life, professional social responsibility, values

Procedia PDF Downloads 264
8164 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.

Authors: Zabeehullah, Fahim Arif, Yawar Abbas

Abstract:

Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.

Keywords: SDN, IoT, DL, ML, DRS

Procedia PDF Downloads 110
8163 STEM Curriculum Development Using Robotics with K-12 Students in Brazil

Authors: Flavio Campos

Abstract:

This paper describes an implementation of a STEM curriculum program using robotics as a technological resource at a private school in Brazil. Emphasized the pedagogic and didactic aspects and brings a discussion about STEM curriculum and the perspective of using robotics and the relation between curriculum, science and technologies into the learning process. The results indicate that STEM curriculum integration with robotics as a technological resource in K-12 students learning process has complex aspects, such as relation between time/space, the development of educators and the relation between robotics and other subjects. Therefore, the comprehension of these aspects could indicate some steps that we should consider when integrating STEM basis and robotics into curriculum, which can improve education for science and technology significantly.

Keywords: STEM curriculum, educational robotics, constructionist approach, education and technology

Procedia PDF Downloads 342