Search results for: wood powder (shisham)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1476

Search results for: wood powder (shisham)

1146 Hygro-Thermal Modelling of Timber Decks

Authors: Stefania Fortino, Petr Hradil, Timo Avikainen

Abstract:

Timber bridges have an excellent environmental performance, are economical, relatively easy to build and can have a long service life. However, the durability of these bridges is the main problem because of their exposure to outdoor climate conditions. The moisture content accumulated in wood for long periods, in combination with certain temperatures, may cause conditions suitable for timber decay. In addition, moisture content variations affect the structural integrity, serviceability and loading capacity of timber bridges. Therefore, the monitoring of the moisture content in wood is important for the durability of the material but also for the whole superstructure. The measurements obtained by the usual sensor-based techniques provide hygro-thermal data only in specific locations of the wood components. In this context, the monitoring can be assisted by numerical modelling to get more information on the hygro-thermal response of the bridges. This work presents a hygro-thermal model based on a multi-phase moisture transport theory to predict the distribution of moisture content, relative humidity and temperature in wood. Below the fibre saturation point, the multi-phase theory simulates three phenomena in cellular wood during moisture transfer, i.e., the diffusion of water vapour in the pores, the sorption of bound water and the diffusion of bound water in the cell walls. In the multi-phase model, the two water phases are separated, and the coupling between them is defined through a sorption rate. Furthermore, an average between the temperature-dependent adsorption and desorption isotherms is used. In previous works by some of the authors, this approach was found very suitable to study the moisture transport in uncoated and coated stress-laminated timber decks. Compared to previous works, the hygro-thermal fluxes on the external surfaces include the influence of the absorbed solar radiation during the time and consequently, the temperatures on the surfaces exposed to the sun are higher. This affects the whole hygro-thermal response of the timber component. The multi-phase model, implemented in a user subroutine of Abaqus FEM code, provides the distribution of the moisture content, the temperature and the relative humidity in a volume of the timber deck. As a case study, the hygro-thermal data in wood are collected from the ongoing monitoring of the stress-laminated timber deck of Tapiola Bridge in Finland, based on integrated humidity-temperature sensors and the numerical results are found in good agreement with the measurements. The proposed model, used to assist the monitoring, can contribute to reducing the maintenance costs of bridges, as well as the cost of instrumentation, and increase safety.

Keywords: moisture content, multi-phase models, solar radiation, timber decks, FEM

Procedia PDF Downloads 175
1145 Development of Combined Cure Type for Rigid Pavement with Reactive Powder Concrete

Authors: Fatih Hattatoglu, Abdulrezzak Bakiş

Abstract:

In this study, fiberless reactive powder concrete (RPC) was produced with high pressure and flexural strength. C30/37 concrete was chosen as the control sample. In this study, 9 different cure types were applied to fiberless RPC. the most suitable combined cure type was selected according to the pressure and flexure strength. Pressure and flexural strength tests were applied to these samples after curing. As a result of the study, the combined cure type with the highest pressure resistance was obtained. The highest pressure resistance was achieved with consecutive standard water cure at 20 °C for 7 days – hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days. As a result of the study, the highest pressure resistance of fiberless RPC was found as 123 MPa with water cure at 20 °C for 7 days - hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days; and the highest flexural resistance was found as 8.37 MPa for the same combined cure type.

Keywords: combined cure, flexural test, reactive powder concrete (RPC), rigid pavement, pressure test

Procedia PDF Downloads 209
1144 The Effect of Iron Deficiency on the Magnetic Properties of Ca₀.₅La₀.₅Fe₁₂₋yO₁₉₋δ M-Type Hexaferrites

Authors: Kang-Hyuk Lee, Wei Yan, Sang-Im Yoo

Abstract:

Recently, Ca₁₋ₓLaₓFe₁₂O₁₉ (Ca-La M-type) hexaferrites have been reported to possess higher crystalline anisotropy compared with SrFe₁₂O₁₉ (Sr M-type) hexaferrite without reducing its saturation magnetization (Ms), resulting in higher coercivity (Hc). While iron deficiency is known to be helpful for the growth and the formation of NiZn spinel ferrites, the effect of iron deficiency in Ca-La M-type hexaferrites has never been reported yet. In this study, therefore, we tried to investigate the effect of iron deficiency on the magnetic properties of Ca₀.₅La₀.₅Fe₁₂₋yO₁₉₋δ hexaferrites prepared by solid state reaction. As-calcined powder was pressed into pellets and sintered at 1275~1325℃ for 4 h in air. Samples were characterized by powder X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and scanning electron microscope (SEM). Powder XRD analyses revealed that Ca₀.₅La₀.₅Fe₁₂₋yO₁₉₋δ (0.75 ≦ y ≦ 2.15) ferrites calcined at 1250-1300℃ for 12 h in air were composed of single phase without the second phases. With increasing the iron deficiency, y, the lattice parameters a, c and unite cell volumes were decreased first up to y=10.25 and then increased again. The highest Ms value of 77.5 emu/g was obtainable from the sample of Ca₀.₅La₀.₅Fe₁₂₋yO₁₉₋δ sintered at 1300℃ for 4 h in air. Detailed microstructures and magnetic properties of Ca-La M-type hexagonal ferrites will be presented for a discussion

Keywords: Ca-La M-type hexaferrite, magnetic properties, iron deficiency, hexaferrite

Procedia PDF Downloads 460
1143 Testing of the Decreasing Bond Strength of Polyvinyl Acetate Adhesive by Low Temperatures

Authors: Pavel Boška, Jan Bomba, Tomáš Beránek, Jiří Procházka

Abstract:

When using wood products bonded by polyvinyl acetate, glues such as windows are the most limiting element of degradation of the glued joint due to weather changes. In addition to moisture and high temperatures, the joint may damage the low temperature below freezing point, where dimensional changes in the material and distortion of the adhesive film occur. During the experiments, the joints were exposed to several degrees of sub-zero temperatures from 0 °C to -40 °C and then to compare how the decreasing temperature affects the strength of the joint. The experiment was performed on wood beech samples (Fagus sylvatica), bonded with PVAc with D3 resistance and the shear strength of bond was measured. The glued and treated samples were tested on a laboratory testing machine, recording the strength of the joint. The statistical results have given us information that the strength of the joint gradually decreases with decreasing temperature, but a noticeable and statistically significant change is achieved only at very low temperatures.

