Search results for: train schedule
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1085

Search results for: train schedule

755 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision

Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias

Abstract:

Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.

Keywords: healthcare, fall detection, transformer, transfer learning

Procedia PDF Downloads 146
754 Useful Lifetime Prediction of Rail Pads for High Speed Trains

Authors: Chang Su Woo, Hyun Sung Park

Abstract:

Useful lifetime evaluations of rail-pads were very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of rail pads. In this study, we performed properties and accelerated heat aging tests of rail pads considering degradation factors and all environmental conditions including operation, and then derived a lifetime prediction equation according to changes in hardness, thickness, and static spring constants in the Arrhenius plot to establish how to estimate the aging of rail pads. With the useful lifetime prediction equation, the lifetime of e-clip pads was 2.5 years when the change in hardness was 10% at 25°C; and that of f-clip pads was 1.7 years. When the change in thickness was 10%, the lifetime of e-clip pads and f-clip pads is 2.6 years respectively. The results obtained in this study to estimate the useful lifetime of rail pads for high speed trains can be used for determining the maintenance and replacement schedule for rail pads.

Keywords: rail pads, accelerated test, Arrhenius plot, useful lifetime prediction, mechanical engineering design

Procedia PDF Downloads 326
753 Identification of Bayesian Network with Convolutional Neural Network

Authors: Mohamed Raouf Benmakrelouf, Wafa Karouche, Joseph Rynkiewicz

Abstract:

In this paper, we propose an alternative method to construct a Bayesian Network (BN). This method relies on a convolutional neural network (CNN classifier), which determinates the edges of the network skeleton. We train a CNN on a normalized empirical probability density distribution (NEPDF) for predicting causal interactions and relationships. We have to find the optimal Bayesian network structure for causal inference. Indeed, we are undertaking a search for pair-wise causality, depending on considered causal assumptions. In order to avoid unreasonable causal structure, we consider a blacklist and a whitelist of causality senses. We tested the method on real data to assess the influence of education on the voting intention for the extreme right-wing party. We show that, with this method, we get a safer causal structure of variables (Bayesian Network) and make to identify a variable that satisfies the backdoor criterion.

Keywords: Bayesian network, structure learning, optimal search, convolutional neural network, causal inference

Procedia PDF Downloads 176
752 Function Approximation with Radial Basis Function Neural Networks via FIR Filter

Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended Kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore, the number of centers will be considered since it affects the performance of approximation.

Keywords: extended Kalman filter, classification problem, radial basis function networks (RBFN), finite impulse response (FIR) filter

Procedia PDF Downloads 456
751 Comparison of ANFIS Update Methods Using Genetic Algorithm, Particle Swarm Optimization, and Artificial Bee Colony

Authors: Michael R. Phangtriastu, Herriyandi Herriyandi, Diaz D. Santika

Abstract:

This paper presents a comparison of the implementation of metaheuristic algorithms to train the antecedent parameters and consequence parameters in the adaptive network-based fuzzy inference system (ANFIS). The algorithms compared are genetic algorithm (GA), particle swarm optimization (PSO), and artificial bee colony (ABC). The objective of this paper is to benchmark well-known metaheuristic algorithms. The algorithms are applied to several data set with different nature. The combinations of the algorithms' parameters are tested. In all algorithms, a different number of populations are tested. In PSO, combinations of velocity are tested. In ABC, a different number of limit abandonment are tested. Experiments find out that ABC is more reliable than other algorithms, ABC manages to get better mean square error (MSE) than other algorithms in all data set.

Keywords: ANFIS, artificial bee colony, genetic algorithm, metaheuristic algorithm, particle swarm optimization

Procedia PDF Downloads 352
750 Physical Verification Flow on Multiple Foundries

Authors: Rohaya Abdul Wahab, Raja Mohd Fuad Tengku Aziz, Nazaliza Othman, Sharifah Saleh, Nabihah Razali, Muhammad Al Baqir Zinal Abidin, Md Hanif Md Nasir

Abstract:

This paper will discuss how we optimize our physical verification flow in our IC Design Department having various rule decks from multiple foundries. Our ultimate goal is to achieve faster time to tape-out and avoid schedule delay. Currently the physical verification runtimes and memory usage have drastically increased with the increasing number of design rules, design complexity and the size of the chips to be verified. To manage design violations, we use a number of solutions to reduce the amount of violations needed to be checked by physical verification engineers. The most important functions in physical verifications are DRC (design rule check), LVS (layout vs. schematic) and XRC (extraction). Since we have a multiple number of foundries for our design tape-outs, we need a flow that improve the overall turnaround time and ease of use of the physical verification process. The demand for fast turnaround time is even more critical since the physical design is the last stage before sending the layout to the foundries.

