Search results for: online learning management system
27369 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions
Authors: Oscar E. Cariceo, Claudia V. Casal
Abstract:
Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.Keywords: cyberbullying, evidence based practice, machine learning, social work research
Procedia PDF Downloads 16827368 Knowledge and Practices on Waste Disposal Management Among Medical Technology Students at National University – Manila
Authors: John Peter Dacanay, Edison Ramos, Cristopher James Dicang
Abstract:
Waste management is a global concern due to increasing waste production from changing consumption patterns and population growth. Proper waste disposal management is a critical aspect of public health and environmental protection. In the healthcare industry, medical waste is generated in large quantities, and if not disposed of properly, it poses a significant threat to human health and the environment. Efficient waste management conserves natural resources and prevents harm to human health, and implementing an effective waste management system can save human lives. The study aimed to assess the level of awareness and practices on waste disposal management, highlighting the understanding of proper disposal, potential hazards, and environmental implications among Medical Technology students. This would help to provide more recommendations for improving waste management practices in healthcare settings as well as for better waste management practices in educational institutions. From the collected data, a female of 21 years of age stands out among the respondents. With the frequency and percentage of medical technology students' knowledge of laboratory waste management being high, it indicates that all respondents demonstrated a solid understanding of proper disposal methods, regulations, risks, and handling procedures related to laboratory waste. That said, the findings emphasize the significance of education and awareness programs in equipping individuals involved in laboratory practices with the necessary knowledge to handle and dispose of hazardous and infectious waste properly. Most respondents demonstrate positive practices or are highly mannered in laboratory waste management, including proper segregation and disposal in designated containers. However, there are concerns about the occasional mixing of waste types, emphasizing the reiteration of proper waste segregation. Students show a strong commitment to using personal protective equipment and promptly cleaning up spills. Some students admit to improper disposal due to rushing, highlighting the importance of time management and safety prioritization. Overall, students follow protocols for hazardous waste disposal, indicating a responsible approach. The school's waste management system is perceived as adequate, but continuous assessment and improvement are necessary. Encouraging reporting of issues and concerns is crucial for ongoing improvement and risk mitigation. The analysis reveals a moderate positive relationship between the respondents' knowledge and practices regarding laboratory waste management. The statistically significant correlation with a p-value of 0.26 (p-value 0.05) suggests that individuals with higher levels of knowledge tend to exhibit better practices. These findings align with previous research emphasizing the pivotal role of knowledge in influencing individuals' behaviors and practices concerning laboratory waste management. When individuals possess a comprehensive understanding of proper procedures, regulations, and potential risks associated with laboratory waste, they are more inclined to adopt appropriate practices. Therefore, fostering knowledge through education and training is essential in promoting responsible and effective waste management in laboratory settings.Keywords: waste disposal management, knowledge, attitude, practices
Procedia PDF Downloads 10127367 Measuring Strategic Management Maturity: An Empirical Study in Turkish Public and Private Sector Organizations
Authors: F. Demir
Abstract:
Strategic Management is highly critical for all types of organizations. This paper examines maturity level of strategic management practices of public and private sector organizations in Turkey, and presents a conceptual model for assessing the maturity of strategic management in any organization. This research focuses on R&D intensive organizations (RDO) because it is claimed that such organizations are more innovative and innovation is a critical part of the model. The Strategic management maturity model (S-3M) is basically composed of six maturity levels with five different dimensions. Based on 63 organizations, the findings reveal that the average maturity of all organizations in the sample group is three out of five. It corresponds to the stage of ‘performed’. Results simply show that the majority of organizations from various industries and sectors implement strategic management activities; however, they experience multiple challenges to optimize strategic management processes and integrate organizational components with business strategies. Briefly, they struggle to become an innovative organization.Keywords: strategic management maturity, innovation, developing countries, research and development
Procedia PDF Downloads 28727366 The Use of Knowledge Management Systems and Information Communication Technology Service Desk Management to Minimize the Digital Divide Experienced in the Museum Sector
Authors: Ruel A. Welch
Abstract:
Since the introduction of ServiceNow, the UK’s Science Museum Group’s (SMG) ICT service desk portal. There has not been an analysis of the tools available to SMG staff for just-in-time knowledge acquisition (knowledge management systems) and reporting ICT incidents with a focus on an aspect of professional identity, namely, gender. This study is conducted in the milieu of UK museums, galleries, arts, academic, charitable, and cultural heritage sectors. Numerous authors suggest that males and females experience ICT usage differently. Therefore, it is important for SMG to investigate the apparent disparities so that solutions can be derived to minimize this digital divide if one exists. It is acknowledged at SMG that there are challenges with keeping up with an ever-changing digital landscape. Subsequently, this entails the rapid upskilling of staff and developing an infrastructure that supports just-in-time technological knowledge acquisition and reporting technology-related issues. This problem was addressed by analyzing ServiceNow ICT incident reports and reports from knowledge articles from a six-month period from February to July. This study found a statistically significant relationship between gender and reporting an ICT incident. There is also a significant relationship between gender and the priority level of ICT incidents. Interestingly, there is no statistically significant relationship between gender and reading knowledge articles. Additionally, there is no statistically significant relationship between gender and reporting an ICT incident related to the knowledge article that was read by staff. The knowledge acquired from this study is useful to service desk management practice as it will help to inform the creation of future knowledge articles and ICT incident reporting processes.Keywords: digital divide, ICT service desk practice, knowledge management systems, workplace learning