Keywords: adhesives, bond strength, low temperatures, polyvinyl acetate

Procedia PDF Downloads 348
1142 Fire Safety Engineering of Wood Dust Layer or Cloud

Authors: Marzena Półka, Bożena Kukfisz

Abstract:

This paper presents an analysis of dust explosion hazards in the process industries. It includes selected testing method of dust explosibility and presentation two of them according to experimental standards used by Department of Combustion and Fire Theory in The Main School of Fire Service in Warsaw. In the article are presented values of maximum acceptable surface temperature (MAST) of machines operating in the presence of dust cloud and chosen dust layer with thickness of 5 and 12,5mm. The comparative analysis, points to the conclusion that the value of the minimum ignition temperature of the layer (MITL) and the minimum ignition temperature of dust cloud (MTCD) depends on the granularity of the substance. Increasing the thickness of the dust layer reduces minimum ignition temperature of dust layer. Increasing the thickness of dust at the same time extends the flameless combustion and delays the ignition.

Keywords: fire safety engineering, industrial hazards, minimum ignition temperature, wood dust

Procedia PDF Downloads 319
1141 Microstructural and Tribological Properties of Thermally Sprayed High Entropy Alloys Coating

Authors: Abhijith N. V., Abhijit Pattnayak, Deepak Kumar

Abstract:

Nowadays, a group of alloys, namely high entropy alloys (HEA), because of their excellent properties. However, the fabrication of HEAs requires multistage techniques, especially mill-ing, sieving, compaction, sintering, inert media, etc. These processes are laborious, costly, time-oriented, and unsuitable for commercial application. This study adopted a single-stage process-based HVOF thermal spray to develop HEA coating on SS304L substrates. The wear behavior of the deposited HEA coating was explored under different milling time durations (5h, 10h, and 15h, respectively). The effect of feedstock preparation, microstructure, surface chemistry, and mechanical and metallurgical properties on wear resistance was also investigated. The microstructure and composition of both coating and feedstock were evaluated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. Finally, the phase distribution was correlated by X-ray diffraction (XRD ) analysis. The results showed that 15h milled powder coating indicated better tribological than the base substrate and 5h,10h milled powder coating. A chemically stable Body Centered Cubic (BCC) solid solution phase was generated within the 15h milled powder-coated system, which resulted in superior tribological properties.

Keywords: high entropy alloys coating, wear mechanism, HVOF coating, microstructure

Procedia PDF Downloads 98
1140 Effect of Temperature and Feed Solution on Microencapsulation of Quercetin by Spray Drying Technique

Authors: S. Lekhavat, U. Srimongkoluk, P. Ratanachamnong, G. Laungsopapun

Abstract:

Quercetin was encapsulated with whey protein and high methoxyl pectin by spray drying technique. Feed solution, consisting of 0.1875 0.125 and 0.0625 % w/w quercetin, respectively, was prepared and then sprays at outlet temperature of 70, 80 and 90 °C. Quercetin contents either in feed solution or in spray dried powder were determined by HPLC technique. Physicochemical properties such as viscosity and total soluble solid of feed solution as well as moisture content and water activity of spray dried powder were examined. Particle morphology was imaged using scanning electron microscope. The results showed that feed solution has total soluble solid and viscosity in range of 1.73-5.60 ºBrix and 2.58-8.15 cP, in that order. After spray drying, the moisture content and water activity value of powder are in range of 0.58-2.72 % and 0.18-0.31, respectively. Quercetin content in dried sample increased along with outlet drying temperature but decreased when total soluble solid increased. It was shown that particles are likely to shrivel when spray drying at high temperature. The suggested conditions for encapsulation of quercetin are feed solution with 0.0625 % (w/w) quercetin and spray drying at drying outlet temperature of 90°C.

Keywords: drying temperature, particle morphology, spray drying, quercetin

Procedia PDF Downloads 260
1139 Influence of Dietary Herbal Blend on Crop Filling, Growth Performance and Nutrient Digestibility in Broiler Chickens

Authors: S. Ahmad, M. Rizwan, B. Ayub, S. Mehmood, P. Akhtar

Abstract:

This experiment was conducted to investigate the effect of supplementation of pure herbal blend on growth performance of boilers. One hundred and twenty birds were randomly distributed into 4 experimental units of 3 replicates (10 birds/replicate) as: negative control (basal diet), positive control (Lincomycin at the rate of 5g/bag), pure herbal blend at the rate of 150g/bag and pure herbal blend at the rate of 300g/bag. The data regarding weekly feed intake, body weight gain and feed conversion ratio were recorded, and fecal samples were collected at the end of starter and finisher phase for nutrient digestibility trial. The results of feed intake showed significant (P < 0.05) results in 1st (305g), 2nd (696.88g), 3rd (1046.9g) and 4th (1173.2g) week and feed conversion ratio indicated significant (P < 0.05) variations in 1st (2.54) and 4th (2.28) week of age. Also, both starter and finisher phase indicated significant (P < 0.05) differences among all treatment groups in feed intake (2023.4g) and (2302.6g) respectively. The statistical analysis indicated significant (P < 0.05) results in crop filling percentage (86.6%) after 2 hours of first feed supplementation. In case of nutrient digestibility trial, results showed significant (P < 0.05) values of crude protein and crude fat in starter phase as 69.65% and 56.62% respectively, and 69.57% and 48.55% respectively, in finisher phase. Based on overall results, it was concluded that the dietary inclusion of pure herbal blend containing neem tree leaves powder, garlic powder, ginger powder and turmeric powder increase the production performance of broilers.

