Search results for: smart material systems
15863 Hybrid Renewable Power Systems
Authors: Salman Al-Alyani
Abstract:
In line with the Kingdom’s Vision 2030, the Saudi Green initiative was announced aimed at reducing carbon emissions by more than 4% of the global contribution. The initiative included plans to generate 50% of its energy from renewables by 2030. The geographical location of Saudi Arabia makes it among the best countries in terms of solar irradiation and has good wind resources in many areas across the Kingdom. Saudi Arabia is a wide country and has many remote locations where it is not economically feasible to connect those loads to the national grid. With the improvement of battery innovation and reduction in cost, different renewable technologies (primarily wind and solar) can be integrated to meet the need for energy in a more effective and cost-effective way. Saudi Arabia is famous for high solar irradiations in which solar power generation can extend up to six (6) hours per day (25% capacity factor) in some locations. However, the net present value (NPV) falls down to negative in some locations due to distance and high installation costs. Wind generation in Saudi Arabia is a promising technology. Hybrid renewable generation will increase the net present value and lower the payback time due to additional energy generated by wind. The infrastructure of the power system can be capitalized to contain solar generation and wind generation feeding the inverter, controller, and load. Storage systems can be added to support the hours that have an absence of wind or solar energy. Also, the smart controller that can help integrate various renewable technologies primarily wind and solar, to meet demand considering load characteristics. It could be scalable for grid or off-grid applications. The objective of this paper is to study the feasibility of introducing a hybrid renewable system in remote locations and the concept for the development of a smart controller.Keywords: battery storage systems, hybrid power generation, solar energy, wind energy
Procedia PDF Downloads 17815862 “Ethical Porn” and the Right to Withdraw Consent
Authors: Nathan Elvidge
Abstract:
This paper offers a philosophical argument against the possibility of so-called “ethical porn,” that is, pornographic material produced in a way attempting to remain consistent with feminist principles and female empowerment. One key feature of such material is the requirement for the material to be consensual on the part of the actors or those involved in the material. However, in the contemporary pornography industry, this typically amounts to a single historic act of consent given in exchange for a lump-sum payment which grants the producer lifetime property rights over the explicit material. This paper argues that, by the lights of feminist principles, this situation is inherently unjust and that, as a consequence, the pornography industry requires a radical systematic upheaval before any material produced within it can be considered genuinely ethical. These feminist principles require that for the consumption of pornography to be genuinely ethical, the actors must consent not only to the acts recorded in the material but also to the consumption of that material. This paper argues that this consent to consumption should be treated as on par with other matters of sexual consent and, therefore, that actors should have the right to withdraw consent to the consumption of their material. From this, it is argued to follow that the system of third-party ownership of property rights over someone else’s sexually explicit material legally nullifies this right and therefore is inherently unjust.Keywords: consent, feminism, pornography, sex work
Procedia PDF Downloads 11615861 The Effectiveness of Social Story with the Help Smart Board use to Teach Social Skills for Preschool Children with ASD
Authors: Dilay Akgun Giray
Abstract:
Basic insuffiency spaces of ASD diagnosed individuals can be grouped as cognitive and academic characteristics, communicational characteristics, social characteristics and emotional characteristics. Referring to the features that children with ASD exhibit on social events, it is clear they have limitations for several social skills. One of the evidence based practices which has been developed and used for the limitations of definite social skills for individuals with autism is “Social Story Method”. Social stories was designed and applied for the first time in 1991, a special education teacher, in order to acquire social skills and improve the existing social skills for children with ASD. Many studies have revealed the effectiveness of social stories for teaching the social skills to individuals with ASD. In this study, three social skills that the child ,who was diagnosed ASD, is going to need primarily will be studied with smart board. This study is multiple probe across-behavior design which is one of the single subject research models.Keywords: authism spectrum disorders, social skills, social story, smart board
Procedia PDF Downloads 48615860 Climate Adaptations to Traditional Milpa Farming Practices in Mayan Communities of Southern Belize: A Socio-Ecological Systems Approach
Authors: Kristin Drexler
Abstract:
Climate change has exacerbated food and livelihood insecurity for Mayan milpa farmers in Central America. For centuries, milpa farming has been sustainable for subsistence; however, in the last 50 years, milpas have become less reliable due to accelerating climate change, resource degradation, declining markets, poverty, and other factors. Using interviews with extension leaders and milpa farmers in Belize, this qualitative study examines the capacity for increasing climate-smart agriculture (CSA) aspects of existing traditional milpa practices, specifically no-burn mulching, soil enrichment, and the use of cover plants. Applying community capitals and socio-ecological systems frameworks, this study finds four key capitals were perceived by farmers and agriculture extension leaders as barriers for increasing CSA practices: (1) human-capacity, (2) financial, (3) infrastructure, and (4) governance-justice capitals. The key barriers include a lack of CSA technology and pest management knowledge-sharing (human-capacity), unreliable roads and utility services (infrastructure), the closure of small markets and crop-buying programs in Belize (financial), and constraints on extension services and exacerbating a sense of marginalization in Maya communities (governance-justice). Recommendations are presented for government action to reduce barriers and facilitate an increase in milpa crop productivity, promote food and livelihood security, and enable climate resilience of Mayan milpa communities in Belize.Keywords: socio-ecological systems, community capitals, climate-smart agriculture, food security, milpa, Belize
Procedia PDF Downloads 9115859 Effect of Packaging Material and Water-Based Solutions on Performance of Radio Frequency Identification for Food Packaging Applications
Authors: Amelia Frickey, Timothy (TJ) Sheridan, Angelica Rossi, Bahar Aliakbarian
Abstract:
The growth of large food supply chains demanded improved end-to-end traceability of food products, which has led to companies being increasingly interested in using smart technologies such as Radio Frequency Identification (RFID)-enabled packaging to track items. As technology is being widely used, there are several technological or economic issues that should be overcome to facilitate the adoption of this track-and-trace technology. One of the technological challenges of RFID technology is its sensitivity to different environmental form factors, including packaging materials and the content of the packaging. Although researchers have assessed the performance loss due to the proximity of water and aqueous solutions, there is still the need to further investigate the impacts of food products on the reading range of RFID tags. However, to the best of our knowledge, there are not enough studies to determine the correlation between RFID tag performance and food beverages properties. The goal of this project was to investigate the effect of the solution properties (pH and conductivity) and different packaging materials filled with food-like water-based solutions on the performance of an RFID tag. Three commercially available ultra high-frequency RFID tags were placed on three different bottles and filled with different concentrations of water-based solutions, including sodium chloride, citric acid, sucrose, and ethanol. Transparent glass, Polyethylneterephtalate (PET), and Tetrapak® were used as the packaging materials commonly used in the beverage industries. Tag readability (Theoretical Read Range, TRR) and sensitivity (Power on Tag Forward, PoF) were determined using an anechoic chamber. First, the best place to attach the tag for each packaging material was investigated using empty and water-filled bottles. Then, the bottles were filled with the food-like solutions and tested with the three different tags and the PoF and TRR at the fixed frequency of 915MHz. In parallel, the pH and conductivity of solutions were measured. The best-performing tag was then selected to test the bottles filled with wine, orange, and apple juice. Despite various solutions altering the performance of each tag, the change in tag performance had no correlation with the pH or conductivity of the solution. Additionally, packaging material played a significant role in tag performance. Each tag tested performed optimally under different conditions. This study is the first part of comprehensive research to determine the regression model for the prediction of tag performance behavior based on the packaging material and the content. More investigations, including more tags and food products, are needed to be able to develop a robust regression model. The results of this study can be used by RFID tag manufacturers to design suitable tags for specific products with similar properties.Keywords: smart food packaging, supply chain management, food waste, radio frequency identification
Procedia PDF Downloads 11415858 Study on Buckling and Yielding Behaviors of Low Yield Point Steel Plates
Authors: David Boyajian, Tadeh Zirakian
Abstract:
Stability and performance of steel plates are characterized by geometrical buckling and material yielding. In this paper, the geometrical buckling and material yielding behaviors of low yield point (LYP) steel plates are studied from the point of view of their application in steel plate shear wall (SPSW) systems. Use of LYP steel facilitates the design and application of web plates with improved buckling and energy absorption capacities in SPSW systems. LYP steel infill plates may yield first and then undergo inelastic buckling. Hence, accurate determination of the limiting plate thickness corresponding to simultaneous buckling and yielding can be effective in seismic design of such lateral force-resisting and energy dissipating systems. The limiting thicknesses of plates with different loading and support conditions are determined theoretically and verified through detailed numerical simulations. Effects of use of LYP steel and plate aspect ratio parameter on the limiting plate thickness are investigated as well. In addition, detailed studies are performed on determination of the limiting web-plate thickness in code-designed SPSWs. Some practical recommendations are accordingly provided for efficient seismic design of SPSW systems with LYP steel infill plates.Keywords: buckling, low yield point steel, plates, steel plate shear walls, yielding
Procedia PDF Downloads 40115857 Addressing Water Scarcity in Gomti Nagar, Lucknow, India: Assessing the Effectiveness of Rooftop Rainwater Harvesting Systems
Authors: Rajkumar Ghosh
Abstract:
Water scarcity is a significant challenge in urban areas, even in smart cities (Lucknow, Bangalore, Jaipur, etc.) where efficient resource management is prioritized. The depletion of groundwater resources in Gomti Nagar, Lucknow, Uttar Pradesh, India is particularly severe, posing a significant challenge for sustainable development in the region. This study focuses on addressing the water shortage by investigating the effectiveness of rooftop rainwater harvesting systems (RTRWHs) as a sustainable approach to bridge the gap between groundwater recharge and extraction. The aim of this study is to assess the effectiveness of RTRWHs in reducing aquifer depletion and addressing the water scarcity issue in the Gomti Nagar region. The research methodology involves the utilization of RTRWHs as the primary method for collecting rainwater. RTRWHs will be implemented in residential and commercial buildings to maximize the collection of rainwater. Data for this study were collected through various sources such as government reports, surveys, and existing groundwater abstraction patterns. Statistical analysis and modelling techniques were employed to assess the current water situation, groundwater depletion rate, and the potential impact of implementing RTRWHs. The study reveals that the installation of RTRWHs in the Gomti Nagar region has a positive impact on addressing the water scarcity issue. Currently, RTRWHs cover only a small percentage of the total rainfall collected in the region. However, when RTRWHs are installed in all buildings, their influence on increasing water availability and reducing aquifer depletion will be significantly greater. The study also highlights the significant water imbalance in the region, emphasizing the urgent need for sustainable water management practices. This research contributes to the theoretical understanding of sustainable water management systems in smart cities. By highlighting the effectiveness of RTRWHs in reducing aquifer depletion, it emphasizes the importance of implementing such systems in urban areas. Data for this study were collected through various sources such as government reports, surveys, and existing groundwater abstraction patterns. The collected data were then analysed using statistical analysis and modelling techniques to assess the current water situation, groundwater depletion rate, and the potential impact of implementing RTRWHs. The findings of this study demonstrate that the implementation of RTRWHs can effectively mitigate the water scarcity crisis in Gomti Nagar. By reducing aquifer depletion and bridging the gap between groundwater recharge and extraction, RTRWHs offer a sustainable solution to the region's water scarcity challenges. Widespread adoption of RTRWHs in all buildings and integration into urban planning and development processes are crucial for efficient water management in smart cities like Gomti Nagar. These findings can serve as a basis for policymakers, urban planners, and developers to prioritize and incentivize the installation of RTRWHs as a potential solution to the water shortage crisis.Keywords: water scarcity, urban areas, smart cities, resource management, groundwater depletion, rooftop rainwater harvesting systems, sustainable development, sustainable water management, mitigating water scarcity