Procedia PDF Downloads 12627365 Energy Management Method in DC Microgrid Based on the Equivalent Hydrogen Consumption Minimum Strategy
Authors: Ying Han, Weirong Chen, Qi Li
Abstract:
An energy management method based on equivalent hydrogen consumption minimum strategy is proposed in this paper aiming at the direct-current (DC) microgrid consisting of photovoltaic cells, fuel cells, energy storage devices, converters and DC loads. The rational allocation of fuel cells and battery devices is achieved by adopting equivalent minimum hydrogen consumption strategy with the full use of power generated by photovoltaic cells. Considering the balance of the battery’s state of charge (SOC), the optimal power of the battery under different SOC conditions is obtained and the reference output power of the fuel cell is calculated. And then a droop control method based on time-varying droop coefficient is proposed to realize the automatic charge and discharge control of the battery, balance the system power and maintain the bus voltage. The proposed control strategy is verified by RT-LAB hardware-in-the-loop simulation platform. The simulation results show that the designed control algorithm can realize the rational allocation of DC micro-grid energy and improve the stability of system.Keywords: DC microgrid, equivalent minimum hydrogen consumption strategy, energy management, time-varying droop coefficient, droop control
Procedia PDF Downloads 30327364 Save Lives: The Application of Geolocation-Awareness Service in Iranian Pre-hospital EMS Information Management System
Authors: Somayeh Abedian, Pirhossein Kolivand, Hamid Reza Lornejad, Amin Karampour, Ebrahim Keshavarz Safari
Abstract:
For emergency and relief service providers such as pre-hospital emergencies, quick arrival at the scene of an accident or any EMS mission is one of the most important requirements of effective service delivery. Response time (the interval between the time of the call and the time of arrival on scene) is a critical factor in determining the quality of pre-hospital Emergency Medical Services (EMS). This is especially important for heart attack, stroke, or accident patients. Location-based e-services can be broadly defined as any service that provides information pertinent to the current location of an active mobile handset or precise address of landline phone call at a specific time window, regardless of the underlying delivery technology used to convey the information. According to research, one of the effective methods of meeting this goal is determining the location of the caller via the cooperation of landline and mobile phone operators in the country. The follow-up of the Communications Regulatory Authority (CRA) organization has resulted in the receipt of two separate secured electronic web services. Thus, to ensure human privacy, a secure technical architecture was required for launching the services in the pre-hospital EMS information management system. In addition, to quicken medics’ arrival at the patient's bedside, rescue vehicles should make use of an intelligent transportation system to estimate road traffic using a GPS-based mobile navigation system independent of the Internet. This paper seeks to illustrate the architecture of the practical national model used by the Iranian EMS organization.Keywords: response time, geographic location inquiry service (GLIS), location-based service (LBS), emergency medical services information system (EMSIS)
Procedia PDF Downloads 17027363 A Probabilistic View of the Spatial Pooler in Hierarchical Temporal Memory
Authors: Mackenzie Leake, Liyu Xia, Kamil Rocki, Wayne Imaino
Abstract:
In the Hierarchical Temporal Memory (HTM) paradigm the effect of overlap between inputs on the activation of columns in the spatial pooler is studied. Numerical results suggest that similar inputs are represented by similar sets of columns and dissimilar inputs are represented by dissimilar sets of columns. It is shown that the spatial pooler produces these results under certain conditions for the connectivity and proximal thresholds. Following the discussion of the initialization of parameters for the thresholds, corresponding qualitative arguments about the learning dynamics of the spatial pooler are discussed.Keywords: hierarchical temporal memory, HTM, learning algorithms, machine learning, spatial pooler
Procedia PDF Downloads 34527362 Gamma-Hydroxybutyrate (GHB): A Review for the Prehospital Clinician
Authors: Theo Welch
Abstract:
Background: Gamma-hydroxybutyrate (GHB) is a depressant of the central nervous system with euphoric effects. It is being increasingly used recreationally in the United Kingdom (UK) despite associated morbidity and mortality. Due to the lack of evidence, healthcare professionals remain unsure as to the optimum management of GHB acute toxicity. Methods: A literature review was undertaken of its pharmacology and the emergency management of its acute toxicity.Findings: GHB is inexpensive and readily available over the Internet. Treatment of GHB acute toxicity is supportive. Clinicians should pay particular attention to the airway as emesis is common. Intubation is required in a minority of cases. Polydrug use is common and worsens prognosis. Conclusion: An inexpensive and readily available drug, GHB acute toxicity can be difficult to identify and treat. GHB acute toxicity is generally treated conservatively. Further research is needed to ascertain the indications, benefits, and risks of intubating patients with GHB acute toxicity. instructions give you guidelines for preparing papers for the conference.Keywords: GHB, gamma-hydroxybutyrate, prehospital, emergency, toxicity, management
Procedia PDF Downloads 20127361 Classification Framework of Production Planning and Scheduling Solutions from Supply Chain Management Perspective
