Search results for: horizontal gene transfer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4869

Search results for: horizontal gene transfer

1299 Simulation of Antimicrobial Resistance Gene Fate in Narrow Grass Hedges

Authors: Marzieh Khedmati, Shannon L. Bartelt-Hunt

Abstract:

Vegetative Filter Strips (VFS) are used for controlling the volume of runoff and decreasing contaminant concentrations in runoff before entering water bodies. Many studies have investigated the role of VFS in sediment and nutrient removal, but little is known about their efficiency for the removal of emerging contaminants such as antimicrobial resistance genes (ARGs). Vegetative Filter Strip Modeling System (VFSMOD) was used to simulate the efficiency of VFS in this regard. Several studies demonstrated the ability of VFSMOD to predict reductions in runoff volume and sediment concentration moving through the filters. The objectives of this study were to calibrate the VFSMOD with experimental data and assess the efficiency of the model in simulating the filter behavior in removing ARGs (ermB) and tylosin. The experimental data were obtained from a prior study conducted at the University of Nebraska (UNL) Rogers Memorial Farm. Three treatment factors were tested in the experiments, including manure amendment, narrow grass hedges and rainfall events. Sediment Delivery Ratio (SDR) was defined as the filter efficiency and the related experimental and model values were compared to each other. The VFS Model generally agreed with the experimental results and as a result, the model was used for predicting filter efficiencies when the runoff data are not available. Narrow Grass Hedges (NGH) were shown to be effective in reducing tylosin and ARGs concentration. The simulation showed that the filter efficiency in removing ARGs is different for different soil types and filter lengths. There is an optimum length for the filter strip that produces minimum runoff volume. Based on the model results increasing the length of the filter by 1-meter leads to higher efficiency but widening beyond that decreases the efficiency. The VFSMOD, which was proved to work well in estimation of VFS trapping efficiency, showed confirming results for ARG removal.

Keywords: antimicrobial resistance genes, emerging contaminants, narrow grass hedges, vegetative filter strips, vegetative filter strip modeling system

Procedia PDF Downloads 113
1298 A Serum- And Feeder-Free Culture System for the Robust Generation of Human Stem Cell-Derived CD19+ B Cells and Antibody-Secreting Cells

Authors: Kirsten Wilson, Patrick M. Brauer, Sandra Babic, Diana Golubeva, Jessica Van Eyk, Tinya Wang, Avanti Karkhanis, Tim A. Le Fevre, Andy I. Kokaji, Allen C. Eaves, Sharon A. Louis, , Nooshin Tabatabaei-Zavareh

Abstract:

Long-lived plasma cells are rare, non-proliferative B cells generated from antibody-secreting cells (ASCs) following an immune response to protect the host against pathogen re-exposure. Despite their therapeutic potential, the lack of in vitro protocols in the field makes it challenging to use B cells as a cellular therapeutic tool. As a result, there is a need to establish robust and reproducible methods for the generation of B cells. To address this, we have developed a culture system for generating B cells from hematopoietic stem and/or progenitor cells (HSPCs) derived from human umbilical cord blood (CB) or pluripotent stem cells (PSCs). HSPCs isolated from CB were cultured using the StemSpan™ B Cell Generation Kit and produced CD19+ B cells at a frequency of 23.2 ± 1.5% and 59.6 ± 2.3%, with a yield of 91 ± 11 and 196 ± 37 CD19+ cells per input CD34+ cell on culture days 28 and 35, respectively (n = 50 - 59). CD19+IgM+ cells were detected at a frequency of 31.2 ± 2.6% and were produced at a yield of 113 ± 26 cells per input CD34+ cell on culture day 35 (n = 50 - 59). The B cell receptor loci of CB-derived B cells were sequenced to confirm V(D)J gene rearrangement. ELISpot analysis revealed that ASCs were generated at a frequency of 570 ± 57 per 10,000 day 35 cells, with an average IgM+ ASC yield of 16 ± 2 cells per input CD34+ cell (n = 33 - 42). PSC-derived HSPCs were generated using the STEMdiff™ Hematopoietic - EB reagents and differentiated to CD10+CD19+ B cells with a frequency of 4 ± 0.8% after 28 days of culture (n = 37, 1 embryonic and 3 induced pluripotent stem cell lines tested). Subsequent culture of PSC-derived HSPCs increased CD19+ frequency and generated ASCs from 1 - 2 iPSC lines. This method is the first report of a serum- and feeder-free system for the generation of B cells from CB and PSCs, enabling further B lineage-specific research for potential future clinical applications.

Keywords: stem cells, B cells, immunology, hematopoiesis, PSC, differentiation

Procedia PDF Downloads 31
1297 X-Ray Crystallographic Studies on BPSL2418 from Burkholderia pseudomallei

Authors: Mona Alharbi

Abstract:

Melioidosis has emerged as a lethal disease. Unfortunately, the molecular mechanisms of virulence and pathogenicity of Burkholderia pseudomallei remain unknown. However, proteomics research has selected putative targets in B. pseudomallei that might play roles in the B. pseudomallei virulence. BPSL 2418 putative protein has been predicted as a free methionine sulfoxide reductase and interestingly there is a link between the level of the methionine sulfoxide in pathogen tissues and its virulence. Therefore in this work, we describe the cloning expression, purification, and crystallization of BPSL 2418 and the solution of its 3D structure using X-ray crystallography. Also, we aimed to identify the substrate binding and reduced forms of the enzyme to understand the role of BPSL 2418. The gene encoding BPSL2418 from B. pseudomallei was amplified by PCR and reclone in pETBlue-1 vector and transformed into E. coli Tuner DE3 pLacI. BPSL2418 was overexpressed using E. coli Tuner DE3 pLacI and induced by 300μM IPTG for 4h at 37°C. Then BPS2418 purified to better than 95% purity. The pure BPSL2418 was crystallized with PEG 4000 and PEG 6000 as precipitants in several conditions. Diffraction data were collected to 1.2Å resolution. The crystals belonged to space group P2 21 21 with unit-cell parameters a = 42.24Å, b = 53.48Å, c = 60.54Å, α=γ=β= 90Å. The BPSL2418 binding MES was solved by molecular replacement with the known structure 3ksf using PHASER program. The structure is composed of six antiparallel β-strands and four α-helices and two loops. BPSL2418 shows high homology with the GAF domain fRMsrs enzymes which suggest that BPSL2418 might act as methionine sulfoxide reductase. The amino acids alignment between the fRmsrs including BPSL 2418 shows that the three cysteines that thought to catalyze the reduction are fully conserved. BPSL 2418 contains the three conserved cysteines (Cys⁷⁵, Cys⁸⁵ and Cys¹⁰⁹). The active site contains the six antiparallel β-strands and two loops where the disulfide bond formed between Cys⁷⁵ and Cys¹⁰⁹. X-ray structure of free methionine sulfoxide binding and native forms of BPSL2418 were solved to increase the understanding of the BPSL2418 catalytic mechanism.