Keywords: physical verification, DRC, LVS, XRC, flow, foundry, runset

Procedia PDF Downloads 654
749 Impact of the Photovoltaic Integration in Power Distribution Network: Case Study in Badak Liquefied Natural Gas (LNG)

Authors: David Hasurungan

Abstract:

This paper objective is to analyze the impact from photovoltaic system integration to power distribution network. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. Badak LNG electricity network is operated in islanded mode. The total power generation in Badak LNG plant is significantly affected to feed gas supply. Meanwhile, to support the Government regulation, Badak LNG continuously implemented the grid-connected photovoltaic system in existing power distribution network. The impact between train operational mode change in Badak LNG plant and the growth of photovoltaic system is also encompassed in analysis. The analysis and calculation are performed using software Power Factory 15.1.

Keywords: power quality, distribution network, grid-connected photovoltaic system, power management system

Procedia PDF Downloads 360
748 Educational Disparities with Respect to Achievement Motivation and Socio-Economic Status: A Comparative Study Based on Caste

Authors: Santoshi Halder, Ranjini Ghosh

Abstract:

Research on educational stratification suggests that inequality in education between different social strata continues and sometimes even widens in spite of educational growth. The backward classes are the most suppressed classes in society. In India, the Scheduled Castes are found as one of the backward classes. After independence there a lot of provisions were made for their uplift. Still they are facing a lot of problems in perusing education, getting jobs, choosing life style independently etc. The present study was conducted to explore the educational disparities in education with respect to caste. Sample consisted of 1020 students (540 scheduled caste and 540 general caste) from three different universities of West Bengal. Tools selected were General Information Schedule (GIS), socioeconomic status (SES), Achievement motivation scale. Findings indicated significant differences for the selected variables under the study with respect to caste. Findings have significant implication for the advocates, policy makers and educationists and sociologists for appropriate intervention.

Keywords: scheduled caste, educational barriers, achievement motivation, socioeconomic status

Procedia PDF Downloads 417
747 Naïve Bayes: A Classical Approach for the Epileptic Seizures Recognition

Authors: Bhaveek Maini, Sanjay Dhanka, Surita Maini

Abstract:

Electroencephalography (EEG) is used to classify several epileptic seizures worldwide. It is a very crucial task for the neurologist to identify the epileptic seizure with manual EEG analysis, as it takes lots of effort and time. Human error is always at high risk in EEG, as acquiring signals needs manual intervention. Disease diagnosis using machine learning (ML) has continuously been explored since its inception. Moreover, where a large number of datasets have to be analyzed, ML is acting as a boon for doctors. In this research paper, authors proposed two different ML models, i.e., logistic regression (LR) and Naïve Bayes (NB), to predict epileptic seizures based on general parameters. These two techniques are applied to the epileptic seizures recognition dataset, available on the UCI ML repository. The algorithms are implemented on an 80:20 train test ratio (80% for training and 20% for testing), and the performance of the model was validated by 10-fold cross-validation. The proposed study has claimed accuracy of 81.87% and 95.49% for LR and NB, respectively.

Keywords: epileptic seizure recognition, logistic regression, Naïve Bayes, machine learning

Procedia PDF Downloads 61
746 Rehabilitation of the Blind Using Sono-Visualization Tool

Authors: Ashwani Kumar

Abstract:

In human beings, eyes play a vital role. A very less research has been done for rehabilitation of blindness for the blind people. This paper discusses the work that helps blind people for recognizing the basic shapes of the objects like circle, square, triangle, horizontal lines, vertical lines, diagonal lines and the wave forms like sinusoidal, square, triangular etc. This is largely achieved by using a digital camera, which is used to capture the visual information present in front of the blind person and a software program, which achieves the image processing operations, and finally the processed image is converted into sound. After the sound generation process, the generated sound is fed to the blind person through headphones for visualizing the imaginary image of the object. For visualizing the imaginary image of the object, it needs to train the blind person. Various training process methods had been applied for recognizing the object.