Authors: Kwan Hee Han
Abstract:
In today’s business environments, frequent change of customer requirements is a tough challenge to manufacturing company. To cope with these challenges, a production planning and scheduling (PP&S) function might be established to provide accountability for both customer service and operational efficiency. Nowadays, many manufacturing firms have utilized PP&S software solutions to generate a realistic production plan and schedule to adapt to external changes efficiently. However, companies which consider the introduction of PP&S software solution, still have difficulties for selecting adequate solution to meet their specific needs. Since the task of PP&S is the one of major building blocks of SCM (Supply Chain Management) architecture, which deals with short term decision making in the production process of SCM, it is needed that the functionalities of PP&S should be analysed within the whole SCM process. The aim of this paper is to analyse the PP&S functionalities and its system architecture from the SCM perspective by using the criteria of level of planning hierarchy, major 4 SCM processes and problem-solving approaches, and finally propose a classification framework of PP&S solutions to facilitate the comparison among various commercial software solutions. By using proposed framework, several major PP&S solutions are classified and positioned according to their functional characteristics in this paper. By using this framework, practitioners who consider the introduction of computerized PP&S solutions in manufacturing firms can prepare evaluation and benchmarking sheets for selecting the most suitable solution with ease and in less time.Keywords: production planning, production scheduling, supply chain management, the advanced planning system
Procedia PDF Downloads 19827360 Integration of Technology through Instructional Systems Design
Authors: C. Salis, D. Zedda, M. F. Wilson
Abstract:
The IDEA project was conceived for teachers who are interested in enhancing their capacity to effectively implement the use of specific technologies in their teaching practice. Participating teachers are coached and supported as they explore technologies applied to the educational context. They access tools such as the technological platform developed by our team. Among the platform functionalities, teachers access an instructional systems design (ISD) tool (learning designer) that was adapted to the needs of our project. The tool is accessible from computers or mobile devices and used in association with other technologies to create new, meaningful learning environments. The objective of an instructional systems design is to guarantee the quality and effectiveness of education and to enhance learning. This goal involves both teachers who want to become more efficient in transferring knowledge or skills and students as the final recipient of their teaching. The use of Blooms’s taxonomy enables teachers to classify the learning objectives into levels of complexity and specificity, thus making it possible to highlight the kind of knowledge teachers would like their students to reach. The fact that the instructional design features can be visualized through the IDEA platform is a guarantee for those who are looking for specific educational materials to be used in their lessons. Despite the benefits offered, a number of teachers are reluctant to use ISD because the preparatory work of having to thoroughly analyze the teaching/learning objectives, the planning of learning material, assessment activities, etc., is long and felt to be time-consuming. This drawback is minimized using a learning designer, as the tool facilitates to reuse of the didactic contents having a clear view of the processes of analysis, planning, and production of educational or testing materials uploaded on our platform. In this paper, we shall present the feedback of the teachers who used our tool in their didactic.Keywords: educational benefits, educational quality, educational technology, ISD tool
Procedia PDF Downloads 18827359 An Early Attempt of Artificial Intelligence-Assisted Language Oral Practice and Assessment
Authors: Paul Lam, Kevin Wong, Chi Him Chan
Abstract:
Constant practicing and accurate, immediate feedback are the keys to improving students’ speaking skills. However, traditional oral examination often fails to provide such opportunities to students. The traditional, face-to-face oral assessment is often time consuming – attending the oral needs of one student often leads to the negligence of others. Hence, teachers can only provide limited opportunities and feedback to students. Moreover, students’ incentive to practice is also reduced by their anxiety and shyness in speaking the new language. A mobile app was developed to use artificial intelligence (AI) to provide immediate feedback to students’ speaking performance as an attempt to solve the above-mentioned problems. Firstly, it was thought that online exercises would greatly increase the learning opportunities of students as they can now practice more without the needs of teachers’ presence. Secondly, the automatic feedback provided by the AI would enhance students’ motivation to practice as there is an instant evaluation of their performance. Lastly, students should feel less anxious and shy compared to directly practicing oral in front of teachers. Technically, the program made use of speech-to-text functions to generate feedback to students. To be specific, the software analyzes students’ oral input through certain speech-to-text AI engine and then cleans up the results further to the point that can be compared with the targeted text. The mobile app has invited English teachers for the pilot use and asked for their feedback. Preliminary trials indicated that the approach has limitations. Many of the users’ pronunciation were automatically corrected by the speech recognition function as wise guessing is already integrated into many of such systems. Nevertheless, teachers have confidence that the app can be further improved for accuracy. It has the potential to significantly improve oral drilling by giving students more chances to practice. Moreover, they believe that the success of this mobile app confirms the potential to extend the AI-assisted assessment to other language skills, such as writing, reading, and listening.Keywords: artificial Intelligence, mobile learning, oral assessment, oral practice, speech-to-text function