Keywords: neem tree leave, garlic, ginger, herbal blend, broiler

Procedia PDF Downloads 207
1138 Development of Natural Zeolites Adsorbent: Preliminary Study on Water-Isopropyl Alcohol Adsorption in a Close-Loop Continuous Adsorber

Authors: Sang Kompiang Wirawan, Pandu Prabowo Jati, I Wayan Warmada

Abstract:

Klaten Indonesian natural zeolite can be used as powder or pellet adsorbent. Pellet adsorbent has been made from activated natural zeolite powder by a conventional pressing method. Starch and formaldehyde were added as binder to strengthen the construction of zeolite pellet. To increase the absorptivity and its capacity, natural zeolite was activated first chemically and thermally. This research examined adsorption process of water from Isopropyl Alcohol (IPA)-water system using zeolite adsorbent pellet from natural zeolite powder which has been activated with H2SO4 0.1 M and 0.3 M. Adsorbent was pelleted by pressing apparatus at certain pressure to make specification in 1.96 cm diameter, 0.68 cm thickness which the natural zeolite powder (-80 mesh). The system of isopropyl-alcohol water contained 80% isopropyl-alcohol. Adsorption process was held in close-loop continuous apparatus which the zeolite pellet was put inside a column and the solution of IPA-water was circulated at certain flow. Concentration changing was examined thoroughly at a certain time. This adsorption process included mass transfer from bulk liquid into film layer and from film layer into the solid particle. Analysis of rate constant was using first order isotherm model that simulated with MATLAB. Besides using first order isotherm, intra-particle diffusion model was proposed by using pore diffusion model. The study shows that adsorbent activated by H2SO4 0.1 M has good absorptivity with mass transfer constant at 0.1286 min-1.

Keywords: intra-particle diffusion, fractional attainment, first order isotherm, zeolite

Procedia PDF Downloads 311
1137 Conservation of Ibis Statue Made of Composite Materials Dating to 3RD Intermediate Period - Late Period

Authors: Badawi Mahmoud, Eid Mohamed, Salih Hytham, Tahoun Mamdouh

Abstract:

Cultural properties made of types of materials; we can classify them broadly into three categories. There are organic cultural properties which have their origin in the animal and plant kingdoms. There are the inorganic cultural properties made of metal or stone. Then there are those made of both organic and inorganic materials such as metal with wood. Most cultural properties are made from several materials rather than from one single material. Cultural properties reveal a lot of information about the past and often have great artistic value. It is important to extend the life of cultural properties and preserve themif possible, that is intended to preserve them for future generations. The study of metallic relics usually includes examining the techniques used to make them and the extent to which they have corroded. The conservation science of archaeological artifacts demands an accurate grasp of the interior of the article, which cannot be seen. This is essential to elucidate the method of manufacture and provides information that is important for cleaning, restoration, and other processes of conservation. Conservation treatment does not ensure the prevention of further degradation of the archaeological artifact. Instead, it is an attempt to inhibit further degradation as much as possible. Ancient metallic artifacts are made of many materials. Some are made of a single metal, such as iron, copper, or bronze. There are also composite relics made of several metals. Almost all metals (except gold) corrode while they rest underground. Corrosion is caused by the interaction of oxygen, water, and various ions. Chloride ions play a major role in the advance of corrosion. Excavated metallic relics are usually scientifically examined as to their structure and materials and treated for preservation before being displayed for exhibition or stored in a storehouse. Bird statue hermit body is made of wood and legs and beak bronze, the object broken separated to three parts. This statue came to Grand Egyptian Museum – Conservation Centre (GEM-CC) Inorganic Lab. Statuette representing the god djehoty shaped of the bird (ibis) sculpture made of bronze and wood the body of statues made from wood and bronze from head and leg and founded remains of black resin maybe it found with mummy, the base installed by wooden statue of the ancient writings there dating, the archaeological unit decided the dating is 3rd intermediate period - late period. This study aims to do conservation process for this statue, attempt to inhibit further degradation as much as possible and fill fractures and cracks in the wooden part.

Keywords: inorganic materials, metal, wood, corrosion, ibis

Procedia PDF Downloads 254
1136 Wear Assessment of SS316l-Al2O3 Composites for Heavy Wear Applications

Authors: Catherine Kuforiji, Michel Nganbe

Abstract:

The abrasive wear of composite materials is a major challenge in highly demanding wear applications. Therefore, this study focuses on fabricating, testing and assessing the properties of 50wt% SS316L stainless steel–50wt% Al2O3 particle composites. Composite samples were fabricated using the powder metallurgy route. The effects of the powder metallurgy processing parameters and hard particle reinforcement were studied. The microstructure, density, hardness and toughness were characterized. The wear behaviour was studied using pin-on-disc testing under dry sliding conditions. The highest hardness of 1085.2 HV, the highest theoretical density of 94.7% and the lowest wear rate of 0.00397 mm3/m were obtained at a milling speed of 720 rpm, a compaction pressure of 794.4 MPa and sintering at 1400 °C in an argon atmosphere. Compared to commercial SS316 and fabricated SS316L, the composites had 7.4 times and 11 times lower wear rate, respectively. However, the commercial 90WC-10Co showed 2.2 times lower wear rate compared to the fabricated SS316L-Al2O3 composites primarily due to the higher ceramic content of 90 wt.% in the reference WC-Co. However, eliminating the relatively high porosity of about 5 vol% using processes such as HIP and hot pressing can be expected to lead to further substantial improvements of the composites wear resistance.