Keywords: image processing, pixel, pitch, loudness, sound generation, edge detection, brightness

Procedia PDF Downloads 388
745 Emerging Challenges Related to Digital Pedagogy: A Practitioners’ Case

Authors: Petronella Jonck, Martin Chanza, Anna-Marie Pelser

Abstract:

Ascribed to the global pandemic most higher education institutions responded by relocating content presented by means of contact sessions to an online platform giving rise to digital pedagogy. The purpose of the research reported on was to explore emerging challenges linked to digital pedagogy from a practitioner stance. Digital pedagogy has emerged as a powerful tool to compliment traditional methods. However, stumbling blocks should be identified and addressed for future utilization. A qualitative research design was implemented by means of a semi-structured interview schedule distributed to practitioners during the COVID-19 pandemic. Results revealed that institutional type influenced the implementation of digital pedagogy. Other challenges relate to the increased cost of education, decreased access, limited knowledge about digital pedagogy, behavioral intent to adopt a multi-modal approach, lack of ICT infrastructure to mention a few. Higher education institutions should address challenges towards the optimal use of digital pedagogy in future.

Keywords: COVID-19, digital pedagogy, higher education institutions, information communication technology

Procedia PDF Downloads 130
744 Application of MALDI-MS to Differentiate SARS-CoV-2 and Non-SARS-CoV-2 Symptomatic Infections in the Early and Late Phases of the Pandemic

Authors: Dmitriy Babenko, Sergey Yegorov, Ilya Korshukov, Aidana Sultanbekova, Valentina Barkhanskaya, Tatiana Bashirova, Yerzhan Zhunusov, Yevgeniya Li, Viktoriya Parakhina, Svetlana Kolesnichenko, Yeldar Baiken, Aruzhan Pralieva, Zhibek Zhumadilova, Matthew S. Miller, Gonzalo H. Hortelano, Anar Turmuhambetova, Antonella E. Chesca, Irina Kadyrova

Abstract:

Introduction: The rapidly evolving COVID-19 pandemic, along with the re-emergence of pathogens causing acute respiratory infections (ARI), has necessitated the development of novel diagnostic tools to differentiate various causes of ARI. MALDI-MS, due to its wide usage and affordability, has been proposed as a potential instrument for diagnosing SARS-CoV-2 versus non-SARS-CoV-2 ARI. The aim of this study was to investigate the potential of MALDI-MS in conjunction with a machine learning model to accurately distinguish between symptomatic infections caused by SARS-CoV-2 and non-SARS-CoV-2 during both the early and later phases of the pandemic. Furthermore, this study aimed to analyze mass spectrometry (MS) data obtained from nasal swabs of healthy individuals. Methods: We gathered mass spectra from 252 samples, comprising 108 SARS-CoV-2-positive samples obtained in 2020 (Covid 2020), 7 SARS-CoV- 2-positive samples obtained in 2023 (Covid 2023), 71 samples from symptomatic individuals without SARS-CoV-2 (Control non-Covid ARVI), and 66 samples from healthy individuals (Control healthy). All the samples were subjected to RT-PCR testing. For data analysis, we employed the caret R package to train and test seven machine-learning algorithms: C5.0, KNN, NB, RF, SVM-L, SVM-R, and XGBoost. We conducted a training process using a five-fold (outer) nested repeated (five times) ten-fold (inner) cross-validation with a randomized stratified splitting approach. Results: In this study, we utilized the Covid 2020 dataset as a case group and the non-Covid ARVI dataset as a control group to train and test various machine learning (ML) models. Among these models, XGBoost and SVM-R demonstrated the highest performance, with accuracy values of 0.97 [0.93, 0.97] and 0.95 [0.95; 0.97], specificity values of 0.86 [0.71; 0.93] and 0.86 [0.79; 0.87], and sensitivity values of 0.984 [0.984; 1.000] and 1.000 [0.968; 1.000], respectively. When examining the Covid 2023 dataset, the Naive Bayes model achieved the highest classification accuracy of 43%, while XGBoost and SVM-R achieved accuracies of 14%. For the healthy control dataset, the accuracy of the models ranged from 0.27 [0.24; 0.32] for k-nearest neighbors to 0.44 [0.41; 0.45] for the Support Vector Machine with a radial basis function kernel. Conclusion: Therefore, ML models trained on MALDI MS of nasopharyngeal swabs obtained from patients with Covid during the initial phase of the pandemic, as well as symptomatic non-Covid individuals, showed excellent classification performance, which aligns with the results of previous studies. However, when applied to swabs from healthy individuals and a limited sample of patients with Covid in the late phase of the pandemic, ML models exhibited lower classification accuracy.