Keywords: X-Ray Crystallography, BPSL2418, Burkholderia pseudomallei, Melioidosis

Procedia PDF Downloads 225
1296 Self-Assembled Laser-Activated Plasmonic Substrates for High-Throughput, High-Efficiency Intracellular Delivery

Authors: Marinna Madrid, Nabiha Saklayen, Marinus Huber, Nicolas Vogel, Christos Boutopoulos, Michel Meunier, Eric Mazur

Abstract:

Delivering material into cells is important for a diverse range of biological applications, including gene therapy, cellular engineering and imaging. We present a plasmonic substrate for delivering membrane-impermeable material into cells at high throughput and high efficiency while maintaining cell viability. The substrate fabrication is based on an affordable and fast colloidal self-assembly process. When illuminated with a femtosecond laser, the light interacts with the electrons at the surface of the metal substrate, creating localized surface plasmons that form bubbles via energy dissipation in the surrounding medium. These bubbles come into close contact with the cell membrane to form transient pores and enable entry of membrane-impermeable material via diffusion. We use fluorescence microscopy and flow cytometry to verify delivery of membrane-impermeable material into HeLa CCL-2 cells. We show delivery efficiency and cell viability data for a range of membrane-impermeable cargo, including dyes and biologically relevant material such as siRNA. We estimate the effective pore size by determining delivery efficiency for hard fluorescent spheres with diameters ranging from 20 nm to 2 um. To provide insight to the cell poration mechanism, we relate the poration data to pump-probe measurements of micro- and nano-bubble formation on the plasmonic substrate. Finally, we investigate substrate stability and reusability by using scanning electron microscopy (SEM) to inspect for damage on the substrate after laser treatment. SEM images show no visible damage. Our findings indicate that self-assembled plasmonic substrates are an affordable tool for high-throughput, high-efficiency delivery of material into mammalian cells.

Keywords: femtosecond laser, intracellular delivery, plasmonic, self-assembly

Procedia PDF Downloads 511
1295 Comparative Study of Concrete Filled Steel I-Girder Bridge with Conventional Type of Bridge

Authors: Waheed Ahmad Safi, Shunichi Nakamura, Abdul Habib Ghaforzai

Abstract:

Steel and concrete composite bridge with concrete filled steel I-girder (CFIG) was proposed and FEM and laboratory tests were conducted to analysis bending and shear behavior. The proposed form of structural steel I-section is mainly used at the intermediate support zone by placing infilled concrete into the top and bottom flanges of steel I-section to resist negative bending moment. The bending and shear tests were carried out to find out the significance of CFIG section. The result for test showing that the bending and shear capacity of proposed CFIG is at least 3 times and 2 times greater than conventional steel I-section (IG) respectively. Finite element study was also carried out to ensure the result for laboratory tests due to bending and shear behavior and load transfer behavior of proposed structural form. Finite element result result agreed the test result. A design example was carried out for a four-span continuous highway bridge and design method was established.

Keywords: bending strength, concrete filled steel I-girder, steel I-girder, FEM, limit states design and shear strength

Procedia PDF Downloads 105
1294 TiO2 Nanowires as Efficient Heterogeneous Photocatalysts for Waste-Water Treatment

Authors: Gul Afreen, Sreedevi Upadhyayula, Mahendra K. Sunkara

Abstract:

One-dimensional (1D) nanostructures like nanowires, nanotubes, and nanorods find variety of practical application owing to their unique physico-chemical properties. In this work, TiO2 nanowires were synthesized by direct oxidation of titanium particles in a unique microwave plasma jet reactor. The prepared TiO2 nanowires manifested the flexible features, and were characterized by using X-ray diffraction, Brunauer-Emmett-Teller (BET) surface area analyzer, UV-Visible and FTIR spectrophotometers, Scanning electron microscope, and Transmission electron microscope. Further, the photodegradation efficiency of these nanowires were tested against toxic organic dye like methylene blue (MB) and the results were compared with the commercial TiO2. It was found that TiO2 nanowires exhibited superior photocatalytic performance (89%) as compared to commercial TiO2 (75%) after 60 min of reaction. This is attributed to the lower recombination rate and increased interfacial charge transfer in TiO2 nanowire. Pseudo-first order kinetic modelling performed with the experimental results revealed that the rate constant of photodegradation in case of TiO2 nanowire was 1.3 times higher than that of commercial TiO2. Superoxide radical (O2˙) was found to be the major contributor in the photodegradation mechanism. Based on the trapping experiments, a plausible mechanism of the photocatalytic reaction is discussed.

Keywords: heterogeneous catalysis, photodegradation, reactive oxygen species, TiO₂ nanowires

Procedia PDF Downloads 121
1293 A Cohort Study of Early Cardiologist Consultation by Telemedicine on the Critical Non-STEMI Inpatients

Authors: Wisit Wichitkosoom

Abstract:

Objectives: To find out the more effect of early cardiologist consultation using a simple technology on the diagnosis and early proper management of patients with Non-STEMI at emergency department of district hospitals without cardiologist on site before transferred. Methods: A cohort study was performed in Udonthani general hospital at Udonthani province. From 1 October 2012–30 September 2013 with 892 patients diagnosed with Non-STEMI. All patients mean aged 46.8 years of age who had been transferred because of Non-STEMI diagnosed, over a 12 week period of studied. Patients whose transferred, in addition to receiving proper care, were offered a cardiologist consultation with average time to Udonthani hospital 1.5 hour. The main outcome measure was length of hospital stay, mortality at 3 months, inpatient investigation, and transfer rate to the higher facilitated hospital were also studied. Results: Hospital stay was significantly shorter for those didn’t consult cardiologist (hazard ratio 1.19; approximate 95% CI 1.001 to 1.251; p = 0.039). The 136 cases were transferred to higher facilitated hospital. No statistically significant in overall mortality between the groups (p=0.068). Conclusions: Early cardiologist consultant can reduce length of hospital stay for patients with cardiovascular conditions outside of cardiac center. The new basic technology can apply for the safety patient.