Procedia PDF Downloads 7615856 Energy Efficient Massive Data Dissemination Through Vehicle Mobility in Smart Cities
Authors: Salman Naseer
Abstract:
One of the main challenges of operating a smart city (SC) is collecting the massive data generated from multiple data sources (DS) and to transmit them to the control units (CU) for further data processing and analysis. These ever-increasing data demands require not only more and more capacity of the transmission channels but also results in resource over-provision to meet the resilience requirements, thus the unavoidable waste because of the data fluctuations throughout the day. In addition, the high energy consumption (EC) and carbon discharges from these data transmissions posing serious issues to the environment we live in. Therefore, to overcome the issues of intensive EC and carbon emissions (CE) of massive data dissemination in Smart Cities, we propose an energy efficient and carbon reduction approach by utilizing the daily mobility of the existing vehicles as an alternative communications channel to accommodate the data dissemination in smart cities. To illustrate the effectiveness and efficiency of our approach, we take the Auckland City in New Zealand as an example, assuming massive data generated by various sources geographically scattered throughout the Auckland region to the control centres located in city centre. The numerical results show that our proposed approach can provide up to 5 times lower delay as transferring the large volume of data by utilizing the existing daily vehicles’ mobility than the conventional transmission network. Moreover, our proposed approach offers about 30% less EC and CE than that of conventional network transmission approach.Keywords: smart city, delay tolerant network, infrastructure offloading, opportunistic network, vehicular mobility, energy consumption, carbon emission
Procedia PDF Downloads 14215855 IAM Smart – A Sustainable Way to Reduce Plastics in Organizations
Authors: Krithika Kumaragurubaran, Mannu Thareja
Abstract:
Saving our planet Earth is the responsibility of every human being. Global warming and carbon emissions are killing our planet. We must adopt sustainable practices to give our future generations an equal opportunity to enjoy this planet Earth, our home. One of the most used unsustainable materials is plastic. Plastics are used everywhere. They are cheap, durable, strong, waterproof, non-corrosive with a long life. So longthat it makes plastic unsustainable. With this paper, we want to bring awareness on the usage of plastic in the organizations and how to reduce it by adopting sustainable practices powered by technology. We have taken a case study on the usage of photo ID cards, which are commonly used for authentication and authorization. These ID cards are used by employees or visitors to get access to the restricted areas inside the office buildings. The scale of these plastic cards can be in thousands for a bigger organization. This paper proposes smart alternatives to Identity and Access Management (IAM) which could replace the traditional method of using plastic ID cards. Further, the proposed solution is secure with multi-factor authentication (MFA), cost effective as there is no need to manage the supply chain of ID cards, provides instant IAM with self-service, and has the convenience of smart phone. Smart IAM is not only user friendly however also environment friendly.Keywords: sustainability, reduce plastic, IAM (Identity and Access Management), multi-factor authentication
Procedia PDF Downloads 11015854 Highway Lighting of the 21st Century is Smart, but is it Cost Efficient?
Authors: Saurabh Gupta, Vanshdeep Parmar, Sri Harsha Reddy Yelly, Michele Baker, Elizabeth Bigler, Kunhee Choi
Abstract:
It is known that the adoption of solar powered LED highway lighting systems or sensory LED highway lighting systems can dramatically reduce energy consumption by 55 percent when compared to conventional on-grid High Pressure Sodium (HPS) lamps that are widely applied to most highways. However, an initial high installation cost for building the infrastructure of solar photovoltaic devices hampers a wider adoption of such technologies. This research aims to examine currently available state-of-the-art solar photovoltaic and sensory technologies, identify major obstacles, and analyze each technology to create a benchmarking metrics from the benefit-cost analysis perspective. The on-grid HPS lighting systems will serve as the baseline for this study to compare it with other lighting alternatives such as solar and sensory LED lighting systems. This research will test the validity of the research hypothesis that alternative LED lighting systems produce more favorable benefit-cost ratios and the added initial investment costs are recouped by the savings in the operation and maintenance cost. The payback period of the excess investment and projected savings over the life-cycle of the selected lighting systems will be analyzed by utilizing the concept of Net Present Value (NPV). Researchers believe that if this study validates the research hypothesis, it can promote a wider adoption of alternative lighting systems that will eventually save millions of taxpayer dollars in the long-run.Keywords: lighting systems, sensory and solar PV, benefit cost analysis, net present value
Procedia PDF Downloads 35115853 Application of the Material Point Method as a New Fast Simulation Technique for Textile Composites Forming and Material Handling
Authors: Amir Nazemi, Milad Ramezankhani, Marian Kӧrber, Abbas S. Milani
Abstract:
The excellent strength to weight ratio of woven fabric composites, along with their high formability, is one of the primary design parameters defining their increased use in modern manufacturing processes, including those in aerospace and automotive. However, for emerging automated preform processes under the smart manufacturing paradigm, complex geometries of finished components continue to bring several challenges to the designers to cope with manufacturing defects on site. Wrinklinge. g. is a common defectoccurring during the forming process and handling of semi-finished textile composites. One of the main reasons for this defect is the weak bending stiffness of fibers in unconsolidated state, causing excessive relative motion between them. Further challenges are represented by the automated handling of large-area fiber blanks with specialized gripper systems. For fabric composites forming simulations, the finite element (FE)method is a longstanding tool usedfor prediction and mitigation of manufacturing defects. Such simulations are predominately meant, not only to predict the onset, growth, and shape of wrinkles but also to determine the best processing condition that can yield optimized positioning of the fibers upon forming (or robot handling in the automated processes case). However, the need for use of small-time steps via explicit FE codes, facing numerical instabilities, as well as large computational time, are among notable drawbacks of the current FEtools, hindering their extensive use as fast and yet efficient digital twins in industry. This paper presents a novel woven fabric simulation technique through the application of the material point method (MPM), which enables the use of much larger time steps, facing less numerical instabilities, hence the ability to run significantly faster and efficient simulationsfor fabric materials handling and forming processes. Therefore, this method has the ability to enhance the development of automated fiber handling and preform processes by calculating the physical interactions with the MPM fiber models and rigid tool components. This enables the designers to virtually develop, test, and optimize their processes based on either algorithmicor Machine Learning applications. As a preliminary case study, forming of a hemispherical plain weave is shown, and the results are compared to theFE simulations, as well as experiments.Keywords: material point method, woven fabric composites, forming, material handling
Procedia PDF Downloads 18115852 Importance of E-Participation by U-Society in the Development of the U-City
Authors: Jalaluddin Abdul Malek, Mohd Asruladlyi Ibrahim, Zurinah Tahir
Abstract:
This paper is to reveal developments in the areas of urban technology in Malaysia. Developments occur intend to add value intelligent city development to the ubiquitous city (U-city) or smart city. The phenomenon of change is called the development of post intelligent cities. U-City development discourse is seen from the perspective of the philosophy of the virtuous city organized by al-Farabi. The prosperity and perfection of a city is mainly caused by human personality factors, as well as its relationship with material and technological aspects of the city. The question is, to what extent to which human factors are taken into account in the concept of U-City as an added value to the intelligent city concept to realize the prosperity and perfection of the city? Previously, the intelligent city concept was developed based on global change and ICT movement, while the U-city added value to the development of intelligent cities and focused more on the development of information and communications technology (ICT). Value added is defined as the use of fiber optic technology that is wired to the use of wireless technology, such as wireless broadband. In this discourse, the debate on the concept of U-City is to the symbiosis between the U-City and the importance of local human e-participation (U-Society) for prosperity. In the context of virtuous city philosophy, it supports the thought of symbiosis so the concept of U-City can achieve sustainability, prosperity and perfection of the city.Keywords: smart city, ubiquitous city, u-society, e-participation, prosperity
Procedia PDF Downloads 27415851 Rooftop Rainwater Harvesting for Sustainable Organic Farming: Insights from Smart cities in India
Authors: Rajkumar Ghosh
Abstract:
India faces a critical task of water shortage, specifically during dry seasons, which adversely impacts agricultural productivity and food protection. Natural farming, specializing in sustainable practices, demands green water management in smart cities in India. This paper examines how rooftop rainwater harvesting (RRWH) can alleviate water scarcity and support sustainable organic farming practices in India. RRWH emerges as a promising way to increase water availability for the duration of dry intervals and decrease reliance on traditional water sources in smart cities. The look at explores the capacity of RRWH to enhance water use performance, help crop growth, enhance soil health, and promote ecological stability inside the farming ecosystem. The medical paper delves into the advantages, challenges, and implementation techniques of RRWH in organic farming. It addresses demanding situations, including seasonal variability of rainfall, limited rooftop vicinity, and monetary concerns. Moreover, it analyses broader environmental and socio-economic implications of RRWH for sustainable agriculture, emphasizing water conservation, biodiversity protection, and the social properly-being of farming communities. The belief underscores the importance of RRWH as a sustainable solution for reaching the aim of sustainable agriculture in natural farming in India. It emphasizes the want for further studies, policy advocacy, and capacity-building initiatives to promote RRWH adoption and assist the transformation in the direction of sustainable organic farming systems. The paper proposes adaptive strategies to triumph over demanding situations and optimize the advantages of RRWH in organic farming. By way of doing so, India can make vast development in addressing water scarcity issues and making sure a greater resilient and sustainable agricultural future in smart cities.Keywords: rooftop rainwater harvesting, organic farming, green water management, food protection, ecological stabilty
Procedia PDF Downloads 10215850 Strategies for a Sustainable Neighbourhood in a Smart City: A Case of Pattoor, Thiruvananthapuram
Authors: Vijaya Nhaloor, Suja Kumari Leela, Jose Devadasan
Abstract:
Planning of neighbourhood development strategies in Tier 2 Indian city is highly significant when it has also been selected as a Smart city by the Ministry of Urban Development in India. Smart city mission of India proposes the development of infrastructure in a city in an inclusive way. Thiruvananthapuram, the capital city of Kerala state, India, has been selected as the city to conduct the research. The master plan for the city of Thiruvananthapuram envisions it as a Compact city and proposes densification as a tool for development. Densification may adversely affect the quality of life after a tipping point. This may lead to urban decay which in turn directly or indirectly affects the surrounding neighbourhoods also, thus spreading blight areas in the city. The author thinks that density in urban planning is not a well detailed subject in India, with respect to its varied links on infrastructure, quality of life, transportation, scope of vertical planning, affordability etc. Neighbourhoods are vital tissues of an urban area, and their development directly affects the development of the region. The methodology would involve skimming of proactive neighbourhood planning principles compatible with the Smart city mission in India. United Nations proposes sustainability as a way of planning development of a neighbourhood. After defining various terminologies involved, a framework shall be developed to analyse an existing neighbourhood and prepare planning guidelines in a sustainable manner. The framework shall comply with international and national policy guidelines. The research shall explore and identify a neighbourhood with the potential to meet the housing demand from the investment regions nearby and analyse its potential and weakness as per this framework. Later, a set of indicators shall be enlisted to guide the development of the neighbourhood, leading to recommendations that shall serve as a replicable model for the other neighbourhoods in the Smart city.Keywords: key indicators, neighbourhood planning, sustainability, smart city