Keywords: SARS-CoV-2, MALDI-TOF MS, ML models, nasopharyngeal swabs, classification

Procedia PDF Downloads 108
743 Light Car Assisted by PV Panels

Authors: Soufiane Benoumhani, Nadia Saifi, Boubekeur Dokkar, Mohamed Cherif Benzid

Abstract:

This work presents the design and simulation of electric equipment for a hybrid solar vehicle. The new drive train of this vehicle is a parallel hybrid system which means a vehicle driven by a great percentage of an internal combustion engine with 49.35 kW as maximal power and electric motor only as assistance when is needed. This assistance is carried out on the rear axle by a single electric motor of 7.22 kW as nominal power. The motor is driven by 12 batteries connecting in series, which are charged by three PV panels (300 W) installed on the roof and hood of the vehicle. The individual components are modeled and simulated by using the Matlab Simulink environment. The whole system is examined under different load conditions. The reduction of CO₂ emission is obtained by reducing fuel consumption. With the use of this hybrid system, fuel consumption can be reduced from 6.74 kg/h to 5.56 kg/h when the electric motor works at 100 % of its power. The net benefit of the system reaches 1.18 kg/h as fuel reduction at high values of power and torque.

Keywords: light car, hybrid system, PV panel, electric motor

Procedia PDF Downloads 121
742 Family Values and Honest Attitudes in Pakistan: The Role of Tolerance and Justice Attitudes

Authors: Muhammad Shoaib

Abstract:

The aim of the study is to examine the effects of family values on honest attitudes by the mediation of tolerance attitudes and justice attitudes among family members. As many other developing settings, Pakistani society is undergoing a rapid and multifaceted social changes, in which traditional thinking coexists and often clashes with modern thinking. Family values have great effects on the honest attitudes among family members as well as all the members of Pakistani society. Tolerance attitudes, justice attitudes, personal experiences and modernity factors are contributing to the development of honest attitudes among family members. Family values attitudes enhance the concept of honesty feelings, fairness, and less thinking towards theft. For the present study 520 respondents were sampled from two urban areas of Punjab province; Lahore and Faisalabad, through proportionate random sampling technique. A survey method was used as a technique of data collection and an interview schedule was administered to collect information from the respondents. The results shows similar positive effects of tolerance and justice attitudes on honest attitude by the mediation of family values attitudes.

Keywords: family values, tolerance, justice, honesty, attitudes, Pakistan

Procedia PDF Downloads 446
741 Incentivize Contracting Partners of Public Projects

Authors: Sai On Cheung, Qiuwen Ma, Fong Chung Lee

Abstract:

Due to increased project complexity and technological advancement in the last decade, the designers and contractors are expected to put more efforts to achieve project goals. To render extra efforts from the agents, incentivization has become one of the primary strategies for the client. Despite increased academia interest in the design of incentive strategies, there is still a need for discussion about the underlying motivations and favourable conditions to make incentives effective. Therefore, this study focuses on the effects of motivations and favourable conditions for the use of incentives in public projects. Questionnaire survey is used as the data collection tool. The questionnaire survey was piloted through interviews with professionals from Hong Kong public sector. A total of 100 responses were collected for this survey. Accountability and organizational effectiveness were found to be the prime objectives of incentives installed by public clients. Furthermore, a list of favourable conditions for incentivization and its consequent effects on cost, schedule, risk and public opinions were identified. To conclude, this study analyses the means and ends of the use of incentives in public projects in Hong Kong.

Keywords: incentives, public accountability, project effectiveness, public opinions

Procedia PDF Downloads 67
740 Learning Curve Effect on Materials Procurement Schedule of Multiple Sister Ships

Authors: Vijaya Dixit Aasheesh Dixit

Abstract:

Shipbuilding industry operates in Engineer Procure Construct (EPC) context. Product mix of a shipyard comprises of various types of ships like bulk carriers, tankers, barges, coast guard vessels, sub-marines etc. Each order is unique based on the type of ship and customized requirements, which are engineered into the product right from design stage. Thus, to execute every new project, a shipyard needs to upgrade its production expertise. As a result, over the long run, holistic learning occurs across different types of projects which contributes to the knowledge base of the shipyard. Simultaneously, in the short term, during execution of a project comprising of multiple sister ships, repetition of similar tasks leads to learning at activity level. This research aims to capture above learnings of a shipyard and incorporate learning curve effect in project scheduling and materials procurement to improve project performance. Extant literature provides support for the existence of such learnings in an organization. In shipbuilding, there are sequences of similar activities which are expected to exhibit learning curve behavior. For example, the nearly identical structural sub-blocks which are successively fabricated, erected, and outfitted with piping and electrical systems. Learning curve representation can model not only a decrease in mean completion time of an activity, but also a decrease in uncertainty of activity duration. Sister ships have similar material requirements. The same supplier base supplies materials for all the sister ships within a project. On one hand, this provides an opportunity to reduce transportation cost by batching the order quantities of multiple ships. On the other hand, it increases the inventory holding cost at shipyard and the risk of obsolescence. Further, due to learning curve effect the production scheduled of each consequent ship gets compressed. Thus, the material requirement schedule of every next ship differs from its previous ship. As more and more ships get constructed, compressed production schedules increase the possibility of batching the orders of sister ships. This work aims at integrating materials management with project scheduling of long duration projects for manufacturing of multiple sister ships. It incorporates the learning curve effect on progressively compressing material requirement schedules and addresses the above trade-off of transportation cost and inventory holding and shortage costs while satisfying budget constraints of various stages of the project. The activity durations and lead time of items are not crisp and are available in the form of probabilistic distribution. A Stochastic Mixed Integer Programming (SMIP) model is formulated which is solved using evolutionary algorithm. Its output provides ordering dates of items and degree of order batching for all types of items. Sensitivity analysis determines the threshold number of sister ships required in a project to leverage the advantage of learning curve effect in materials management decisions. This analysis will help materials managers to gain insights about the scenarios: when and to what degree is it beneficial to treat a multiple ship project as an integrated one by batching the order quantities and when and to what degree to practice distinctive procurement for individual ship.

Keywords: learning curve, materials management, shipbuilding, sister ships

Procedia PDF Downloads 502
739 Hydrothermal Treatment for Production of Aqueous Co-Product and Efficient Oil Extraction from Microalgae

Authors: Manatchanok Tantiphiphatthana, Lin Peng, Rujira Jitrwung, Kunio Yoshikawa

Abstract:

Hydrothermal liquefaction (HTL) is a technique for obtaining clean biofuel from biomass in the presence of heat and pressure in an aqueous medium which leads to a decomposition of this biomass to the formation of various products. A role of operating conditions is essential for the bio-oil and other products’ yield and also quality of the products. The effects of these parameters were investigated in regards to the composition and yield of the products. Chlorellaceae microalgae were tested under different HTL conditions to clarify suitable conditions for extracting bio-oil together with value-added co-products. Firstly, different microalgae loading rates (5-30%) were tested and found that this parameter has not much significant to product yield. Therefore, 10% microalgae loading rate was selected as a proper economical solution for conditioned schedule at 250oC and 30 min-reaction time. Next, a range of temperature (210-290oC) was applied to verify the effects of each parameter by keeping the reaction time constant at 30 min. The results showed no linkage with the increase of the reaction temperature and some reactions occurred that lead to different product yields. Moreover, some nutrients found in the aqueous product are possible to be utilized for nutrient recovery.

Keywords: bio-oil, hydrothermal liquefaction, microalgae, aqueous co-product

Procedia PDF Downloads 410
738 Metrics and Methods for Improving Resilience in Agribusiness Supply Chains

Authors: Golnar Behzadi, Michael O'Sullivan, Tava Olsen, Abraham Zhang

Abstract:

By definition, increasing supply chain resilience improves the supply chain’s ability to return to normal, or to an even more desirable situation, quickly and efficiently after being hit by a disruption. This is especially critical in agribusiness supply chains where the products are perishable and have a short life-cycle. In this paper, we propose a resilience metric to capture and improve the recovery process in terms of both performance and time, of an agribusiness supply chain following either supply or demand-side disruption. We build a model that determines optimal supply chain recovery planning decisions and selects the best resilient strategies that minimize the loss of profit during the recovery time window. The model is formulated as a two-stage stochastic mixed-integer linear programming problem and solved with a branch-and-cut algorithm. The results show that the optimal recovery schedule is highly dependent on the duration of the time-window allowed for recovery. In addition, the profit loss during recovery is reduced by utilizing the proposed resilient actions.