Keywords: critical, telemedicine, safety, non STEMI

Procedia PDF Downloads 398
1292 A Hybrid Combustion Chamber Design for Diesel Engines

Authors: R. Gopakumar, G. Nagarajan

Abstract:

Both DI and IDI systems possess inherent advantages as well as disadvantages. The objective of the present work is to obtain maximum advantages of both systems by implementing a hybrid design. A hybrid combustion chamber design consists of two combustion chambers viz., the main combustion chamber and an auxiliary combustion chamber. A fuel injector supplies major quantity of fuel to the auxiliary chamber. Due to the increased swirl motion in auxiliary chamber, mixing becomes more efficient which contributes to reduction in soot/particulate emissions. Also, by increasing the fuel injection pressure, NOx emissions can be reduced. The main objective of the hybrid combustion chamber design is to merge the positive features of both DI and IDI combustion chamber designs, which provides increased swirl motion and improved thermal efficiency. Due to the efficient utilization of fuel, low specific fuel consumption can be ensured. This system also aids in increasing the power output for same compression ratio and injection timing as compared with the conventional combustion chamber designs. The present system also reduces heat transfer and fluid dynamic losses which are encountered in IDI diesel engines. Since the losses are reduced, overall efficiency of the engine increases. It also minimizes the combustion noise and NOx emissions in conventional DI diesel engines.

Keywords: DI, IDI, hybrid combustion, diesel engines

Procedia PDF Downloads 501
1291 Coronin 1C and miR-128A as Potential Diagnostic Biomarkers for Glioblastoma Multiform

Authors: Denis Mustafov, Emmanouil Karteris, Maria Braoudaki

Abstract:

Glioblastoma multiform (GBM) is a heterogenous primary brain tumour that kills most affected patients. To the authors best knowledge, despite all research efforts there is no early diagnostic biomarker for GBM. MicroRNAs (miRNAs) are short non-coding RNA molecules which are deregulated in many cancers. The aim of this research was to determine miRNAs with a diagnostic impact and to potentially identify promising therapeutic targets for glioblastoma multiform. In silico analysis was performed to identify deregulated miRNAs with diagnostic relevance for glioblastoma. The expression profiles of the chosen miRNAs were then validated in vitro in the human glioblastoma cell lines A172 and U-87MG. Briefly, RNA extraction was carried out using the Trizol method, whilst miRNA extraction was performed using the mirVANA miRNA isolation kit. Quantitative Real-Time Polymerase Chain Reaction was performed to verify their expression. The presence of five target proteins within the A172 cell line was evaluated by Western blotting. The expression of the CORO1C protein within 32 GBM cases was examined via immunohistochemistry. The miRNAs identified in silico included miR-21-5p, miR-34a and miR-128a. These miRNAs were shown to target deregulated GBM genes, such as CDK6, E2F3, BMI1, JAG1, and CORO1C. miR-34a and miR-128a showed low expression profiles in comparison to a control miR-RNU-44 in both GBM cell lines suggesting tumour suppressor properties. Opposing, miR-21-5p demonstrated greater expression indicating that it could potentially function as an oncomiR. Western blotting revealed expression of all five proteins within the A172 cell line. In silico analysis also suggested that CORO1C is a target of miR-128a and miR-34a. Immunohistochemistry demonstrated that 75% of the GBM cases showed moderate to high expression of CORO1C protein. Greater understanding of the deregulated expression of miR-128a and the upregulation of CORO1C in GBM could potentially lead to the identification of a promising diagnostic biomarker signature for glioblastomas.

Keywords: non-coding RNAs, gene expression, brain tumours, immunohistochemistry

Procedia PDF Downloads 66
1290 Coefficient of Performance (COP) Optimization of an R134a Cross Vane Expander Compressor Refrigeration System

Authors: Y. D. Lim, K. S. Yap, K. T. Ooi

Abstract:

Cross Vane Expander Compressor (CVEC) is a newly invented expander-compressor combined unit, where it is introduced to replace the compressor and the expansion valve in traditional refrigeration system. The mathematical model of CVEC has been developed to examine its performance, and it was found that the energy consumption of a conventional refrigeration system was reduced by as much as 18%. It is believed that energy consumption can be further reduced by optimizing the device. In this study, the coefficient of performance (COP) of CVEC has been optimized under predetermined operational parameters and constrained main design parameters. Several main design parameters of CVEC were selected to be the variables, and the optimization was done with theoretical model in a simulation program. The theoretical model consists of geometrical model, dynamic model, heat transfer model and valve dynamics model. Complex optimization method, which is a constrained, direct search and multi-variables method was used in the study. As a result, the optimization study suggested that with an appropriate combination of design parameters, a 58% COP improvement in CVEC R134a refrigeration system is possible.

Keywords: COP, cross vane expander-compressor, CVEC, design, simulation, refrigeration system, air-conditioning, R134a, multi variables

Procedia PDF Downloads 307
1289 Response of Caldeira De Tróia Saltmarsh to Sea Level Rise, Sado Estuary, Portugal

Authors: A. G. Cunha, M. Inácio, M. C. Freitas, C. Antunes, T. Silva, C. Andrade, V. Lopes

Abstract:

Saltmarshes are essential ecosystems both from an ecological and biological point of view. Furthermore, they constitute an important social niche, providing valuable economic and protection functions. Thus, understanding their rates and patterns of sedimentation is critical for functional management and rehabilitation, especially in an SLR scenario. The Sado estuary is located 40 km south of Lisbon. It is a bar built estuary, separated from the sea by a large sand spit: the Tróia barrier. Caldeira de Tróia is located on the free edge of this barrier, and encompasses a salt marsh with ca. 21,000 m². Sediment cores were collected in the high and low marshes and in the mudflat area of the North bank of Caldeira de Tróia. From the low marsh core, fifteen samples were chosen for ²¹⁰Pb and ¹³⁷Cs determination at University of Geneva. The cores from the high marsh and the mudflat are still being analyzed. A sedimentation rate of 2.96 mm/year was derived from ²¹⁰Pb using the Constant Flux Constant Sedimentation model. The ¹³⁷Cs profile shows a peak in activity (1963) between 15.50 and 18.50 cm, giving a 3.1 mm/year sedimentation rate for the past 53 years. The adopted sea level rise scenario was based on a model built with the initial rate of SLR of 2.1 mm/year in 2000 and an acceleration of 0.08 mm/year². Based on the harmonic analysis of Setubal-Tróia tide gauge of 2005 data, the tide model was estimated and used to build the tidal tables to the period 2000-2016. With these tables, the average mean water levels were determined for the same time span. A digital terrain model was created from LIDAR scanning with 2m horizontal resolution (APA-DGT, 2011) and validated with altimetric data obtained with a DGPS-RTK. The response model calculates a new elevation for each pixel of the DTM for 2050 and 2100 based on the sedimentation rates specific of each environment. At this stage, theoretical values were chosen for the high marsh and the mudflat (respectively, equal and double the low marsh rate – 2.92 mm/year). These values will be rectified once sedimentation rates are determined for the other environments. For both projections, the total surface of the marsh decreases: 2% in 2050 and 61% in 2100. Additionally, the high marsh coverage diminishes significantly, indicating a regression in terms of maturity.