Keywords: SS316L, Al2O3, powder metallurgy, wear characterization

Procedia PDF Downloads 304
1135 Computational Fluid Dynamics Modeling of Liquefaction of Wood and It's Model Components Using a Modified Multistage Shrinking-Core Model

Authors: K. G. R. M. Jayathilake, S. Rudra

Abstract:

Wood degradation in hot compressed water is modeled with a Computational Fluid Dynamics (CFD) code using cellulose, xylan, and lignin as model compounds. Model compounds are reacted under catalyst-free conditions in a temperature range from 250 to 370 °C. Using a simplified reaction scheme where water soluble products, methanol soluble products, char like compounds and gas are generated through intermediates with each model compound. A modified multistage shrinking core model is developed to simulate particle degradation. In the modified shrinking core model, each model compound is hydrolyzed in separate stages. Cellulose is decomposed to glucose/oligomers before producing degradation products. Xylan is decomposed through xylose and then to degradation products where lignin is decomposed into soluble products before producing the total guaiacol, organic carbon (TOC) and then char and gas. Hydrolysis of each model compound is used as the main reaction of the process. Diffusion of water monomers to the particle surface to initiate hydrolysis and dissolution of the products in water is given importance during the modeling process. In the developed model the temperature variation depends on the Arrhenius relationship. Kinetic parameters from the literature are used for the mathematical model. Meanwhile, limited initial fast reaction kinetic data limit the development of more accurate CFD models. Liquefaction results of the CFD model are analyzed and validated using the experimental data available in the literature where it shows reasonable agreement.

Keywords: computational fluid dynamics, liquefaction, shrinking-core, wood

Procedia PDF Downloads 125
1134 Marble Powder’s Effect on Permeability and Mechanical Properties of Concrete

Authors: Shams Ul Khaliq, Khan Shahzada, Bashir Alam, Fawad Bilal, Mushtaq Zeb, Faizan Akbar

Abstract:

Marble industry contributes its fair share in environmental deterioration, producing voluminous amounts of mud and other excess residues obtained from marble and granite processing, polluting soil, water and air. Reusing these products in other products will not just prevent our environment from polluting but also help with economy. In this research, an attempt has been made to study the expediency of waste Marble Powder (MP) in concrete production. Various laboratory tests were performed to investigate permeability, physical and mechanical properties, such as slump, compressive strength, split tensile test, etc. Concrete test samples were fabricated with varying MP content (replacing 5-30% cement), furnished from two different sources. 5% replacement of marble dust caused 6% and 12% decrease in compressive and tensile strength respectively. These parameters gradually decreased with increasing MP content up to 30%. Most optimum results were obtained with 10% replacement. Improvement in consistency and permeability were noticed. The permeability was improved with increasing MP proportion up to 10% without substantial decrease in compressive strength. Obtained results revealed that MP as an alternative to cement in concrete production is a viable option considering its economic and environment friendly implications.

Keywords: marble powder, strength, permeability, consistency, environment

Procedia PDF Downloads 333
1133 Percentages of Alumina Phase and Different Ph on The Ha- Al2o3 Nano Composite

Authors: S. Tayyebi, F. Mirjalili, H. Samadi, A. Nemati

Abstract:

In this study, hydroxyapatite-Alumina nano composite powder, containing 15,20 and 25% weight percent of reinforced alumina were prepared by chemical precipitation from the reaction between calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate with ratio of Ca / p = 1.67 and different percentage of aluminum nitrate nona hydrate in different pH of 9,10 and 11. The microstructure and thermal stability of samples were measured by X-ray diffraction (XRD), infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The results showed that the presence of reinforced alumina phase reduced the degree of crystallinity of hydroxyapatite phase and increased its decomposition to tricalcium phosphate phase. Microstructural analysis showed that the hydroxyapatite-alumina nano composite powder was obtained with spherical shape and size of less than 100 nm.

Keywords: biomaterial, hydroxyapatite, alumina, nano composite, precipitation method

Procedia PDF Downloads 534
1132 Extraction of Essential Oil and Pectin from Lime and Waste Technology Development

Authors: Wilaisri Limphapayom

Abstract:

Lime is one of the economically important produced in Thailand. The objective of this research is to increase utilization in food and cosmetic. Extraction of essential oil and pectin from lime (Citrus aurantifolia (Christm & Panz ) Swing) have been studied. Extraction of essential oil has been made by using hydro-distillation .The essential oil ranged from 1.72-2.20%. The chemical composition of essential oil composed of alpha-pinene , beta-pinene , D-limonene , comphene , a-phellandrene , g-terpinene , a-ocimene , O-cymene , 2-carene , Linalool , trans-ocimenol , Geraniol , Citral , Isogeraniol , Verbinol , and others when analyzed by using GC-MS method. Pectin extraction from lime waste , boiled water after essential oil extraction. Pectin extraction were found 40.11-65.81 g /100g of lime peel. The best extraction condition was found to be higher in yield by using ethanol extraction. The potential of this study had satisfactory results to improve lime processing system for value-added . The present study was also focused on Lime powder production as source of vitamin C or ascorbic acid and the potential of lime waste as a source of essential oil and pectin. Lime powder produced from Spray Dryer . Lime juice with 2 different level of maltodextrins DE 10 , 30 and 50% w/w was sprayed at 150 degrees celsius inlet air temperature and at 90-degree celsius outlet temperature. Lime powder with 50% maltodextrin gave the most desirable quality product. This product has vitamin C contents of 25 mg/100g (w/w).