Keywords: agribusiness supply chain, recovery, resilience metric, risk management

Procedia PDF Downloads 397
737 ICT in Education – A Quest for Quality Learning in the 21st Century

Authors: Adam Johnbull

Abstract:

The paper discusses ICT in Education as a quest for quality learning in the 21st century. Education is the key that unlock the door to development, without adequate education of the citizenry, the development of a nation becomes a sham. Information Communication Technologies (ICTs) has revolutionized the way people work today and are now transforming education systems. As a result, if schools train children in yesterday’s skills and technologies they may not be effective and fit in tomorrow’s world. This is a sufficient reason for ICT’s to win global recognition and attention and thus ensure desire quality in our school system. Thus, the purpose of the paper is to discuss amongst others, what is ICT. The roles of ICT’s in education, limitation and key challenges of integrating ICT to education in the enhancement of student learning and experiences in other to encourage policy makers, school administrators and teachers pay the required attention to integrate this technology in the education system. The paper concludes that regardless of all the limitation characterizing it. ICT benefit education system to provide quality education in the 21st century.

Keywords: ICTs, quest, information, global, sham, century

Procedia PDF Downloads 426
736 Unsupervised Domain Adaptive Text Retrieval with Query Generation

Authors: Rui Yin, Haojie Wang, Xun Li

Abstract:

Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.

Keywords: dense retrieval, query generation, unsupervised training, text retrieval

Procedia PDF Downloads 73
735 Improvement of Transient Voltage Response Using PSS-SVC Coordination Based on ANFIS-Algorithm in a Three-Bus Power System

Authors: I Made Ginarsa, Agung Budi Muljono, I Made Ari Nrartha

Abstract:

Transient voltage response appears in power system operation when an additional loading is forced to load bus of power systems. In this research, improvement of transient voltage response is done by using power system stabilizer-static var compensator (PSS-SVC) based on adaptive neuro-fuzzy inference system (ANFIS)-algorithm. The main function of the PSS is to add damping component to damp rotor oscillation through automatic voltage regulator (AVR) and excitation system. Learning process of the ANFIS is done by using off-line method where data learning that is used to train the ANFIS model are obtained by simulating the PSS-SVC conventional. The ANFIS model uses 7 Gaussian membership functions at two inputs and 49 rules at an output. Then, the ANFIS-PSS and ANFIS-SVC models are applied to power systems. Simulation result shows that the response of transient voltage is improved with settling time at the time of 4.25 s.

Keywords: improvement, transient voltage, PSS-SVC, ANFIS, settling time

Procedia PDF Downloads 577
734 Analysis of the Benefits of Motion Simulators in 5th Generation Fighter Pilots' Training

Authors: Ali Mithad Emre

Abstract:

In military aviation, the use of flight simulators has proliferated recently in order to train fifth generation fighter pilots. With these simulators, pilots can carry out real-time flights resulting in seeing their faults and can perform emergency drills prior to real flights. Since we cannot risk losing the aircraft and the pilot himself/herself in the flight training process, flight simulators are of great importance to adapt the fighter pilots competently to real flights aboard the fifth generation aircraft. The real flights are impossible to simulate thoroughly on the ground. To some extent, the fixed-based simulators may assist the pilot to steer aircraft technically and visually but flight simulators can’t trick the pilot’s vestibular, sensory, and perceptual systems without motion platforms. This paper discusses the benefits of motion simulators for fifth generation fighter pilots’ training in preference to the fixed-based counterparts by analyzing their pros and cons.

Keywords: military, pilot, sickness, simulator

Procedia PDF Downloads 468
733 Hierarchical Queue-Based Task Scheduling with CloudSim

Authors: Wanqing You, Kai Qian, Ying Qian

Abstract:

The concepts of Cloud Computing provide users with infrastructure, platform and software as service, which make those services more accessible for people via Internet. To better analysis the performance of Cloud Computing provisioning policies as well as resources allocation strategies, a toolkit named CloudSim proposed. With CloudSim, the Cloud Computing environment can be easily constructed by modelling and simulating cloud computing components, such as datacenter, host, and virtual machine. A good scheduling strategy is the key to achieve the load balancing among different machines as well as to improve the utilization of basic resources. Recently, the existing scheduling algorithms may work well in some presumptive cases in a single machine; however they are unable to make the best decision for the unforeseen future. In real world scenario, there would be numbers of tasks as well as several virtual machines working in parallel. Based on the concepts of multi-queue, this paper presents a new scheduling algorithm to schedule tasks with CloudSim by taking into account several parameters, the machines’ capacity, the priority of tasks and the history log.