Keywords: ¹³⁷Cs, ²¹⁰Pb, saltmarsh, sea level rise, response model

Procedia PDF Downloads 231
1288 Recognizing Juxtaposition Patterns of the Dwelling Units in Housing Cluster: The Case Study of Aghayan Complex: An Example of Rural Residential Development in Qajar Era in Iran

Authors: Outokesh Fatemeh, Jourabchi Keivan, Talebi Maryam, Nikbakht Fatemeh

Abstract:

Mayamei is a small town in Iran that is located between Shahrud and Sabzevar cities, on the Silk Road. It enjoys a history of approximately 1000 years. An alley entitled ‘Aghayan’ exists in this town that comprises residential buildings of a famous family. Bathhouse, mosque, telegraph center, cistern are all related to this alley. This architectural complex belongs to Sadat Mousavi, who is one of the Mayamei's major grandees and religious household. The alley after construction has been inherited from generation to generation within the family masters. The purpose of this study, which was conducted on Aghayan alley and its associated complex, was to elucidate Iranian vernacular domestic architecture of Qajar era in small towns and villages. We searched for large, medium, and small architectural patterns in the contemplated complex, and tried to elaborate their evolution from past to the present. The other objective of this project was finding a correlation between changes in the lifestyle of the alley’s inhabitants with the form of the building's architecture. Our investigation methods included: literature review especially in regard to historical travelogues, peer site visiting, mapping, interviewing of the elderly people of the Mousavi family (the owners), and examining the available documents especially the 4 meters’ scroll-type testament of 150 years ago. For the analysis of the aforementioned data, an effort was made to discover (1) the patterns of placing of different buildings in respect of the others, (2) finding the relation between function of the buildings with their relative location in the complex, as was considered in the original design, and (3) possible changes of functions of the buildings during the time. In such an investigation, special attention was paid to the chronological changes of lifestyles of the residents. In addition, we tried to take all different activities of the residents into account including their daily life activities, religious ceremonies, etc. By combining such methods, we were able to obtain a picture of the buildings in their original (construction) state, along with a knowledge of the temporal evolution of the architecture. An interesting finding is that the Aghayan complex seems to be a big structure of the horizontal type apartments, which are placed next to each other. The houses made in this way are connected to the adjacent neighbors both by the bifacial rooms and from the roofs.

Keywords: Iran, Qajar period, vernacular domestic architecture, life style, residential complex

Procedia PDF Downloads 140
1287 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models

Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri

Abstract:

Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.

Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation

Procedia PDF Downloads 49
1286 Effect of Fluidized Granular Activated Carbon for the Mitigation of Membrane Fouling in Wastewater Treatment

Authors: Jingwei Wang, Anthony G. Fane, Jia Wei Chew

Abstract:

The use of fluidized Granular Activated Carbon (GAC) as a means of mitigation membrane fouling in membrane bioreactors (MBRs) has received much attention in recent years, especially in anaerobic fluidized bed membrane bioreactors (AFMBRs). It has been affirmed that the unsteady-state tangential shear conferred by GAC fluidization on membrane surface suppressed the extent of membrane fouling with energy consumption much lower than that of bubbling (i.e., air sparging). In a previous work, the hydrodynamics of the fluidized GAC particles were correlated with membrane fouling mitigation effectiveness. Results verified that the momentum transfer from particle to membrane held a key in fouling mitigation. The goal of the current work is to understand the effect of fluidized GAC on membrane critical flux. Membrane critical flux values were measured by a vertical Direct Observation Through the Membrane (DOTM) setup. The polystyrene particles (known as latex particles) with the particle size of 5 µm were used as model foulant thus to give the number of the foulant on the membrane surface. Our results shed light on the positive effect of fluidized GAC enhancing the critical membrane flux by an order-of-magnitude as compared to that of liquid shear alone. Membrane fouling mitigation was benefitted by the increasing of power input.

Keywords: membrane fouling mitigation, liquid-solid fluidization, critical flux, energy input

Procedia PDF Downloads 384
1285 Explanation Conceptual Model of the Architectural Form Effect on Structures in Building Aesthetics

Authors: Fatemeh Nejati, Farah Habib, Sayeh Goudarzi

Abstract:

Architecture and structure have always been closely interrelated so that they should be integrated into a unified, coherent and beautiful universe, while in the contemporary era, both structures and architecture proceed separately. The purpose of architecture is the art of creating form and space and order for human service, and the goal of the structural engineer is the transfer of loads to the structure, too. This research seeks to achieve the goal by looking at the relationship between the form of architecture and structure from its inception to the present day to the Global Identification and Management Plan. Finally, by identifying the main components of the design of the structure in interaction with the architectural form, an effective step is conducted in the Professional training direction and solutions to professionals. Therefore, after reviewing the evolution of structural and architectural coordination in various historical periods as well as how to reach the form of the structure in different times and places, components are required to test the components and present the final theory that one hundred to be tested in this regard. Finally, this research indicates the fact that the form of architecture and structure has an aesthetic link, which is influenced by a number of components that could be edited and has a regular order throughout history that could be regular. The research methodology is analytic, and it is comparative using analytical and matrix diagrams and diagrams and tools for conducting library research and interviewing.