Procedia PDF Downloads 10327358 An Integrated Ecosystem Service-based Approach for the Sustainable Management of Forested Islands in South Korea
Authors: Jang-Hwan Jo
Abstract:
Implementing sustainable island forest management policies requires categorizing islands into groups based on key indicators and establishing a consistent management system. Building on the results of previous studies, a typology of forested islands was established: Type 1 – connected islands with high natural vegetation cover; Type 2 – connected islands with moderate natural vegetation cover; Type 3 – connected islands with low natural vegetation cover; Type 4 – unconnected islands with high natural vegetation cover; Type 5 – unconnected islands with moderate natural vegetation cover; and Type 6 – unconnected islands with low natural vegetation cover. An AHP analysis was conducted with island forest experts to identify priority ecosystem services (ESs) for the sustainable management of each island type. In connected islands, provisioning services (natural resources, natural medicines, etc.) assumed greater importance than regulating (erosion control) and supporting services (genetic diversity). In unconnected islands, particularly those with a small proportion of natural vegetation, regulating services (erosion control) requires greater emphasis in management. Considering that Type 3 islands require urgent management as connectivity to the mainland makes natural vegetation-sparse island forest ecosystems vulnerable to anthropogenic activities, the land-use scoring method was carried out on Jin-do, a Type 3 forested island. Comparisons between AHP-derived expert demand for key island ESs and the spatial distribution of ES supply potential revealed mismatches between the supply and demand of erosion control, freshwater supply, and habitat provision. The framework developed in this study can help guide decisions and indicate where interventions should be focused to achieve sustainable island management.Keywords: ecosystem service, sustainable management, forested islands, Analytic hierarchy process
Procedia PDF Downloads 7527357 Kinaesthetic Method in Apprenticeship Training: Support for Finnish Learning in Vocational Education and Training
Authors: Inkeri Jaaskelainen
Abstract:
The purpose of this study is to shed light on what it is like to study in apprenticeship training using Finnish as a second language. This study examines the stories and experiences of apprenticeship students learning and studying Finnish as part of their vocational studies. Also, this pilot study examines the effects of learning to pronounce Finnish through body motions and gestures. Many foreign students choose apprenticeships and start vocational training too early, while their language skills in Finnish are still very weak. Both duties at work and school assignments require reasonably good general language skills (B1.1), and, especially at work, language skills are also a safety issue. At work, students should be able to simultaneously learn Finnish and do vocational studies in a noisy, demanding, and stressful environment. Learning and understanding new things is very challenging under these circumstances and sometimes students get exhausted and experience a lot of stress - which makes learning even more difficult. Students are different from each other and so are their ways to learn. Thereafter, one of the most important features of apprenticeship training and second language learning is a good understanding of adult learners and their needs. Kinaesthetic methods are an effective way to support adult students’ cognitive skills and make learning more relaxing and fun. Empirical findings show that language learning can indeed be supported in physical ways, by body motions and gestures. The method used here, named TFFL (Touch and Feel Foreign Languages), was designed to support adult language learning, to correct or prevent language fossilization, and to help the student to manage emotions. Finnish is considered as a difficult language to learn, mostly because it is so different from nearly all other languages. Many learners complain that they are lost or confused and there is a need to find a way to simultaneously learn the language and to handle negative emotion that comes from the Finnish language and the learning process itself. Due to the nature of the Finnish language, good pronunciation skills are needed just to understand the way the language work. Movements (body movements etc.) are a natural part of many cultures, but not Finnish. In Finland, students have traditionally been expected to stay still, and that is not a natural way for many foreign students. However, the kinaesthetic TFFL method proved out to be a useful way to help some L2 students to feel phonemes, rhythm, and intonation, to improve their Finnish, and, thereby, also to successfully complete their vocational studies.Keywords: Finnish, fossilization, interference, kinaesthetic method
Procedia PDF Downloads 14027356 Learning-by-Heart vs. Learning by Thinking: Fostering Thinking in Foreign Language Learning A Comparison of Two Approaches
Authors: Danijela Vranješ, Nataša Vukajlović
Abstract:
Turning to learner-centered teaching instead of the teacher-centered approach brought a whole new perspective into the process of teaching and learning and set a new goal for improving the educational process itself. However, recently a tremendous decline in students’ performance on various standardized tests can be observed, above all on the PISA-test. The learner-centeredness on its own is not enough anymore: the students’ ability to think is deteriorating. Especially in foreign language learning, one can encounter a lot of learning by heart: whether it is grammar or vocabulary, teachers often seem to judge the students’ success merely on how well they can recall a specific word, phrase, or grammar rule, but they rarely aim to foster their ability to think. Convinced that foreign language teaching can do both, this research aims to discover how two different approaches to teaching foreign language foster the students’ ability to think as well as to what degree they help students get to the state-determined level of foreign language at the end of the semester as defined in the Common European Framework. For this purpose, two different curricula were developed: one is a traditional, learner-centered foreign language curriculum that aims at teaching the four competences as defined in the Common European Framework and serves as a control variable, whereas the second one has been enriched with various thinking routines and aims at teaching the foreign language as a means to communicate ideas and thoughts rather than reducing it to the four competences. Moreover, two types of tests were created for each approach, each based on the content taught during the semester. One aims to test the students’ competences as defined in the CER, and the other aims to test the ability of students to draw on the knowledge gained and come to their own conclusions based on the content taught during the semester. As it is an ongoing study, the results are yet to be interpreted.Keywords: common european framework of reference, foreign language learning, foreign language teaching, testing and assignment