Keywords: extraction, pectin, essential oil, lime

Procedia PDF Downloads 299
1131 Nanoenergetic Materials as Effective Heat Energy Sources for Enhanced Gas Generators

Authors: Sang Beom Kim, Kyung Ju Kim, Myung Hoon Cho, Ji Hoon Kim, Soo Hyung Kim

Abstract:

In this study, we systematically investigated the effect of nanoscale energetic materials in formulations of aluminum nanoparticles (Al NPs; heat source)/copper oxide nanoparticles (CuO NPs; oxidizer) on the combustion and gas-generating properties of sodium azide microparticles (NaN3 MPs; gas-generating agent) for potential applications in gas generators. The burn rate of the NaN3 MP/CuO NP composite powder was only ~0.3 m/s. However, the addition of Al NPs to the NaN3 MP/CuO NP matrix caused the rates to reach ~5.3 m/s, respectively. In addition, the N2 gas volume flow rate generated by the ignition of the NaN3 MP/CuO NP composite powder was only ~0.6 L/s, which was significantly increased to ~3.9 L/s by adding Al NPs to the NaN3 MP/CuO NP composite powder. This suggested that the highly reactive NPs, with the assistance of CuO NPs, were effective heat-generating sources enabling the complete thermal decomposition of NaN3 MPs upon ignition. Al NPs were highly effective in the gas generators because of the increased reactivity induced by the reduced particle size. Finally, we successfully demonstrated that a homemade airbag with a specific volume of ~140 mL could be rapidly and fully inflated by the thermal activation of nanoscale energetic material-added gas-generating agents (i.e., NaN3 MP/Al NP/CuO NP composites) within the standard time of ~50 ms for airbag inflation.

Keywords: nanoenergetic materials, aluminum nanoparticles, copper oxide nanoparticles, gas generators

Procedia PDF Downloads 367
1130 Partial Replacement for Cement and Coarse Aggregate in Concrete by Using Egg Shell Powder and Coconut Shell

Authors: A. K. Jain, M. C. Paliwal

Abstract:

The production of cement leads to the emission of large amounts of carbon-dioxide gas into the atmosphere which is a major contributor for the greenhouse effect and the global warming; hence it is mandatory either to quest for another material or partly replace it with some other material. According to the practical demonstrations and reports, Egg Shell Powder (ESP) can be used as a binding material for different field applications as it contains some of the properties of lime. It can partially replace the cement and further; it can be used in different proportion for enhancing the performance of cement. It can be used as a first-class alternative, for material reuse and waste recycling practices. Eggshell is calcium rich and analogous to limestone in chemical composition. Therefore, use of eggshell waste for partial replacement of cement in concrete is feasible. Different studies reveal that plasticity index of the soil can be improved by adding eggshell wastes in all the clay soil and it has wider application in construction projects including earth canals and earthen dams. The scarcity of aggregates is also increasing nowadays. Utilization of industrial waste or secondary materials is increasing in different construction applications. Coconut shell was successfully used in the construction industry for partial or full replacement for coarse aggregates. The use of coconut shell gives advantage of using waste material to partially replace the coarse aggregate. Studies carried on coconut shell indicate that it can partially replace the aggregate. It has good strength and modulus properties along with the advantage of high lignin content. It absorbs relatively low moisture due to its low cellulose content. In the paper, study carried out on eggshell powder and coconut shell will be discussed. Optimum proportions of these materials to be used for partial replacement of cement and aggregate will also be discussed.

Keywords: greenhouse, egg shell powder, binding material, aggregates, coconut shell, coarse aggregates

Procedia PDF Downloads 253
1129 Properties of Triadic Concrete Containing Rice Husk Ash and Wood Waste Ash as Partial Cement Replacement

Authors: Abdul Rahman Mohd. Sam, Olukotun Nathaniel, Dunu Williams

Abstract:

Concrete is one of the most popular materials used in construction industry. However, one of the setbacks is that concrete can degrade with time upon exposure to an aggressive environment that leads to decrease in strength. Thus, research works and innovative ways are needed to enhance the strength and durability of concrete. This work tries to look into the potential use of rice husk ash (RHA) and wood waste ash (WWA) as cement replacement material. These are waste materials that may not only enhance the properties of concrete but also can serves as a viable method of disposal of waste for sustainability. In addition, a substantial replacement of Ordinary Portland Cement (OPC) with these pozzolans will mean reduction in CO₂ emissions and high energy requirement associated with the production of OPC. This study is aimed at assessing the properties of triadic concrete produced using RHA and WWA as a partial replacement of cement. The effects of partial replacement of OPC with 10% RHA and 5% WWA on compressive and tensile strength of concrete among other properties were investigated. Concrete was produced with nominal mix of 1:2:4 and 0.55 water-cement ratio, prepared, cured and subjected to compressive and tensile strength test at 3, 7, 14, 28 and 90days. The experimental data demonstrate that concrete containing RHA and WWA produced lighter weight in comparison with OPC sample. Results also show that combination of RHA and WWA help to prolong the initial and final setting time by about 10-30% compared to the control sample. Furthermore, compressive strength was increased by 15-30% with 10% RHA and 5% WWA replacement, respectively above the control, RHA and WWA samples. Tensile strength test at the ages of 3, 7, 14, 28 and 90 days reveals that a replacement of 15% RHA and 5% WWA produced samples with the highest tensile capacity compared to the control samples. Thus, it can be concluded that RHA and WWA can be used as partial cement replacement materials in concrete.