Keywords: architecture, structural form, structural and architectural coordination, effective components, aesthetics

Procedia PDF Downloads 194
1284 Optimization of Double-Layered Microchannel Heat Sinks

Authors: Tu-Chieh Hung, Wei-Mon Yan, Xiao-Dong Wang, Yu-Xian Huang

Abstract:

This work employs a combined optimization procedure including a simplified conjugate-gradient method and a three-dimensional fluid flow and heat transfer model to study the optimal geometric parameter design of double-layered microchannel heat sinks. The overall thermal resistance RT is the objective function to be minimized with number of channels, N, the channel width ratio, β, the bottom channel aspect ratio, αb, and upper channel aspect ratio, αu, as the search variables. It is shown that, for the given bottom area (10 mm×10 mm) and heat flux (100 W cm-2), the optimal (minimum) thermal resistance of double-layered microchannel heat sinks is about RT=0.12 ℃/m2W with the corresponding optimal geometric parameters N=73, β=0.50, αb=3.52, and, αu= 7.21 under a constant pumping power of 0.05 W. The optimization process produces a maximum reduction by 52.8% in the overall thermal resistance compared with an initial guess (N=112, β=0.37, αb=10.32 and, αu=10.93). The results also show that the optimal thermal resistance decreases rapidly with the pumping power and tends to be a saturated value afterward. The corresponding optimal values of parameters N, αb, and αu increase while that of β decrease as the pumping power increases. However, further increasing pumping power is not always cost-effective for the application of heat sink designs.

Keywords: optimization, double-layered microchannel heat sink, simplified conjugate-gradient method, thermal resistance

Procedia PDF Downloads 473
1283 Urban Sustainable Development Based on Habitat Quality Evolution: A Case Study in Chongqing, China

Authors: Jing Ren, Kun Wu

Abstract:

Over the last decade or so, China's urbanization has shown a rapid development trend. At the same time, it has also had a great negative impact on the habitat quality. Therefore, it is of great significance to study the impact of land use change on the level of habitat quality in mountain cities for sustainable urban development. This paper analyzed the spatial and temporal land use changes in Chongqing from 2010 to 2020 using ArcGIS 10.6, as well as the evolutionary trend of habitat quality during this period based on the InVEST 3.13.0, to obtain the impact of land use changes on habitat quality. The results showed that the habitat quality in the western part of Chongqing decreased significantly between 2010 and 2020, while the northeastern and southeastern parts remained stable. The main reason for this is the continuous expansion of urban construction land in the western area, which leads to serious habitat fragmentation and the continuous decline of habitat quality. while, in the northeast and southeast areas, due to the greater emphasis on ecological priority and urban-rural coordination in the development process, land use change is characterized by a benign transfer, which maintains the urbanization process while maintaining the coordinated development of habitat quality. This study can provide theoretical support for the sustainable development of mountain cities.

Keywords: mountain cities, ecological environment, habitat quality, sustainable development

Procedia PDF Downloads 54
1282 A Review of Antimicrobial Strategy for Cotton Textile

Authors: C. W. Kan, Y. L. Lam

Abstract:

Cotton textile has large specific surfaces with good adhesion and water-storage properties which provide conditions for the growth and settlement of biological organisms. In addition, the soil, dust and solutes from sweat can also be the sources of nutrients for microorganisms [236]. Generally speaking, algae can grow on textiles under very moist conditions, providing nutrients for fungi and bacteria growth. Fungi cause multiple problems to textiles including discolouration, coloured stains and fibre damage. Bacteria can damage fibre and cause unpleasant odours with a slick and slimy feel. In addition, microbes can disrupt the manufacturing processes such as textile dyeing, printing and finishing operations through the reduction of viscosity, fermentation and mold formation. Therefore, a large demand exists for the anti-microbially finished textiles capable of avoiding or limiting microbial fibre degradation or bio fouling, bacterial incidence, odour generation and spreading or transfer of pathogens. In this review, the main strategy for cotton textile will be reviewed. In the beginning, the classification of bacteria and germs which are commonly found with cotton textiles will be introduced. The chemistry of antimicrobial finishing will be discussed. In addition, the types of antimicrobial treatment will be summarized. Finally, the application and evaluation of antimicrobial treatment on cotton textile will be discussed.

Keywords: antimicrobial, cotton, textile, review

Procedia PDF Downloads 346
1281 Cu Nanoparticle Embedded-Zno Nanoplate Thin Films for Highly Efficient Photocatalytic Hydrogen Production

Authors: Premrudee Promdet, Fan Cui, Gi Byoung Hwang, Ka Chuen To, Sanjayan Sathasivam, Claire J. Carmalt, Ivan P. Parkin

Abstract:

A novel single-step fabrication of Cu nanoparticle embedded ZnO (Cu.ZnO) thin films was developed by aerosol-assisted chemical vapor deposition for stable and efficient hydrogen production in Photoelectrochemical (PEC) cell. In this approach, the Cu.ZnO nanoplate thin films were grown by using acetic acid to promote preferential growth and enhance surface active sites, where Cu nanoparticles can be formed under chemical deposition by reduction of Cu salt. Studies using photoluminescence spectroscopy indicate the enhanced photocatalytic performance is attributed to hot electron generated from SPR. The Cu metal in the composite material is functioning as a sensitizer to supply electrons to the semiconductor resulting in enhanced electron density for redox reaction. This work not only describes a way to obtain photoanodes with high photocatalytic activity but also suggests a low-cost route towards production of photocatalysts for hydrogen production. This work also supports a vital need to understand electron transfer between photoexcited semiconductor materials and metals, a requirement for tailoring the properties of semiconductor/metal composites.

Keywords: photocatalysis, photoelectrochemical cell (PEC), aerosol-assisted chemical vapor deposition (AACVD), surface plasmon resonance (SPR)

Procedia PDF Downloads 197
1280 Development of NO-Ergic Synaptic Transmission in Sympathetic Neurons of Mammals: Immunohistochemical Study

Authors: Konstantin Yu. Moiseev, Antonina F. Budnik, Andrey I. Emanuilov, Petr M. Masliukov

Abstract:

The vast majority of sympathetic ganglionic neurons are catecholaminergic. Some sympathetic neurons lack catecholamines and mostly use acetylcholine as their main neurotransmitter. Some cholinergic postganglionic neurons also express neuronal nitric oxide synthase (nNOS). Preganglionic sympathetic neurons are cholinergic and most of them are also nNOS-immunoreactive (IR). The purpose of this study was to gain further insight into the neuroplasticity of sympathetic neurons during postnatal ontogenesis by comparing the development of pre- and postganglionic neurons expressing nNOS in different mammals. nNOS was investigated by immunohistochemistry in the sympathetic superior cervical ganglion (SCG), stellate ganglion (SG), celiac ganglion (CG) and spinal cord from rats, mice and cats of different ages (newborn, 10-day-old, 20-day-old, 30-day-old, 2-month-old and 2-year-old). In rats and mice, nNOS-positive neurons were not found in sympathetic ganglia from birth onwards. In cats, non-catecholaminergic nNOS-IR sympathetic ganglionic neurons are present from the moment of birth. In all studied age groups, substantial populations of nNOS-IR cells (up to 8.3%) was found in the SG, with a much smaller population found in the SCG (<1%) and only few cells observed in the CG. The percentage of nNOS-IR neurons in the CG and SCG did not significantly change during development. The proportion of nNOS-IR neuron profiles in the SG increased in first 20 days of life from 2.3±0.15% to 8.3±0.56%. In the SG, percentages of nNOS-IR sympathetic neurons colocalizing vasoactive intestinal peptide increased in the first 20 days of life. Choline acetyltransferase (ChAT)-IR and calcitonin gene-related peptide-IR neurons were not observed in the sympathetic ganglia of newborn animals and did not appear until 10 days after birth. In the SG of newborn and 10-day-old kittens, the majority of NOS-IR neurons were calbindin (CB)-IR, whereas in the SCG and CG of cats of all age groups and in the SG of 30-day-old and older kittens, the vast majority of NOS-IR neurons lacked CB. In newborn mammals, the most of sympathetic preganglionic neurons in the nucleus intermediolateralis thoracolumbalis pars principalis (nucl.ILp) were nNOS-IR. The percentage of nNOS-IR neurons decreased and the same parameter of ChAT-IR neurons increased during the development. We conclude that the development of nNOS-IR preganglionic and ganglionic sympathetic neurons in different mammals has time and species differences.

Keywords: sympathetic neuron, nitric oxide synthase, immunohistochemistry, development

Procedia PDF Downloads 200
1279 LYRM7-Associated Mitochondrial Complex III Deficiency with Non-Cavitating Leukoencephalopathy and Stroke-Like Episodes

Authors: Rita Alfattal, Maryam Alfarhan, Adeeb M. Algaith, Buthaina Albash, Reem M. Elshafie, Asma Alshammari, Ahmad Alahmad, Fatima Dashti, Rasha Alsafi, Hind Alsharhan

Abstract:

Defects of respiratory chain complex III (CIII) result in characteristic but rare mitochondrial disorders associated with distinct neuroradiological findings. The underlying molecular defects affecting mitochondrial CIII assembly factors are few and yet to be identified. LYRM7 assembly factor is required for proper CIII assembly where it acts as a chaperone for the Rieske iron‐sulfur (UQCRFS1) protein in the mitochondrial matrix and stabilizing it. We present here the seventeenth individual with LYRM7-associated mitochondrial leukoencephalopathy harboring a previously reported rare pathogenic homozygous LYRM 7 variant, c.2T>C, (p.Met1?). Like previously reported individuals, our 4-year-old male proband presented with recurrent metabolic and lactic acidosis, encephalopathy, and myopathy. Further, he has additional, previously unreported features, including an acute stroke like episode with bilateral central blindness and optic neuropathy, recurrent hyperglycemia and hypertension associated with metabolic crisis. However, he has no signs of psychomotor regression. He has been stable clinically with residual left-sided reduced visual acuity and amblyopia, and no more metabolic crises for 2-year-period while on the mitochondrial cocktail. Although the reported brain MRI findings in other affected individuals are homogenous, it is slightly different in our index, revealing evidence of bilateral almost symmetric multifocal periventricular T2 hyperintensities with hyperintensities of the optic nerves, optic chiasm, and corona radiata but with no cavitation or cystic changes. This report describes new clinical and radiological findings of LYRM7-associated disease. The report also summarizes the clinical and molecular data of previously reported individuals describing the full phenotypic spectrum.

Keywords: LYRM7 gene defect, mitochondrial disease, , lactic acidosis, , genetic disorder

Procedia PDF Downloads 53
1278 Enhanced Method of Conceptual Sizing of Aircraft Electro-Thermal De-Icing System

Authors: Ahmed Shinkafi, Craig Lawson

Abstract:

There is a great advancement towards the All-Electric Aircraft (AEA) technology. The AEA concept assumes that all aircraft systems will be integrated into one electrical power source in the future. The principle of the electro-thermal system is to transfer the energy required for anti/de-icing to the protected areas in electrical form. However, powering a large aircraft anti-icing system electrically could be quite excessive in cost and system weight. Hence, maximising the anti/de-icing efficiency of the electro-thermal system in order to minimise its power demand has become crucial to electro-thermal de-icing system sizing. In this work, an enhanced methodology has been developed for conceptual sizing of aircraft electro-thermal de-icing System. The work factored those critical terms overlooked in previous studies which were critical to de-icing energy consumption. A case study of a typical large aircraft wing de-icing was used to test and validate the model. The model was used to optimise the system performance by a trade-off between the de-icing peak power and system energy consumption. The optimum melting surface temperatures and energy flux predicted enabled the reduction in the power required for de-icing. The weight penalty associated with electro-thermal anti-icing/de-icing method could be eliminated using this method without under estimating the de-icing power requirement.

Keywords: aircraft, de-icing system, electro-thermal, in-flight icing

Procedia PDF Downloads 489
1277 Assessment of Different Industrial Wastewater Quality in the Most Common Industries in Kuwait

Authors: Mariam Aljumaa

Abstract:

Industrial wastewater has been increased rapidly in the last decades, however, the generated wastewater is not treated properly on site before transfer it to the treatment plant. In this study, the most common industries (dairy, soft drinks, detergent, and petrochemical) has been studied in term of wastewater quality. The main aim of this study is to characterize and evaluate the quality of the most common industrial wastewater in Kuwait. Industrial wastewater samples were collected from detergents, dairy, beverage, and petrochemical factories. The collected wastewater samples were analyzed for temperature, EC, pH, DO, BOD, COD, TOC, TS, TSS, volatile suspended solids (VSS), total volatile solids (TVS), NO2, NO3, NH3, N, P, K, CaCO3, heavy metals, Total coliform, Fecal coliform, and E.coli bacteria. The results showed that petrochemical industry has the highest concentration of organic and nutrients, followed by detergents wastewater, then dairy, and finally, soft drink wastewater. Regarding the heavy metals, the results showed that dairy wastewater had the highest concentration, specifically in Zinc, Arsenic, and Cadmium. In term of biological analysis, the dairy industry had the highest concentration of total coliform, followed by soft drinks industry, then shampoo industry, and finally petrochemical industry.