Procedia PDF Downloads 14915849 Data Management and Analytics for Intelligent Grid
Authors: G. Julius P. Roy, Prateek Saxena, Sanjeev Singh
Abstract:
Power distribution utilities two decades ago would collect data from its customers not later than a period of at least one month. The origin of SmartGrid and AMI has subsequently increased the sampling frequency leading to 1000 to 10000 fold increase in data quantity. This increase is notable and this steered to coin the tern Big Data in utilities. Power distribution industry is one of the largest to handle huge and complex data for keeping history and also to turn the data in to significance. Majority of the utilities around the globe are adopting SmartGrid technologies as a mass implementation and are primarily focusing on strategic interdependence and synergies of the big data coming from new information sources like AMI and intelligent SCADA, there is a rising need for new models of data management and resurrected focus on analytics to dissect data into descriptive, predictive and dictatorial subsets. The goal of this paper is to is to bring load disaggregation into smart energy toolkit for commercial usage.Keywords: data management, analytics, energy data analytics, smart grid, smart utilities
Procedia PDF Downloads 77915848 Experimental and Numerical Studies of Droplet Formation
Authors: Khaled Al-Badani, James Ren, Lisa Li, David Allanson
Abstract:
Droplet formation is an important process in many engineering systems and manufacturing procedures, which includes welding, biotechnologies, 3D printing, biochemical, biomedical fields and many more. The volume and the characteristics of droplet formation are generally depended on various material properties, microfluidics and fluid mechanics considerations. Hence, a detailed investigation of this process, with the aid of numerical computational tools, are essential for future design optimization and process controls of many engineering systems. This will also improve the understanding of changes in the properties and the structures of materials, during the formation of the droplet, which is important for new material developments to achieve different functions, pending the requirements of the application. For example, the shape of the formed droplet is critical for the function of some final products, such as the welding nugget during Capacitor Discharge Welding process, or PLA 3D printing, etc. Although, most academic journals on droplet formation, focused on issued with material transfer rate, surface tension and residual stresses, the general emphasis on the characteristics of droplet shape has been overlooked. The proposed work for this project will examine theoretical methodologies, experimental techniques, and numerical modelling, using ANSYS FLUENT, to critically analyse and highlight optimization methods regarding the formation of pendant droplet. The project will also compare results from published data with experimental and numerical work, concerning the effects of key material parameters on the droplet shape. These effects include changes in heating/cooling rates, solidification/melting progression and separation/break-up times. From these tests, a set of objectives is prepared, with an intention of improving quality, stability and productivity in modelling metal welding and 3D printing.Keywords: computer modelling, droplet formation, material distortion, materials forming, welding
Procedia PDF Downloads 28615847 3D-Vehicle Associated Research Fields for Smart City via Semantic Search Approach
Authors: Haluk Eren, Mucahit Karaduman
Abstract:
This paper presents 15-year trends for scientific studies in a scientific database considering 3D and vehicle words. Two words are selected to find their associated publications in IEEE scholar database. Both of keywords are entered individually for the years 2002, 2012, and 2016 on the database to identify the preferred subjects of researchers in same years. We have classified closer research fields after searching and listing. Three years (2002, 2012, and 2016) have been investigated to figure out progress in specified time intervals. The first one is assumed as the initial progress in between 2002-2012, and the second one is in 2012-2016 that is fast development duration. We have found very interesting and beneficial results to understand the scholars’ research field preferences for a decade. This information will be highly desirable in smart city-based research purposes consisting of 3D and vehicle-related issues.Keywords: Vehicle, three-dimensional, smart city, scholarly search, semantic
Procedia PDF Downloads 32815846 The Role of Climate-Smart Agriculture in the Contribution of Small-Scale Farming towards Ensuring Food Security in South Africa
Authors: Victor O. Abegunde, Melusi Sibanda
Abstract:
There is need for a great deal of attention on small-scale agriculture for livelihood and food security because of the expanding global population. Small-scale agriculture has been identified as a major driving force of agricultural and rural development. However, the high dependence of the sector on natural and climatic resources has made small-scale farmers highly vulnerable to the adverse impact of climatic change thereby necessitating the need for embracing practices or concepts that will help absorb shocks from changes in climatic condition. This study examines the strategic position of small-scale farming in South African agriculture and in ensuring food security in the country, the vulnerability of small-scale agriculture to climate change and the potential of the concept of climate-smart agriculture to tackle the challenge of climate change. The study carried out a systematic review of peer-reviewed literature touching small-scale agriculture, climate change, food security and climate-smart agriculture, employing the realist review method. Findings revealed that increased productivity in the small-scale agricultural sector has a great potential of improving the food security of households in South Africa and reducing dependence on food purchase in a context of high food price inflation. Findings, however, also revealed that climate change affects small-scale subsistence farmers in terms of productivity, food security and family income, categorizing the impact on smallholder livelihoods into three major groups; biological processes, environmental and physical processes and impact on health. Analysis of the literature consistently showed that climate-smart agriculture integrates the benefits of adaptation and resilience to climate change, mitigation, and food security. As a result, farming households adopting climate-smart agriculture will be better off than their counterparts who do not. This study concludes that climate-smart agriculture could be a very good bridge linking small-scale agricultural sector and agricultural productivity and development which could bring about the much needed food security.Keywords: climate change, climate-smart agriculture, food security, small-scale