Keywords: hierarchical queue, load balancing, CloudSim, information technology

Procedia PDF Downloads 422
732 Competitor Analysis to Quantify the Benefits and for Different Use of Transport Infrastructure

Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki

Abstract:

Different transportation modes have key operational advantages and disadvantages, providing a variety of different transport options to users and passengers. This paper reviews key variables for the competition between air transport and other transport modes. The aim of this paper is to review the competition between air transport and other transport modes, providing results in terms of perceived cost for the users, for destinations high competitiveness for all transport modes. The competitor analysis variables include the cost and time outputs for each transport option, highlighting the level of competitiveness on high demanded Origin-Destination corridors. The case study presents the output of a such analysis for the OD corridor in Greece that connects the Capital city (Athens) with the second largest city (Thessaloniki) and the different transport modes have been considered (air, train, road). Conventional wisdom is to present an easy to handle tool for planners, managers and decision makers towards pricing policy effectiveness and demand attractiveness, appropriate to use for other similar cases.

Keywords: competitor analysis, transport economics, transport generalized cost, quantitative modelling

Procedia PDF Downloads 247
731 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN

Authors: M. P. Nanda Kumar, K. Dheeraj

Abstract:

The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.

Keywords: inverse optimal control, radial basis function, neural network, controller design

Procedia PDF Downloads 553
730 New Techniques to Decrease the Interfacial Stress in Steel Beams Strengthened With FRP Laminates

Authors: A. S. Bouchikhi, A. Megueni, S. Habibi

Abstract:

One major problem when using bonded Fiber Reinforced Polymer is the presence of high inter facial stresses near the end of the composite laminate which might govern the failure of the strengthening schedule. It is known that the decrease of FRP plate thickness and the fitness of adhesive reduce the stress concentration at plate ends. Another way is to use a plate with a non uniform section or tapered ends and softer adhesive at the edges. In this paper, a comprehensive finite element (FE) study has been conducted to investigate the effect of mixed adhesive joints (MAJ) and tapering plate on the inter facial stress distribution in the adhesive layer, this paper presents the results of a study of application of two adhesives with different stiffnesses (bi-adhesive) along the joint strength length between the CFRP-strengthened steel beam for tapered and untapered plate on the distribution of inter facial stresses. A stiff adhesive was applied in the middle portion of the joint strength, while a low modulus adhesive was applied towards the edges prone to stress concentrations.

Keywords: FRP, mixed adhesive joints, stresses, tapered plate, retrofitted beams bonded

Procedia PDF Downloads 498
729 Electrical Power Distribution Reliability Improvement by Retrofitting 4.16 kV Vacuum Contactor in Badak LNG Plant

Authors: David Hasurungan

Abstract:

This paper objective is to assess the power distribution reliability improvement by retrofitting obsolete vacuum contactor. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. To support plant operational, Badak LNG is equipped with 4.16 kV switchgear for supplying the storage and loading facilities, utilities facilities, and train facilities. However, there is a problem in two switch gears of sixteen switch gears. The problem is the obsolescence issue in its vacuum contactor. Not only that, but the same switchgear also has suffered from electrical fault due to contact fingering misalignment. In order to improve the reliability in switchgear, the vacuum contactor retrofit project is done. The retrofit will introduce new vacuum contactor design. The comparison between existing design and the new design is presented in this paper. Meanwhile, The reliability assessment and calculation are performed using software Reliasoft 7.

Keywords: reliability, obsolescence, retrofit, vacuum contactor

Procedia PDF Downloads 291
728 A Study on Sentiment Analysis Using Various ML/NLP Models on Historical Data of Indian Leaders

Authors: Sarthak Deshpande, Akshay Patil, Pradip Pandhare, Nikhil Wankhede, Rushali Deshmukh

Abstract:

Among the highly significant duties for any language most effective is the sentiment analysis, which is also a key area of NLP, that recently made impressive strides. There are several models and datasets available for those tasks in popular and commonly used languages like English, Russian, and Spanish. While sentiment analysis research is performed extensively, however it is lagging behind for the regional languages having few resources such as Hindi, Marathi. Marathi is one of the languages that included in the Indian Constitution’s 8th schedule and is the third most widely spoken language in the country and primarily spoken in the Deccan region, which encompasses Maharashtra and Goa. There isn’t sufficient study on sentiment analysis methods based on Marathi text due to lack of available resources, information. Therefore, this project proposes the use of different ML/NLP models for the analysis of Marathi data from the comments below YouTube content, tweets or Instagram posts. We aim to achieve a short and precise analysis and summary of the related data using our dataset (Dates, names, root words) and lexicons to locate exact information.