Keywords: industrial wastewater, characterization, heavy metals, wastewater quality

Procedia PDF Downloads 71
1276 Electrohydrodynamic Instability and Enhanced Mixing with Thermal Field and Polymer Addition Modulation

Authors: Dilin Chen, Kang Luo, Jian Wu, Chun Yang, Hongliang Yi

Abstract:

Electrically driven flows (EDF) systems play an important role in fuel cells, electrochemistry, bioseparation technology, fluid pumping, and microswimmers. The core scientific problem is multifield coupling, the further development of which depends on the exploration of nonlinear instabilities, force competing mechanisms, and energy budgets. In our study, two categories of electrostatic force-dominated phenomena, induced charge electrosmosis (ICEO) and ion conduction pumping are investigated while considering polymer rheological characteristics and heat gradients. With finite volume methods, the thermal modulation strategy of ICEO under the thermal buoyancy force is numerically analyzed, and the electroelastic instability turn associated with polymer addition is extended. The results reveal that the thermal buoyancy forces are sufficient to create typical thermogravitational convection in competition with electroconvective modes. Electroelastic instability tends to be promoted by weak electrical forces, and polymers effectively alter the unstable transition routes. Our letter paves the way for improved mixing and heat transmission in microdevices, as well as insights into the non-Newtonian nature of electrohydrodynamic dynamics.

Keywords: non-Newtonian fluid, electroosmotic flow, electrohydrodynamic, viscoelastic liquids, heat transfer

Procedia PDF Downloads 46
1275 Thermal Diffusion of Photovoltaic Organic Semiconductors Determined by Scanning Photothermal Deflection Technique

Authors: K.L. Chiu, Johnny K. W. Ho, M. H. Chan, S. H. Cheung, K. H. Chan, S.K. So

Abstract:

Thermal diffusivity is an important quantity in heat conduction. It measures the rate of heat transfer from the hot side to the cold side of a material. In solid-state materials, thermal diffusivity reveals information related to morphologies and solid quality, as thermal diffusivity can be affected by microstructures. However, thermal diffusivity studies on organic semiconductors are very limited. In this study, scanning photothermal deflection (SPD) technique is used to study the thermal diffusivities of different classes of semiconducting polymers. The reliability of the technique was confirmed by crossing-checking our SPD derived experimental values of different reference materials with their known diffusivities from the literature. To show that thermal diffusivity determination is a potential tool for revealing microscopic properties of organic photovoltaic semiconductors, SPD measurements were applied to various organic semiconducting films with different crystallinities. It is observed that organic photovoltaic semiconductors possess low thermal diffusivity, with values in the range of 0.3mm²/s to 1mm²/s. It is also discovered that polymeric photovoltaic semiconductors with greater molecular planarity, stronger stacking and higher crystallinity would possess greater thermal diffusivities. Correlations between thermal, charge transport properties will be discussed.

Keywords: polymer crystallinity, photovoltaic organic semiconductors, photothermal deflection technique, thermal diffusion

Procedia PDF Downloads 117
1274 Analysis of Composite Health Risk Indicators Built at a Regional Scale and Fine Resolution to Detect Hotspot Areas

Authors: Julien Caudeville, Muriel Ismert

Abstract:

Analyzing the relationship between environment and health has become a major preoccupation for public health as evidenced by the emergence of the French national plans for health and environment. These plans have identified the following two priorities: (1) to identify and manage geographic areas, where hotspot exposures are suspected to generate a potential hazard to human health; (2) to reduce exposure inequalities. At a regional scale and fine resolution of exposure outcome prerequisite, environmental monitoring networks are not sufficient to characterize the multidimensionality of the exposure concept. In an attempt to increase representativeness of spatial exposure assessment approaches, risk composite indicators could be built using additional available databases and theoretical framework approaches to combine factor risks. To achieve those objectives, combining data process and transfer modeling with a spatial approach is a fundamental prerequisite that implies the need to first overcome different scientific limitations: to define interest variables and indicators that could be built to associate and describe the global source-effect chain; to link and process data from different sources and different spatial supports; to develop adapted methods in order to improve spatial data representativeness and resolution. A GIS-based modeling platform for quantifying human exposure to chemical substances (PLAINE: environmental inequalities analysis platform) was used to build health risk indicators within the Lorraine region (France). Those indicators combined chemical substances (in soil, air and water) and noise risk factors. Tools have been developed using modeling, spatial analysis and geostatistic methods to build and discretize interest variables from different supports and resolutions on a 1 km2 regular grid within the Lorraine region. By example, surface soil concentrations have been estimated by developing a Kriging method able to integrate surface and point spatial supports. Then, an exposure model developed by INERIS was used to assess the transfer from soil to individual exposure through ingestion pathways. We used distance from polluted soil site to build a proxy for contaminated site. Air indicator combined modeled concentrations and estimated emissions to take in account 30 polluants in the analysis. For water, drinking water concentrations were compared to drinking water standards to build a score spatialized using a distribution unit serve map. The Lden (day-evening-night) indicator was used to map noise around road infrastructures. Aggregation of the different factor risks was made using different methodologies to discuss weighting and aggregation procedures impact on the effectiveness of risk maps to take decisions for safeguarding citizen health. Results permit to identify pollutant sources, determinants of exposure, and potential hotspots areas. A diagnostic tool was developed for stakeholders to visualize and analyze the composite indicators in an operational and accurate manner. The designed support system will be used in many applications and contexts: (1) mapping environmental disparities throughout the Lorraine region; (2) identifying vulnerable population and determinants of exposure to set priorities and target for pollution prevention, regulation and remediation; (3) providing exposure database to quantify relationships between environmental indicators and cancer mortality data provided by French Regional Health Observatories.