Procedia PDF Downloads 10727355 Simulation, Optimization, and Analysis Approach of Microgrid Systems
Authors: Saqib Ali
Abstract:
Sources are classified into two depending upon the factor of reviving. These sources, which cannot be revived into their original shape once they are consumed, are considered as nonrenewable energy resources, i.e., (coal, fuel) Moreover, those energy resources which are revivable to the original condition even after being consumed are known as renewable energy resources, i.e., (wind, solar, hydel) Renewable energy is a cost-effective way to generate clean and green electrical energy Now a day’s majority of the countries are paying heed to energy generation from RES Pakistan is mostly relying on conventional energy resources which are mostly nonrenewable in nature coal, fuel is one of the major resources, and with the advent of time their prices are increasing on the other hand RES have great potential in the country with the deployment of RES greater reliability and an effective power system can be obtained In this thesis, a similar concept is being used and a hybrid power system is proposed which is composed of intermixing of renewable and nonrenewable sources The Source side is composed of solar, wind, fuel cells which will be used in an optimal manner to serve load The goal is to provide an economical, reliable, uninterruptable power supply. This is achieved by optimal controller (PI, PD, PID, FOPID) Optimization techniques are applied to the controllers to achieve the desired results. Advanced algorithms (Particle swarm optimization, Flower Pollination Algorithm) will be used to extract the desired output from the controller Detailed comparison in the form of tables and results will be provided, which will highlight the efficiency of the proposed system.Keywords: distributed generation, demand-side management, hybrid power system, micro grid, renewable energy resources, supply-side management
Procedia PDF Downloads 9727354 Investigation of Verbal Feedback and Learning Process for Oral Presentation
Authors: Nattawadee Sinpattanawong
Abstract:
Oral presentation has been used mostly in business communication. The business presentation is carrying out through an audio and visual presentation material such as statistical documents, projectors, etc. Common examples of business presentation are intra-organization and sales presentations. The study aims at investigating functions, strategies and contents of assessors’ verbal feedback on presenters’ oral presentations and exploring presenters’ learning process and specific views and expectations concerning assessors’ verbal feedback related to the delivery of the oral presentation. This study is designed as a descriptive qualitative research; four master students and one teacher in English for Business and Industry Presentation Techniques class of public university will be selected. The researcher hopes that any understanding how assessors’ verbal feedback on oral presentations and learning process may illuminate issues for other people. The data from this research may help to expand and facilitate the readers’ understanding of assessors’ verbal feedback on oral presentations and learning process in their own situations. The research instruments include an audio recorder, video recorder and an interview. The students will be interviewing in order to ask for their views and expectations concerning assessors’ verbal feedback related to the delivery of the oral presentation. After finishing data collection, the data will be analyzed and transcribed. The findings of this study are significant because it can provide presenters knowledge to enhance their learning process and provide teachers knowledge about providing verbal feedback on student’s oral presentations on a business context.Keywords: business context, learning process, oral presentation, verbal feedback
Procedia PDF Downloads 19427353 A Comparative Analysis of Body Idioms in Two Romance Languages and in English Aiming at Vocabulary Teaching and Learning
Authors: Marilei Amadeu Sabino
Abstract:
Before the advent of Cognitive Linguistics, metaphor was considered a stylistic issue, but now it is viewed as a critical component of everyday language and a fundamental mechanism of human conceptualizations of the world. It means that human beings' conceptual system (the way we think and act) is metaphorical in nature. Another interesting hypothesis in Cognitive Linguistics is that cognition is embodied, that is, our cognition is influenced by our experiences in the physical world: the mind is connected to the body and the body influences the mind. In this sense, it is believed that many conceptual metaphors appear to be potentially universal or near-universal, because people across the world share certain bodily experiences. In these terms, many metaphors may be identical or very similar in several languages. Thus, in this study, we analyzed some somatic (also called body) idioms of Italian and Portuguese languages, in order to investigate the proportion in which their metaphors are the same, similar or different in both languages. It was selected hundreds of Italian idioms in dictionaries and indicated their corresponding idioms in Portuguese. The analysis allowed to conclude that much of the studied expressions are really structurally, semantically and metaphorically identical or similar in both languages. We also contrasted some Portuguese and Italian somatic expressions to their corresponding English idioms to have a multilingual perspective of the issue, and it also led to the conclusion that the most common idioms based on metaphors are probably those that have to do with the human body. Although this is mere speculation and needs more study, the results found incite relevant discussions on issues that matter Foreign and Second Language Teaching and Learning, including the retention of vocabulary. The teaching of the metaphorically different body idioms also plays an important role in language learning and teaching as it will be shown in this paper. Acknowledgments: FAPESP – São Paulo State Research Support Foundation –the financial support offered (proc. n° 2017/02064-7).Keywords: body idioms, cognitive linguistics, metaphor, vocabulary teaching and learning