Procedia PDF Downloads 24115845 Nanotechnology in Construction as a Building Security
Authors: Hanan Fayez Hussein
Abstract:
‘Due to increasing environmental challenges and security problems in the world such as global warming, storms, and terrorism’, humans have discovered new technologies and new materials in order to program daily life. As providing physical and psychological security is one of the primary functions of architecture, so in order to provide security, building must prevents unauthorized entry and harm to occupant and reduce the threat of attack by making building less attractive targets by new technologies such as; Nanotechnology, which has emerged as a major science and technology focus of the 21st century and will be the next industrial revolution. Nanotechnology is control of the properties of matter, and it deals with structures of the size 100 nanometers or smaller in at least one dimension and has wide application in various fields. The construction and architecture sectors were among the first to be identified as a promising application area for nanotechnology. The advantages of using nanomaterials in construction are enormous, and promises heighten building security by utilizing the strength of building materials to make our buildings more secure and get smart home. Access barriers such as wall and windows could incorporate stronger materials benefiting from nano-reinforcement utilizing nanotubes and nano composites to act as protective cover. Carbon nanotubes, as one of nanotechnology application, can be designed up to 250 times stronger than steel. Nano-enabled devices and materials offer both enhanced and, in some cases, completely new defence systems. In the addition, the small amount of carbon nanoparticles to the construction materials such as; cement, concrete, wood, glass, gypson, and steel can make these materials act as defence elements. This paper highlights the fact that nanotechnology can impact the future global security and how building’s envelop can act as a defensive cover for the building and can be resistance to any threats can attack it. Then focus on its effect on construction materials such as; Concrete can obtain by nanoadditives excellent mechanical, chemical, and physical properties with less material, which can acts as a precautionary shield to the building.Keywords: nanomaterial, global warming, building security, smart homes
Procedia PDF Downloads 8215844 A Review of BIM Applications for Heritage and Historic Buildings: Challenges and Solutions
Authors: Reza Yadollahi, Arash Hejazi, Dante Savasta
Abstract:
Building Information Modeling (BIM) is growing so fast in construction projects around the world. Considering BIM's weaknesses in implementing existing heritage and historical buildings, it is critical to facilitate BIM application for such structures. One of the pieces of information to build a model in BIM is to import material and its characteristics. Material library is essential to speed up the entry of project information. To save time and prevent cost overrun, a BIM object material library should be provided. However, historical buildings' lack of information and documents is typically a challenge in renovation and retrofitting projects. Due to the lack of case documents for historic buildings, importing data is a time-consuming task, which can be improved by creating BIM libraries. Based on previous research, this paper reviews the complexities and challenges in BIM modeling for heritage, historic, and architectural buildings. Through identifying the strengths and weaknesses of the standard BIM systems, recommendations are provided to enhance the modeling platform.Keywords: building Information modeling, historic, heritage buildings, material library
Procedia PDF Downloads 11715843 Hand Movements and the Effect of Using Smart Teaching Aids: Quality of Writing Styles Outcomes of Pupils with Dysgraphia
Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Sajedah Al Yaari, Adham Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Ayah Al Yaari, Fatehi Eissa
Abstract:
Dysgraphia is a neurological disorder of written expression that impairs writing ability and fine motor skills, resulting primarily in problems relating not only to handwriting but also to writing coherence and cohesion. We investigate the properties of smart writing technology to highlight some unique features of the effects they cause on the academic performance of pupils with dysgraphia. In Amis, dysgraphics undergo writing problems to express their ideas due to ordinary writing aids, as the default strategy. The Amis data suggests a possible connection between available writing aids and pupils’ writing improvement; therefore, texts’ expression and comprehension. A group of thirteen dysgraphic pupils were placed in a regular classroom of primary school, with twenty-one pupils being recruited in the study as a control group. To ensure validity, reliability and accountability to the research, both groups studied writing courses for two semesters, of which the first was equipped with smart writing aids while the second took place in an ordinary classroom. Two pre-tests were undertaken at the beginning of the first two semesters, and two post-tests were administered at the end of both semesters. Tests examined pupils’ ability to write coherent, cohesive and expressive texts. The dysgraphic group received the treatment of a writing course in the first semester in classes with smart technology and produced significantly greater increases in writing expression than in an ordinary classroom, and their performance was better than that of the control group in the second semester. The current study concludes that using smart teaching aids is a ‘MUST’, both for teaching and learning dysgraphia. Furthermore, it is demonstrated that for young dysgraphia, expressive tasks are more challenging than coherent and cohesive tasks. The study, therefore, supports the literature suggesting a role for smart educational aids in writing and that smart writing techniques may be an efficient addition to regular educational practices, notably in special educational institutions and speech-language therapeutic facilities. However, further research is needed to prompt the adults with dysgraphia more often than is done to the older adults without dysgraphia in order to get them to finish the other productive and/or written skills tasks.Keywords: smart technology, writing aids, pupils with dysgraphia, hands’ movement
Procedia PDF Downloads 3715842 [Keynote]: No-Trust-Zone Architecture for Securing Supervisory Control and Data Acquisition
Authors: Michael Okeke, Andrew Blyth
Abstract:
Supervisory Control And Data Acquisition (SCADA) as the state of the art Industrial Control Systems (ICS) are used in many different critical infrastructures, from smart home to energy systems and from locomotives train system to planes. Security of SCADA systems is vital since many lives depend on it for daily activities and deviation from normal operation could be disastrous to the environment as well as lives. This paper describes how No-Trust-Zone (NTZ) architecture could be incorporated into SCADA Systems in order to reduce the chances of malicious intent. The architecture is made up of two distinctive parts which are; the field devices such as; sensors, PLCs pumps, and actuators. The second part of the architecture is designed following lambda architecture, which is made up of a detection algorithm based on Particle Swarm Optimization (PSO) and Hadoop framework for data processing and storage. Apache Spark will be a part of the lambda architecture for real-time analysis of packets for anomalies detection.Keywords: industrial control system (ics, no-trust-zone (ntz), particle swarm optimisation (pso), supervisory control and data acquisition (scada), swarm intelligence (SI)
Procedia PDF Downloads 34515841 Self-Sensing Concrete Nanocomposites for Smart Structures
Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi
Abstract:
In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.Keywords: carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring
Procedia PDF Downloads 22715840 Effect of Impact Angle on Erosive Abrasive Wear of Ductile and Brittle Materials
Authors: Ergin Kosa, Ali Göksenli
Abstract:
Erosion and abrasion are wear mechanisms reducing the lifetime of machine elements like valves, pump and pipe systems. Both wear mechanisms are acting at the same time, causing a “Synergy” effect, which leads to a rapid damage of the surface. Different parameters are effective on erosive abrasive wear rate. In this study effect of particle impact angle on wear rate and wear mechanism of ductile and brittle materials was investigated. A new slurry pot was designed for experimental investigation. As abrasive particle, silica sand was used. Particle size was ranking between 200-500 µm. All tests were carried out in a sand-water mixture of 20% concentration for four hours. Impact velocities of the particles were 4,76 m/s. As ductile material steel St 37 with Brinell Hardness Number (BHN) of 245 and quenched St 37 with 510 BHN was used as brittle material. After wear tests, morphology of the eroded surfaces were investigated for better understanding of the wear mechanisms acting at different impact angles by using optical microscopy and Scanning Electron Microscope. The results indicated that wear rate of ductile material was higher than brittle material. Maximum wear was observed by ductile material at a particle impact angle of 300. On the contrary wear rate increased by brittle materials by an increase in impact angle and reached maximum value at 450. High amount of craters were detected after observation on ductile material surface Also plastic deformation zones were detected, which are typical failure modes for ductile materials. Craters formed by particles were deeper according to brittle material worn surface. Amount of craters decreased on brittle material surface. Microcracks around craters were detected which are typical failure modes of brittle materials. Deformation wear was the dominant wear mechanism on brittle material. At the end it is concluded that wear rate could not be directly related to impact angle of the hard particle due to the different responses of ductile and brittle materials.Keywords: erosive wear, particle impact angle, silica sand, wear rate, ductile-brittle material
Procedia PDF Downloads 40115839 Monocoque Systems: The Reuniting of Divergent Agencies for Wood Construction
Authors: Bruce Wrightsman
Abstract:
Construction and design are inexorably linked. Traditional building methodologies, including those using wood, comprise a series of material layers differentiated and separated from each other. This results in the separation of two agencies of building envelope (skin) separate from the structure. However, from a material performance position reliant on additional materials, this is not an efficient strategy for the building. The merits of traditional platform framing are well known. However, its enormous effectiveness within wood-framed construction has seldom led to serious questioning and challenges in defining what it means to build. There are several downsides of using this method, which is less widely discussed. The first and perhaps biggest downside is waste. Second, its reliance on wood assemblies forming walls, floors and roofs conventionally nailed together through simple plate surfaces is structurally inefficient. It requires additional material through plates, blocking, nailers, etc., for stability that only adds to the material waste. In contrast, when we look back at the history of wood construction in airplane and boat manufacturing industries, we will see a significant transformation in the relationship of structure with skin. The history of boat construction transformed from indigenous wood practices of birch bark canoes to copper sheathing over wood to improve performance in the late 18th century and the evolution of merged assemblies that drives the industry today. In 1911, Swiss engineer Emile Ruchonnet designed the first wood monocoque structure for an airplane called the Cigare. The wing and tail assemblies consisted of thin, lightweight, and often fabric skin stretched tightly over a wood frame. This stressed skin has evolved into semi-monocoque construction, in which the skin merges with structural fins that take additional forces. It provides even greater strength with less material. The monocoque, which translates to ‘mono or single shell,’ is a structural system that supports loads and transfers them through an external enclosure system. They have largely existed outside the domain of architecture. However, this uniting of divergent systems has been demonstrated to be lighter, utilizing less material than traditional wood building practices. This paper will examine the role monocoque systems have played in the history of wood construction through lineage of boat and airplane building industries and its design potential for wood building systems in architecture through a case-study examination of a unique wood construction approach. The innovative approach uses a wood monocoque system comprised of interlocking small wood members to create thin shell assemblies for the walls, roof and floor, increasing structural efficiency and wasting less than 2% of the wood. The goal of the analysis is to expand the work of practice and the academy in order to foster deeper, more honest discourse regarding the limitations and impact of traditional wood framing.Keywords: wood building systems, material histories, monocoque systems, construction waste
Procedia PDF Downloads 7815838 Using Tyre Ash as Ground Resistance Improvement Material-Health and Environmental Perspective
Authors: George Eduful, Dominic Yeboah, Kingsford Joseph A. Atanga
Abstract:
The use of tyre ash as backfill material for ground electrode has been found to provide ultra-low and stable ground resistance value for grounding systems. However, health and environmental concerns have been expressed regarding its application. To address these concerns, the paper investigates chemical contents of the tyre ash and compares them to levels considered non-hazardous to health and the environment. It was found that the levels of the pollutant agents in the tyre ash were within the recommended safety margins. The rate of ground electrode corrosion in tyre ash material was also investigated. It was found that the effect of corrosion and the life of electrode can be extended if the tyre ash is mixed with cement. For best results, a ratio of 10 portions of tyre ash to 1 portion of cement is recommended.Keywords: tyre ash, scrapped tyre, ground resistance reducing agent, rate of corrosion
Procedia PDF Downloads 40415837 New Environmentally Friendly Material for the Purification of the Fresh Water from Oil Pollution
Authors: M. A. Ashour
Abstract:
As it is known Egypt is one of the countries having oldest sugarcane industry, which goes back to the year 710 AD. Cane plantations are the main agricultural product in five governorates in Upper Egypt (El-Menia, Sohag, Qena, Luxor, and Aswan), producing not less than 16 million tons a year. Eight factories (Abou-korkas, Gena, Nagaa-Hamadi, Deshna, Kous, Armant, Edfuo, and Komombo), located in such upper Egypt governorates generates huge amount of wastes during the manufacturing stage, the so called bagasse which is the fibrous, and cellulosic materials remaining after the era of the sugarcane and the juice extraction, presents about 30% of such wastes. The amount of bagasse generated yearly through the manufacturing stage of the above mentioned 8 factories is approximately about 2.8 million tons, getting red safely of such huge amount, presents a serious environmental problem. Storage of that material openly in the so hot climate in upper Egypt, may cause its self-ignition under air temperature reaches 50 degrees centigrade in summer, due to the remained residual content of sugar. At the same time preparing places for safely storage for such amount is very expensive with respect to the valueless of it. So the best way for getting rid of bagasse is converting it into an added value environmentally friendly material, especially till now the utilization of it is so limited. Since oil pollution became a serious concern, the issue of environmental cleaning arises. With the structure of sugarcane bagasse, which contains fiber and high content of carbon, it can be an adsorbent to adsorb the oil contamination from the water. The present study is a trail to introduce a new material for the purification of water systems to score two goals at once, the first is getting rid of that harmful waste safely, the second is converting it to a commercial valuable material for cleaning, and purifying the water from oil spills, and petroleum pollution. Introduced the new material proved very good performance, and higher efficiency than other similar materials available in the local market, in both closed and open systems. The introduced modified material can absorb 10 times its weight of oil, while don't absorb any water.Keywords: environment, water resources, agricultural wastes, oil pollution control, sugarcane
Procedia PDF Downloads 18915836 A Blockchain-Based Privacy-Preserving Physical Delivery System
Authors: Shahin Zanbaghi, Saeed Samet
Abstract:
The internet has transformed the way we shop. Previously, most of our purchases came in the form of shopping trips to a nearby store. Now, it’s as easy as clicking a mouse. But with great convenience comes great responsibility. We have to be constantly vigilant about our personal information. In this work, our proposed approach is to encrypt the information printed on the physical packages, which include personal information in plain text, using a symmetric encryption algorithm; then, we store that encrypted information into a Blockchain network rather than storing them in companies or corporations centralized databases. We present, implement and assess a blockchain-based system using Ethereum smart contracts. We present detailed algorithms that explain the details of our smart contract. We present the security, cost, and performance analysis of the proposed method. Our work indicates that the proposed solution is economically attainable and provides data integrity, security, transparency, and data traceability.Keywords: blockchain, Ethereum, smart contract, commit-reveal scheme
Procedia PDF Downloads 14915835 Models, Methods and Technologies for Protection of Critical Infrastructures from Cyber-Physical Threats
Authors: Ivan Župan
Abstract:
Critical infrastructure is essential for the functioning of a country and is designated for special protection by governments worldwide. Due to the increase in smart technology usage in every facet of the industry, including critical infrastructure, the exposure to malicious cyber-physical attacks has grown in the last few years. Proper security measures must be undertaken in order to defend against cyber-physical threats that can disrupt the normal functioning of critical infrastructure and, consequently the functioning of the country. This paper provides a review of the scientific literature of models, methods and technologies used to protect from cyber-physical threats in industries. The focus of the literature was observed from three aspects. The first aspect, resilience, concerns itself with the robustness of the system’s defense against threats, as well as preparation and education about potential future threats. The second aspect concerns security risk management for systems with cyber-physical aspects, and the third aspect investigates available testbed environments for testing developed models on scaled models of vulnerable infrastructure.Keywords: critical infrastructure, cyber-physical security, smart industry, security methodology, security technology
Procedia PDF Downloads 7515834 Reduction of Energy Consumption Using Smart Home Techniques in the Household Sector
Authors: Ahmed Al-Adaileh, Souheil Khaddaj
Abstract:
Outcomes of exhaustion of natural resources started influencing each spirit on this planet. Energy is an essential factor in this aspect. To restore the circumstance to the appropriate track, all attempts must focus on two fundamental branches: producing electricity from clean and renewable reserves and decreasing the overall unnecessary consumption of energy. The focal point of this paper will be on lessening the power consumption in the household's segment. This paper is an attempt to give a clear understanding of a framework called Reduction of Energy Consumption in Household Sector (RECHS) and how it should help householders to reduce their power consumption by substituting their household appliances, turning-off the appliances when stand-by modus is detected, and scheduling their appliances operation periods. Technically, the framework depends on utilizing Z-Wave compatible plug-ins which will be connected to the usual house devices to gauge and control them remotely and semi-automatically. The suggested framework underpins numerous quality characteristics, for example, integrability, scalability, security and adaptability.Keywords: smart energy management systems, internet of things, wireless mesh networks, microservices, cloud computing, big data
Procedia PDF Downloads 195