Keywords: health risk, environment, composite indicator, hotspot areas

Procedia PDF Downloads 232
1273 Sustainable Solutions for Enhancing Efficiency, Safety, and Quality of Construction Value Chain Services Integration

Authors: Lo Kar Yin

Abstract:

In view of the increasing speed and quantity of the housing supply, building, and civil engineering infrastructure works triggered by the pandemic across the globe, contractors, professional services providers (PSP), including consultants (e.g., architect, project manager, civil/geotechnical/structural engineer, building services engineer, quantity surveyor/cost manager, etc.) and suppliers have faced tremendous challenges of the fierce market, limited manpower, and resources under contract prices fluctuation and competitive fee and price. With qualitative analysis, this paper is to review the available information from the industry stakeholders with a view to finding solutions for enhancing efficiency, safety, and quality of construction value chain services for public and private organizations/companies’ sustainable growth, not limited to checking the deliverables and data transfer from multi-disciplinary parties. Technology, contracts, and people are the key requirements for shaping the construction industry. With the integration of a modern engineering contract (e.g., NEC) collaborative approach, practical workflows are designed to address loopholes together with different levels of people employment/retention and technology adoption to achieve the best value for money.

Keywords: efficiency, safety, quality, technology, contract, people, sustainable solutions, construction, services, integration

Procedia PDF Downloads 105
1272 Creating Knowledge Networks: Comparative Analysis of Reference Cases

Authors: Sylvia Villarreal, Edna Bravo

Abstract:

Knowledge management focuses on coordinating technologies, people, processes, and structures to generate a competitive advantage and considering that networks are perceived as mechanisms for knowledge creation and transfer, this research presents the stages and practices related to the creation of knowledge networks. The methodology started with a literature review adapted from the systematic literature review (SLR). The descriptive analysis includes variables such as approach (conceptual or practical), industry, knowledge management processes and mythologies (qualitative or quantitative), etc. The content analysis includes identification of reference cases. These cases were characterized based on variables as scope, creation goal, years, network approach, actors and creation methodology. It was possible to do a comparative analysis to determinate similarities and differences in these cases documented in knowledge network scientific literature. Consequently, it was shown that even the need and impact of knowledge networks in organizations, the initial guidelines for their creation are not documented, so there is not a guide of good practices and lessons learned. The reference cases are from industries as energy, education, creative, automotive and textile. Their common points are the human approach; it is oriented to interactions to facilitate the appropriation of knowledge, explicit and tacit. The stages of every case are analyzed to propose the main successful elements.

Keywords: creation, knowledge management, network, stages

Procedia PDF Downloads 277
1271 Genotypic Characterization of Gram-Positive Bacteria Isolated on Ornamental Animals Feed

Authors: C. Miranda, R. Soares, S. Cunha, L. Ferreira, G. Igrejas, P. Poeta

Abstract:

Different animal species, including ornamental animals, are reported as potential reservoirs of antibiotic resistance genes. Consequently, these resistances can be disseminated in the environment and transferred to humans. Moreover, multidrug-resistant bacteria reduce the efficacy of antibiotics, as the case of vancomycin-resistant enterococci. Enterococcus faecalis and E. faecium are described as the main nosocomial pathogens. In this line, the aim of this study was to characterize resistance and virulence genes of enterococci species isolated from samples of food supplied to ornamental animals during 2020. The 29 enterococci isolates (10 E. faecalis and 19 E. faecium) were tested for the presence of the resistance genes for the following antibiotics: erythromicyn (ermA, ermB and ermC), tetracycline (tetL, tetM, tetK and tetO), quinupristin/dalfopristin (vatD and vatE), gentamicin (aac(6’)-aph(2’’)-Ia), chloramphenicol (catA), streptomycin (ant(6)-Ia) and vancomycin (vanA and vanB). The same isolates were also tested for 10 virulence factors genes (esp, ace, gelE, agg, fsr, cpd, cylA, cylB, cylM and cylLL). The resistance and virulence genes were performed by PCR, using specific primers and conditions. Negative and positive controls were used in all PCR assays. The most prevalent resistance genes detected in both enterococci species were ermB (n=15, 52%), ermC (n=7, 24%), tetK (n=8, 28%) and vatE (n=4, 14%). Resistance genes for vancomycin were found in ten (34%) E. faecalis and ten (34%) E. faecium isolates. Only E. faecium isolates showed the presence of ermA (n=2, 7%), tetL (n=13, 45%) and ant(6)-Ia gene (n=4, 14%). A total of nine (31%) enterococci isolates were classified as multidrug-resistant bacteria (3 E. faecalis and 6 E. faecium). In three E. faecalis and one E. faecium were not detected resistance genes. The virulence genes detected in both species were agg (n=6, 21%) and cylLL (n=11, 38%). In general, each isolate showed only one of these virulence genes. Five E. faecalis and eleven E. faecium isolates were negative for all analyzed virulence genes. These preliminary results showed the presence of multidrug-resistant enterococci in food supplied to ornamental animals, in particular vancomycin-resistant enterococci. This genotypic characterization reinforces the relevance to public health in the control of antibiotic-resistant bacteria.

Keywords: antibiotic resistance, enterococci, feed, ornamental animals

Procedia PDF Downloads 176
1270 Electrically Tuned Photoelectrochemical Properties of Ferroelectric PVDF/Cu/PVDF-NaNbO₃ Photoanode

Authors: Simrjit Singh, Neeraj Khare

Abstract:

In recent years, photo-electrochemical (PEC) water splitting with an aim to generate hydrogen (H₂) as a clean and renewable fuel has been the subject of intense research interests. Ferroelectric semiconductors have been demonstrated to exhibit enhanced PEC properties as these can be polarized with the application of an external electric field resulting in a built-in potential which helps in separating out the photogenerated charge carriers. In addition to this, by changing the polarization direction, the energy band alignment at the electrode/electrolyte interface can be modulated in a way that it can help in the easy transfer of the charge carriers from the electrode to the electrolyte. In this paper, we investigated the photoelectrochemical properties of ferroelectric PVDF/Cu/PVDF-NaNbO₃ PEC cell and demonstrated that PEC properties can be tuned with ferroelectric polarization and piezophototronic effect. Photocurrent density is enhanced from ~0.71 mA/cm² to 1.97 mA/cm² by changing the polarization direction. Furthermore, due to flexibility and piezoelectric properties of PVDF/Cu/PVDF-NaNbO₃ PEC cell, a further ~26% enhancement in the photocurrent is obtained using the piezophototronic effect. A model depicting the modulation of band alignment between PVDF and NaNbO₃ with the electric field is proposed to explain the observed tuning of the PEC properties. Electrochemical Impedance spectroscopy measurements support the validity of the proposed model.

Keywords: electrical tuning, H₂ generation, photoelectrochemical, NaNbO₃

Procedia PDF Downloads 156