Procedia PDF Downloads 33527352 Content Monetization as a Mark of Media Economy Quality
Authors: Bela Lebedeva
Abstract:
Characteristics of the Web as a channel of information dissemination - accessibility and openness, interactivity and multimedia news - become wider and cover the audience quickly, positively affecting the perception of content, but blur out the understanding of the journalistic work. As a result audience and advertisers continue migrating to the Internet. Moreover, online targeting allows monetizing not only the audience (as customarily given to traditional media) but also the content and traffic more accurately. While the users identify themselves with the qualitative characteristics of the new market, its actors are formed. Conflict of interests is laid in the base of the economy of their relations, the problem of traffic tax as an example. Meanwhile, content monetization actualizes fiscal interest of the state too. The balance of supply and demand is often violated due to the political risks, particularly in terms of state capitalism, populism and authoritarian methods of governance such social institutions as the media. A unique example of access to journalistic material, limited by monetization of content is a television channel Dozhd' (Rain) in Russian web space. Its liberal-minded audience has a better possibility for discussion. However, the channel could have been much more successful in terms of unlimited free speech. Avoiding state pressure and censorship its management has decided to save at least online performance and monetizing all of the content for the core audience. The study Methodology was primarily based on the analysis of journalistic content, on the qualitative and quantitative analysis of the audience. Reconstructing main events and relationships of actors on the market for the last six years researcher has reached some conclusions. First, under the condition of content monetization the capitalization of its quality will always strive to quality characteristics of user, thereby identifying him. Vice versa, the user's demand generates high-quality journalism. The second conclusion follows the previous one. The growth of technology, information noise, new political challenges, the economy volatility and the cultural paradigm change – all these factors form the content paying model for an individual user. This model defines him as a beneficiary of specific knowledge and indicates the constant balance of supply and demand other conditions being equal. As a result, a new economic quality of information is created. This feature is an indicator of the market as a self-regulated system. Monetized information quality is less popular than that of the Public Broadcasting Service, but this audience is able to make decisions. These very users keep the niche sectors which have more potential of technology development, including the content monetization ways. The third point of the study allows develop it in the discourse of media space liberalization. This cultural phenomenon may open opportunities for the development of social and economic relations architecture both locally and regionally.Keywords: content monetization, state capitalism, media liberalization, media economy, information quality
Procedia PDF Downloads 24827351 Evaluation of Different Cropping Systems under Organic, Inorganic and Integrated Production Systems
Authors: Sidramappa Gaddnakeri, Lokanath Malligawad
Abstract:
Any kind of research on production technology of individual crop / commodity /breed has not brought sustainability or stability in crop production. The sustainability of the system over years depends on the maintenance of the soil health. Organic production system includes use of organic manures, biofertilizers, green manuring for nutrient supply and biopesticides for plant protection helps to sustain the productivity even under adverse climatic condition. The study was initiated to evaluate the performance of different cropping systems under organic, inorganic and integrated production systems at The Institute of Organic Farming, University of Agricultural Sciences, Dharwad (Karnataka-India) under ICAR Network Project on Organic Farming. The trial was conducted for four years (2013-14 to 2016-17) on fixed site. Five cropping systems viz., sequence cropping of cowpea – safflower, greengram– rabi sorghum, maize-bengalgram, sole cropping of pigeonpea and intercropping of groundnut + cotton were evaluated under six nutrient management practices. The nutrient management practices are NM1 (100% Organic farming (Organic manures equivalent to 100% N (Cereals/cotton) or 100% P2O5 (Legumes), NM2 (75% Organic farming (Organic manures equivalent to 75% N (Cereals/cotton) or 100% P2O5 (Legumes) + Cow urine and Vermi-wash application), NM3 (Integrated farming (50% Organic + 50% Inorganic nutrients, NM4 (Integrated farming (75% Organic + 25% Inorganic nutrients, NM5 (100% Inorganic farming (Recommended dose of inorganic fertilizers)) and NM6 (Recommended dose of inorganic fertilizers + Recommended rate of farm yard manure (FYM). Among the cropping systems evaluated for different production systems indicated that the Groundnut + Hybrid cotton (2:1) intercropping system found more remunerative as compared to Sole pigeonpea cropping system, Greengram-Sorghum sequence cropping system, Maize-Chickpea sequence cropping system and Cowpea-Safflower sequence cropping system irrespective of the production systems. Production practices involving application of recommended rates of fertilizers + recommended rates of organic manures (Farmyard manure) produced higher net monetary returns and higher B:C ratio as compared to integrated production system involving application of 50 % organics + 50 % inorganic and application of 75 % organics + 25 % inorganic and organic production system only Both the two organic production systems viz., 100 % Organic production system (Organic manures equivalent to 100 % N (Cereals/cotton) or 100 % P2O5 (Legumes) and 75 % Organic production system (Organic manures equivalent to 75 % N (Cereals) or 100 % P2O5 (Legumes) + Cow urine and Vermi-wash application) are found to be on par. Further, integrated production system involving application of organic manures and inorganic fertilizers found more beneficial over organic production systems.Keywords: cropping systems, production systems, cowpea, safflower, greengram, pigeonpea, groundnut, cotton