Keywords: multilingual sentiment analysis, Marathi, natural language processing, text summarization, lexicon-based approaches

Procedia PDF Downloads 74
727 Using Automated Agents to Facilitate Instructions in a Large Online Course

Authors: David M Gilstrap

Abstract:

In an online course with a large enrollment, the potential exists for the instructor to become overburdened with having to respond to students’ emails, which consequently decreases the instructor’s efficiency in teaching the course. Repetition of instructions is an effective way of reducing confusion among students, which in turn increases their efficiencies, as well. World of Turf is the largest online course at Michigan State University, which employs Brightspace as its management system (LMS) software. Recently, the LMS upgraded its capabilities to utilize agents, which are auto generated email notifications to students based on certain criteria. Agents are additional tools that can enhance course design. They can be run on-demand or according to a schedule. Agents can be timed to effectively remind students of approaching deadlines. The content of these generated emails can also include reinforced instructions. With a large online course, even a small percentage of students that either do not read or do not comprehend the course syllabus or do not notice instructions on course pages can result in numerous emails to the instructor, often near the deadlines for assignments. Utilizing agents to decrease the number of emails from students has enabled the instructor to efficiently instruct more than one thousand students per semester without any graduate student teaching assistants.

Keywords: agents, Brightspace, large enrollment, learning management system, repetition of instructions

Procedia PDF Downloads 203
726 Making the Right Call for Falls: Evaluating the Efficacy of a Multi-Faceted Trust Wide Approach to Improving Patient Safety Post Falls

Authors: Jawaad Saleem, Hannah Wright, Peter Sommerville, Adrian Hopper

Abstract:

Introduction: Inpatient falls are the most commonly reported patient safety incidents, and carry a significant burden on resources, morbidity, and mortality. Ensuring adequate post falls management of patients by staff is therefore paramount to maintaining patient safety especially in out of hours and resource stretched settings. Aims: This quality improvement project aims to improve the current practice of falls management at Guys St Thomas Hospital, London as compared to our 2016 Quality Improvement Project findings. Furthermore, it looks to increase current junior doctors confidence in managing falls and their use of new guidance protocols. Methods: Multifaceted Interventions implemented included: the development of new trust wide guidelines detailing management pathways for patients post falls, available for intranet access. Furthermore, the production of 2000 lanyard cards distributed amongst junior doctors and staff which summarised these guidelines. Additionally, a ‘safety signal’ email was sent from the Trust chief medical officer to all staff raising awareness of falls and the guidelines. Formal falls teaching was also implemented for new doctors at induction. Using an established incident database, 189 consecutive falls in 2017were retrospectively analysed electronically to assess and compared to the variables measured in 2016 post interventions. A separate serious incident database was used to analyse 50 falls from May 2015 to March 2018 to ascertain the statistical significance of the impact of our interventions on serious incidents. A similar questionnaire for the 2017 cohort of foundation year one (FY1) doctors was performed and compared to 2016 results. Results: Questionnaire data demonstrated improved awareness and utility of guidelines and increased confidence as well as an increase in training. 97% of FY1 trainees felt that the interventions had increased their awareness of the impact of falls on patients in the trust. Data from the incident database demonstrated the time to review patients post fall had decreased from an average of 130 to 86 minutes. Improvement was also demonstrated in the reduced time to order and schedule X-ray and CT imaging, 3 and 5 hours respectively. Data from the serious incident database show that ‘the time from fall until harm was detected’ was statistically significantly lower (P = 0.044) post intervention. We also showed the incidence of significant delays in detecting harm ( > 10 hours) reduced post intervention. Conclusions: Our interventions have helped to significantly reduce the average time to assess, order and schedule appropriate imaging post falls. Delays of over ten hours to detect serious injuries after falls were commonplace; since the intervention, their frequency has markedly reduced. We suggest this will lead to identifying patient harm sooner, reduced clinical incidents relating to falls and thus improve overall patient safety. Our interventions have also helped increase clinical staff confidence, management, and awareness of falls in the trust. Next steps include expanding teaching sessions, improving multidisciplinary team involvement to aid this improvement.

Keywords: patient safety, quality improvement, serious incidents, falls, clinical care

Procedia PDF Downloads 124