Keywords: concrete, rice husk ash, wood waste ash, ordinary Portland cement, compressive strength, tensile strength

Procedia PDF Downloads 259
1128 Effect of Rotation Speed on Microstructure and Microhardness of AA7039 Rods Joined by Friction Welding

Authors: H. Karakoc, A. Uzun, G. Kırmızı, H. Çinici, R. Çitak

Abstract:

The main objective of this investigation was to apply friction welding for joining of AA7039 rods produced by powder metallurgy. Friction welding joints were carried out using a rotational friction welding machine. Friction welds were obtained under different rotational speeds between (2700 and 2900 rpm). The friction pressure of 10 MPa and friction time of 30 s was kept constant. The cross sections of joints were observed by optical microscopy. The microstructures were analyzed using scanning electron microscope/energy dispersive X-ray spectroscopy. The Vickers micro hardness measurement of the interface was evaluated using a micro hardness testing machine. Finally the results obtained were compared and discussed.

Keywords: Aluminum alloy, powder metallurgy, friction welding, microstructure

Procedia PDF Downloads 363
1127 Mechanical Characterization of Mango Peel Flour and Biopolypropylene Composites Compatibilized with PP-g-IA

Authors: J. Gomez-Caturla, L. Quiles-Carrillo, J. Ivorra-Martinez, D. Garcia-Garcia, R. Balart

Abstract:

The present work reports on the development of wood plastic composites based on biopolypropylene (BioPP) and mango peel flour (MPF) by extrusion and injection moulding processes. PP-g-IA and DCP have been used as a compatibilizer and as free radical initiators for reactive extrusion, respectively. Mechanical and morphological properties have been characterized in order to study the compatibility of the blends. The obtained results showed that DCP and PP-g-IA improved the stiffness of BioPP in terms of elastic modulus. Moreover, they positively increased the tensile strength and elongation at the break of the blends in comparison with the sample that only had BioPP and MPF in its composition, improving the affinity between both compounds. DCP and PP-g-IA even seem to have certain synergy, which was corroborated through FESEM analysis. Images showed that the MPF particles had greater adhesion to the polymer matrix when PP-g-IA and DCP were added. This effect was more intense when both elements were added, observing an almost inexistent gap between MPF particles and the BioPP matrix.

Keywords: biopolyproylene, compatibilization, mango peel flour, wood plastic composite

Procedia PDF Downloads 101
1126 Effect of Application of Turmeric Extract Powder Solution on the Color Changes of Non-Vital Teeth (An In-vitro study).

Authors: Haidy N. Salem, Nada O. Kamel, Shahinaz N. Hassan, Sherif M. Elhefnawy

Abstract:

Aim: to assess the effect of using turmeric powder extract on changes of tooth color with extra-coronal and intra-coronal bleaching methods. Methods: Turmeric powder extract was weighted and mixed with two different hydrogen peroxide concentrations (3% and 6%) to be used as a bleaching agent. Thirty teeth were allocated into three groups (n=10): Group A: Bleaching agent (6%) was applied on the labial surface, Group B: Bleaching agent (3%) was applied inside the pulp chamber and Group C: Extra and intra-coronal bleaching techniques were used (6% and 3% respectively). A standardized access cavity was opened in the palatal surface of each tooth in both Groups B and C. Color parameters were measured using a spectrophotometer. Results: A statistically significant difference in color difference values (∆E*) and enamel brightness (∆L*) was found between Group C and each of Groups A and B. There was no statistically significant difference in (∆E*) and (∆L*) between Group A and Group B. The highest mean value of (∆E*) and (∆L*) was found in Group C, while the least mean value was found in Group B. Conclusion: Bleaching the external and internal tooth structure with low concentrations of hydrogen peroxide solution mixed with turmeric extract has a promising effect in color enhancement.

Keywords: bleaching, hydrogen peroxide, spectrophotometer, turmeric

Procedia PDF Downloads 119
1125 The Effect of Sea Buckthorn (Hippophae rhamnoides L.) Berries on Some Quality Characteristics of Cooked Pork Sausages

Authors: Anna M. Salejda, Urszula Tril, Grażyna Krasnowska

Abstract:

The aim of this study was to analyze selected quality characteristics of cooked pork sausages manufactured with the addition of Sea buckthorn (Hippophae rhamnoides L.) berries preparations. Stuffings of model sausages consisted of pork, backfat, water and additives such a curing salt and sodium isoascorbate. Functional additives used in production process were two preparations obtained from dried Sea buckthorn berries in form of powder and brew. Powder of dried berries was added in amount of 1 and 3 g, while water infusion as a replacement of 50 and 100% ice water included in meat products formula. Control samples were produced without functional additives. Experimental stuffings were heat treated in water bath and stored for 4 weeks under cooled conditions (4±1ºC). Physical parameters of colour, texture profile and technological parameters as acidity, weight losses and water activity were estimated. The effect of Sea buckthorn berries preparations on lipid oxidation during storage of final products was determine by TBARS method. Studies have shown that addition of Sea buckthorn preparations to meat-fatty batters significant (P≤0.05) reduced the pH values of sausages samples after thermal treatment. Moreover, the addition of berries powder caused significant differences (P ≤ 0.05) in weight losses after cooking process. Analysis of results of texture profile analysis indicated, that utilization of infusion prepared from Sea buckthorn dried berries caused increase of springiness, gumminess and chewiness of final meat products. At the same time, the highest amount of Sea buckthorn berries powder in recipe caused the decrease of all measured texture parameters. Utilization of experimental preparations significantly decreased (P≤0.05) lightness (L* parameter of color) of meat products. Simultaneously, introduction of 1 and 3 grams of Sea buckthorn berries powder to meat-fatty batter increased redness (a* parameter) of samples under investigation. Higher content of substances reacting with thiobarbituric acid was observed in meat products produced without functional additives. It was observed that powder of Sea buckthorn berries added to meat-fatty batters caused higher protection against lipid oxidation in cooked sausages.