Procedia PDF Downloads 19927350 Evaluation of the Self-Efficacy and Learning Experiences of Final year Students of Computer Science of Southwest Nigerian Universities
Authors: Olabamiji J. Onifade, Peter O. Ajayi, Paul O. Jegede
Abstract:
This study aimed at investigating the preparedness of the undergraduate final year students of Computer Science as the next entrants into the workplace. It assessed their self-efficacy in computational tasks and examined the relationship between their self-efficacy and their learning experiences in Southwest Nigerian universities. The study employed a descriptive survey research design. The population of the study comprises all the final year students of Computer Science. A purposive sampling technique was adopted in selecting a representative sample of interest from the final year students of Computer Science. The Students’ Computational Task Self-Efficacy Questionnaire (SCTSEQ) was used to collect data. Mean, standard deviation, frequency, percentages, and linear regression were used for data analysis. The result obtained revealed that the final year students of Computer Science were averagely confident in performing computational tasks, and there is a significant relationship between the learning experiences of the students and their self-efficacy. The study recommends that the curriculum be improved upon to accommodate industry experts as lecturers in some of the courses, make provision for more practical sessions, and the learning experiences of the student be considered an important component in the undergraduate Computer Science curriculum development process.Keywords: computer science, learning experiences, self-efficacy, students
Procedia PDF Downloads 14327349 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection
Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner
Abstract:
Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.
Procedia PDF Downloads 22327348 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: crime prediction, machine learning, public safety, smart city
Procedia PDF Downloads 11227347 Using Science, Technology, Engineering, Art and Mathematics (STEAM) Project-Based Learning Programs to Transition towards Whole School Pedagogical Shift
Authors: M. Richichi
Abstract:
Evidencing the learning and developmental needs of students in specific educational institutions is central to determining the type of whole school pedagogical shift required. Initiating this transition by designing and implementing STEAM (Science, technology, engineering, art, and mathematics) project-based learning opportunities, in collaboration with industry, exposes teachers to new pedagogical and assessment practices. This experience instills confidence and a renewed sense of energy, which contributes to greater efficacy. Championing teachers in such learning environments leads to “bleeding” of inventive pedagogical understanding and skills as well as motivation. This contributes positively to collective teacher efficacy and the transition towards more cross-disciplinary initiatives and opportunities, and hence an innovative pedagogical shift. Evidence of skill and knowledge development in students, combined with greater confidence, work ethic and interest in STEAM areas, are further indicators of the success of the transitioning process.Keywords: efficacy, pedagogy, transition, STEAM
Procedia PDF Downloads 12927346 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 3427345 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph
Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn
Abstract:
Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction
Procedia PDF Downloads 42527344 Designing a Thermal Management System for Lithium Ion Battery Packs in Electric Vehicles
Authors: Ekin Esen, Mohammad Alipour, Riza Kizilel
Abstract:
Rechargeable lithium-ion batteries have been replacing lead-acid batteries for the last decade due to their outstanding properties such as high energy density, long shelf life, and almost no memory effect. Besides these, being very light compared to lead acid batteries has gained them their dominant place in the portable electronics market, and they are now the leading candidate for electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, their performance strongly depends on temperature, and this causes some inconveniences for their utilization in extreme temperatures. Since weather conditions vary across the globe, this situation limits their utilization for EVs and HEVs and makes a thermal management system obligatory for the battery units. The objective of this study is to understand thermal characteristics of Li-ion battery modules for various operation conditions and design a thermal management system to enhance battery performance in EVs and HEVs. In the first part of our study, we investigated thermal behavior of commercially available pouch type 20Ah LiFePO₄ (LFP) cells under various conditions. Main parameters were chosen as ambient temperature and discharge current rate. Each cell was charged and discharged at temperatures of 0°C, 10°C, 20°C, 30°C, 40°C, and 50°C. The current rate of charging process was 1C while it was 1C, 2C, 3C, 4C, and 5C for discharge process. Temperatures of 7 different points on the cells were measured throughout charging and discharging with N-type thermocouples, and a detailed temperature profile was obtained. In the second part of our study, we connected 4 cells in series by clinching and prepared 4S1P battery modules similar to ones in EVs and HEVs. Three reference points were determined according to the findings of the first part of the study, and a thermocouple is placed on each reference point on the cells composing the 4S1P battery modules. In the end, temperatures of 6 points in the module and 3 points on the top surface were measured and changes in the surface temperatures were recorded for different discharge rates (0.2C, 0.5C, 0.7C, and 1C) at various ambient temperatures (0°C – 50°C). Afterwards, aluminum plates with channels were placed between the cells in the 4S1P battery modules, and temperatures were controlled with airflow. Airflow was provided with a regular compressor, and the effect of flow rate on cell temperature was analyzed. Diameters of the channels were in mm range, and shapes of the channels were determined in order to make the cell temperatures uniform. Results showed that the designed thermal management system could help keeping the cell temperatures in the modules uniform throughout charge and discharge processes. Other than temperature uniformity, the system was also beneficial to keep cell temperature close to the optimum working temperature of Li-ion batteries. It is known that keeping the temperature at an optimum degree and maintaining uniform temperature throughout utilization can help obtaining maximum power from the cells in battery modules for a longer time. Furthermore, it will increase safety by decreasing the risk of thermal runaways. Therefore, the current study is believed to be beneficial for wider use of Li batteries for battery modules of EVs and HEVs globally.Keywords: lithium ion batteries, thermal management system, electric vehicles, hybrid electric vehicles