Keywords: sea buckthorn, meat products, texture, color parameters, lipid oxidation

Procedia PDF Downloads 296
1124 Multi-Particle Finite Element Modelling Simulation Based on Cohesive Zone Method of Cold Compaction Behavior of Laminar Al and NaCl Composite Powders

Authors: Yanbing Feng, Deqing Mei, Yancheng Wang, Zichen Chen

Abstract:

With the advantage of low volume density, high specific surface area, light weight and good permeability, porous aluminum material has the potential to be used in automotive, railway, chemistry and construction industries, etc. A layered powder sintering and dissolution method were developed to fabricate the porous surface Al structure with high efficiency. However, the densification mechanism during the cold compaction of laminar composite powders is still unclear. In this study, multi particle finite element modelling (MPFEM) based on the cohesive zone method (CZM) is used to simulate the cold compaction behavior of laminar Al and NaCl composite powders. To obtain its densification mechanism, the macro and micro properties of final compacts are characterized and analyzed. The robustness and accuracy of the numerical model is firstly verified by experimental results and data fitting. The results indicate that the CZM-based multi particle FEM is an effective way to simulate the compaction of the laminar powders and the fracture process of the NaCl powders. In the compaction of the laminar powders, the void is mainly filled by the particle rearrangement, plastic deformation of Al powders and brittle fracture of NaCl powders. Large stress is mainly concentrated within the NaCl powers and the contact force network is formed. The Al powder near the NaCl powder or the mold has larger stress distribution on its contact surface. Therefore, the densification process of cold compaction of laminar Al and NaCl composite powders is successfully analyzed by the CZM-based multi particle FEM.

Keywords: cold compaction, cohesive zone, multi-particle FEM, numerical modeling, powder forming

Procedia PDF Downloads 152
1123 A Comprehensive Study on the Porosity Effect of Ti-20Zr Alloy Produced by Powder Metallurgy as a Biomaterial

Authors: Eyyup Murat Karakurt, Yan Huang, Mehmet Kaya, Huseyin Demirtas

Abstract:

In this study, the effect of the porosity effect of Ti-20Zr alloy produced by powder metallurgy as a biomaterial was investigated experimentally. The Ti based alloys (Ti-20%Zr (at.) were produced under 300 MPa, for 6 h at 1200 °C. Afterward, the microstructure of the Ti-based alloys was analyzed by optical analysis, scanning electron microscopy, energy dispersive spectrometry. Moreover, compression tests were applied to determine the mechanical behaviour of samples. As a result, highly porous Ti-20Zr alloys exhibited an elastic modulus close to human bone. The results later were compared theoretically and experimentally.

Keywords: porosity effect, Ti based alloys, elastic modulus, compression test

Procedia PDF Downloads 230
1122 Effect of Palm Bunch Ash and Neem (Azardirachta indica A. Juss) Leaf Powder on Termite Infestation in Groundnut Field

Authors: K. O. Ogbedeh, C. P. Ekwe, G. O. Ihejirika, S. A. Dialoke, O. P. Onyewuchi, C. P. Anyanwu, I. E. Kalu

Abstract:

As one of the major pests of field crops, termites attack groundnut at all stages of its development, especially during prolonged dry spell. Effect of palm bunch ash and neem(Azardirachta indica A. Juss) leaf powder on termite infestation in groundnut field in Owerri, Nigeria was investigated in this study. The field trial was carried out in 2016 at the Teaching and Research Farm of the Federal University of Technology, Owerri, Nigeria. The experiment was laid out in a 3x3 Factorial fitted into a Randomized Complete Block Design (RCBD) with three replications. The treatments include three rates of palm bunch ash at 0.0 (control), 1.0 and 2.0tons/ha and three rates of neem leaf powder at 0.0(control), 1.0, 2.0 tons/ha respectively. Data were collected on percentage emergence, termite incidence and termite severity. These were subjected to analysis of variance (ANOVA), and means were separated using least significant difference at 5% level of probability. The result shows that there were no significant (P= 0.05) differences in percentage emergence amongst treatment means due to palm bunch ash and neem leaf powder applications. Contrarily, palm bunch ash at 2.0 tons/ha recorded the least termite incidence especially at twelve weeks after planting (12WAP) with a value of 22.20% while control plot maintained highest values at 6WAP (48.70%) and 12WAP (48.30%) respectively. Also palm bunch ash at 2.0tons/ha depressed termite severity more than other treatments especially at 2 and 4 WAP (0.56) respectively. Control plots on the other hand consistently maintained highest termite severity throughout the trial with the highest value at 2 and 12WAP (1.56). Conclusively, palm bunch ash exhibited highest depressive action against termite on groundnut especially at higher application value (2.0tons/ha).

Keywords: groundnut, incidence, neem, palm, severity, termites

Procedia PDF Downloads 229
1121 Biocompatible Porous Titanium Scaffolds Produced Using a Novel Space Holder Technique

Authors: Yunhui Chen, Damon Kent, Matthew Dargusch

Abstract:

Synthetic scaffolds are a highly promising new approach to replace both autografts and allografts to repair and remodel damaged bone tissue. Biocompatible porous titanium scaffold was manufactured through a powder metallurgy approach. Magnesium powder was used as space holder material which was compacted with titanium powder and removed during sintering. Evaluation of the porosity and mechanical properties showed a high level of compatibility with human bone. Interconnectivity between pores is higher than 95% for porosity as low as 30%. The elastic moduli are 39 GPa, 16 GPa and 9 GPa for 30%, 40% and 50% porosity samples which match well to that of natural bone (4-30 GPa). The yield strengths for 30% and 40% porosity samples of 315 MPa and 175 MPa are superior to that of human bone (130-180 MPa). In-vitro cell culture tests on the scaffold samples using Human Mesenchymal Stem Cells (hMSCs) demonstrated their biocompatibility and indicated osseointegration potential. The scaffolds allowed cells to adhere and spread both on the surface and inside the pore structures. With increasing levels of porosity/interconnectivity, improved cell proliferation is obtained within the pores. It is concluded that samples with 30% porosity exhibit the best biocompatibility. The results suggest that porous titanium scaffolds generated using this manufacturing route have excellent potential for hard tissue engineering applications.

Keywords: scaffolds, MG-63 cell culture, titanium, space holder

Procedia PDF Downloads 235
1120 Evaluation of the Mechanical and Microstructural Properties of Sustainable Concrete Exposed to Acid Solution

Authors: Adil Tamimi

Abstract:

Limestone powder is a natural material that is available in many parts of the world. In this research self-compacting concrete was designed and prepared using limestone powder. The resulted concrete was exposed to the hydrochloric acid solution and compared with reference concrete. Mechanical properties of both fresh and hardened concrete have been evaluated. Scanning Electron Microscopy “SEM” has been unitized to analyse the morphological development of the hydration products. In sulphuric acid solution, a large formation of gypsum was detected in both samples of self-compacting concrete and conventional concrete. The Higher amount of thaumasite and ettringite was also detected in the SCC sample. In hydrochloric acid solution, monochloroaluminate was detected.

Keywords: self-compacting concrete, mechanical properties, Scanning Electron Microscopy, acid solution

Procedia PDF Downloads 511
1119 Bamboo: A Trendy and New Alternative to Wood

Authors: R. T. Aggangan, R. J. Cabangon

Abstract:

Bamboo is getting worldwide attention over the last 20 to 30 years due to numerous uses and it is regarded as the closest material that can be used as substitute to wood. In the domestic market, high quality bamboo products are sold in high-end markets while lower quality products are generally sold to medium and low income consumers. The global market in 2006 stands at about 7 billion US dollars and was projected to increase to US$ 17 B from 2015 to 2020. The Philippines had been actively producing and processing bamboo products for the furniture, handicrafts and construction industry. It was however in 2010 that the Philippine bamboo industry was formalized by virtue of Executive Order 879 that stated that the Philippine bamboo industry development is made a priority program of the government and created the Philippine Bamboo Industry Development Council (PBIDC) to provide the overall policy and program directions of the program for all stakeholders. At present, the most extensive use of bamboo is for the manufacture of engineered bamboo for school desks for all public schools as mandated by EO 879. Also, engineered bamboo products are used for high-end construction and furniture as well as for handicrafts. Development of cheap adhesives, preservatives, and finishing chemicals from local species of plants, development of economical methods of drying and preservation, product development and processing of lesser-used species of bamboo, development of processing tools, equipment and machineries are the strategies that will be employed to reduce the price and mainstream engineered bamboo products in the local and foreign market. In addition, processing wastes from bamboo can be recycled into fuel products such as charcoal are already in use. The more exciting possibility, however, is the production of bamboo pellets that can be used as a substitute for wood pellets for heating, cooking and generating electricity.

Keywords: bamboo charcoal and light distillates, engineered bamboo, furniture and handicraft industries, housing and construction, pellets

Procedia PDF Downloads 248
1118 Applicability of Soybean as Bio-Catalyst in Calcite Precipitated Method for Soil Improvement

Authors: Heriansyah Putra, Erizal Erizal, Sutoyo Sutoyo, Hideaki Yasuhara

Abstract:

This paper discusses the possibility of organic waste material, i.e., soybean, as the bio-catalyst agent on the calcite precipitation method. Several combinations of soybean powder and jack bean extract are used as the bio-catalyst and mixed with the reagent composed of calcium chloride and urea. Its productivity in promoting calcite crystal is evaluated through a transparent test-tube experiment. The morphological and mineralogical aspects of precipitated calcite are also investigated using scanning electromagnetic (SEM) and X-ray diffraction (XRD), respectively. The applicability of this material to improve the engineering properties of soil are examined using the direct shear and unconfined compressive test. The result of this study shows that the utilization of soybean powder brings about a significant effect on soil strength. In addition, the use of soybean powder as a substitution material of urease enzyme also increases the efficacy of calcite crystal as the binder materials. The low calcite content promotes the high strength of the soil. The strength of 300 kPa is obtained in the presence of 2% of calcite content within the soil. The result of this study elucidated that substitution of soybean to jack bean extract is the potential and valuable alternative to improve the applicability of calcite precipitation method as soil improvement technique.

Keywords: calcite precipitation, jack bean, soil improvement, soybean

Procedia PDF Downloads 127
1117 Template-less Self-Assembled Morphologically Cubic BiFeO₃ for Improved Electrical Properties

Authors: Jenna Metera, Olivia Graeve

Abstract:

Ceramic capacitor technologies using lead based materials is being phased out for its environmental and handling hazards. Bismuth ferrite (BiFeO₃) is the next best replacement for those lead-based technologies. Unfortunately, the electrical properties in bismuth systems are not as robust as the lead alternatives. The improvement of electrical properties such as charge density, charge anisotropy, relative permittivity, and dielectric loss are the parameters that will make BiFeO₃ a competitive alternative to lead-based ceramic materials. In order to maximize the utility of these properties, we propose the ordering and an evaporation-induced self-assembly of a cubic morphology powder. Evaporation-induced self-assembly is a template-less, bottom-up, self-assembly option. The capillary forces move the particles closer together when the solvent evaporates, promoting organized agglomeration at the particle faces. The assembly of particles into organized structures can lead to enhanced properties compared to unorganized structures or single particles themselves. The interactions between the particles can be controlled based on the long-range order in the organized structure. The cubic particle morphology is produced through a hydrothermal synthesis with changes in the concentration of potassium hydroxide, which changes the morphology of the powder. Once the assembly materializes, the powder is fabricated into workable substrates for electrical testing after consolidation.

Keywords: evaporation, lead-free, morphology, self-assembly

Procedia PDF Downloads 123