Procedia PDF Downloads 16327343 Circular Economy: Development of Quantitative Material Wastage Management Plan for Effective Waste Reduction in Building Construction Industry
Authors: Kwok Tak Kit
Abstract:
Combating climate change is becoming a hot topic in various sectors. Building construction and infrastructure sectors contributed a significant proportion of waste and GHGs emissions in the economy of different countries and cities. Many types of research had conducted and discussed the topic of waste management and waste management being a macro-level control is well developed in the building and construction industry. However, there is little research and studies on the micro-level of waste management, “building construction material wastage management,” and fewer reviews about regulatory control in the building construction sector. In this paper, we will focus on the potentialities and importance of material wastage management and review the deficiencies of the current standard to take into account the reduction of material wastage in a systematic and quantitative approach.Keywords: quantitative measurement, material wastage management plan, waste management, uncalculated waste, circular economy
Procedia PDF Downloads 15327342 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading
Authors: Robert Caulk
Abstract:
A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration
Procedia PDF Downloads 8927341 Mobile Collaboration Learning Technique on Students in Developing Nations
Authors: Amah Nnachi Lofty, Oyefeso Olufemi, Ibiam Udu Ama
Abstract:
New and more powerful communications technologies continue to emerge at a rapid pace and their uses in education are widespread and the impact remarkable in the developing societies. This study investigates Mobile Collaboration Learning Technique (MCLT) on learners’ outcome among students in tertiary institutions of developing nations (a case of Nigeria students). It examines the significance of retention achievement scores of students taught using mobile collaboration and conventional method. The sample consisted of 120 students using Stratified random sampling method. Three research questions and hypotheses were formulated, and tested at a 0.05 level of significance. A student achievement test (SAT) was made of 40 items of multiple-choice objective type, developed and validated for data collection by professionals. The SAT was administered to students as pre-test and post-test. The data were analyzed using t-test statistic to test the hypotheses. The result indicated that students taught using MCLT performed significantly better than their counterparts using the conventional method of instruction. Also, there was no significant difference in the post-test performance scores of male and female students taught using MCLT. Based on the findings, the following recommendations was made that: Mobile collaboration system be encouraged in the institutions to boost knowledge sharing among learners, workshop and trainings should be organized to train teachers on the use of this technique and that schools and government should formulate policies and procedures towards responsible use of MCLT.Keywords: education, communication, learning, mobile collaboration, technology
Procedia PDF Downloads 22127340 Earnings Management and Tone Management: Evidence from the UK
Authors: Salah Kayed Kayed, Jessica Hong Yang
Abstract:
This study investigates, whether earnings management in the audited financial statements is associated with tone management in the narrative sections of the annual report in the UK. Earnings management and narrative disclosure are communication strategies used from managers to communicate with investors or other users. Because earnings management and narrative disclosure stem from managers, they can exploit this by doing manipulation in their earnings, and simultaneously disclosing qualitative text (narrative information) in their reports as a tone of words, which will affect users’ perception, and hence users will be misinformed. The association between earnings and tone management can be explained by the self-serving, through cognitive reference points, theory. The sample period lasts from 2010 to 2015, and the sample comprises all non-financial firms that consider under FTSE 350 in any year during the sample period. A list of words from previous research is used to measure the tone in the narrative sections of the annual report. Because this study focuses on the managerial strategic choice and the subjective issues that come from management, it uses the abnormal tone to capture the managerial discretion on tone, and a number of different discretionary accruals proxies to measure earnings management, where accruals management is considered as a manipulation tool from managers to change the users' perception. This research is motivated to fulfil the literature gap by examining the association between earnings and tone management. Moreover, if firms that apply earnings management use tone management to mislead investors, it is beneficial for investors, policy makers, standard setters, or other users to know whether there is an association between earnings management and tone management. Clearly, we believe that this study is fundamental in the accounting context, where it evaluates the communication strategies that are used in firms' financial reports. Consistent with prior research, it is expected that tone management is positively associated with earnings management. This means that firms that use earnings management have incentives to manipulate in their narrative disclosure through tone of words, to reflect a good perception for users, which will conceal the earnings management techniques used in their reporting.Keywords: earnings management, FTSE 350, narrative disclosure, tone management
Procedia PDF Downloads 278