Search results for: quality assurance evaluation models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20588

Search results for: quality assurance evaluation models

20258 Accessible Sustainability Assessment Tools and Approach of the University level Academic Programs

Authors: S. K. Ashiquer Rahman

Abstract:

The innovative knowledge threshold significantly shifted education from traditional to an online version which was an emergent state of arts for academic programs of any higher education institutions; the substantive situation thus raises the importance of deliberative integration of education, Knowledge, technology and sustainability as well as knowledge platforms, e.g., ePLANETe. In fact, the concept of 'ePLANETe' an innovative knowledge platform and its functionalities as an experimental digitized platform for contributing sustainable assessment of academic programs of higher education institution(HEI). Besides, this paper assessed and define the common sustainable development challenges of higher education(HE) and identified effective approach and tools of 'ePLANETe’ that is enable to practices sustainability assessment of academic programs through the deliberation methodologies. To investigate the effectiveness of knowledge tools and approach of 'ePLANETe’, I have studied sustainable challenges digitized pedagogical content as well as evaluation of academic programs of two public universities in France through the 'ePLANETe’ evaluation space. The investigation indicated that the effectiveness of 'ePLANETe’s tools and approach perfectly fit for the quality assessment of academic programs, implementation of sustainable challenges, and dynamic balance of ecosystem within the university communities and academic programs through 'ePLANETe’ evaluation process and space. The study suggests to the relevant higher educational institution’s authorities and policymakers could use this approach and tools for assessing sustainability and enhancing the sustainability competencies of academic programs for quality education

Keywords: ePLANETe, deliberation, evaluation, competencies

Procedia PDF Downloads 113
20257 Prioritizing The Evaluation factors of Hospital Information System with The Analytical Hierarchy Process

Authors: F.Sadoughi, A. Sarsarshahi, L, Eerfannia, S.M.A. Khatami

Abstract:

Hospital information systems with lots of ability would lead to health care quality improvement. Evaluation of this system has done according different method and criteria. The main goal of present study is to prioritize the most important factors which are influence these systems evaluation. At the first step, according relevant literature, three main factor and 29 subfactors extracted. Then, study framework was designed. Based on analytical hierarchical process (AHP), 28 paired comparisons with Saaty range, in a questionnaire format obtained. Questionnaires were filled by 10 experts in health information management and medical informatics field. Human factors with weight of 0.55 were ranked as the most important. Organization (0.25) and technology (0.14) were in next place. It seems MADM methods such as AHP have enough potential to use in health research and provide positive opportunities for health domain decision makers.

Keywords: Analytical hierarchy process, Multiple criteria decision-making (MCDM), Hospital information system, Evaluation factors

Procedia PDF Downloads 454
20256 Seafloor and Sea Surface Modelling in the East Coast Region of North America

Authors: Magdalena Idzikowska, Katarzyna Pająk, Kamil Kowalczyk

Abstract:

Seafloor topography is a fundamental issue in geological, geophysical, and oceanographic studies. Single-beam or multibeam sonars attached to the hulls of ships are used to emit a hydroacoustic signal from transducers and reproduce the topography of the seabed. This solution provides relevant accuracy and spatial resolution. Bathymetric data from ships surveys provides National Centers for Environmental Information – National Oceanic and Atmospheric Administration. Unfortunately, most of the seabed is still unidentified, as there are still many gaps to be explored between ship survey tracks. Moreover, such measurements are very expensive and time-consuming. The solution is raster bathymetric models shared by The General Bathymetric Chart of the Oceans. The offered products are a compilation of different sets of data - raw or processed. Indirect data for the development of bathymetric models are also measurements of gravity anomalies. Some forms of seafloor relief (e.g. seamounts) increase the force of the Earth's pull, leading to changes in the sea surface. Based on satellite altimetry data, Sea Surface Height and marine gravity anomalies can be estimated, and based on the anomalies, it’s possible to infer the structure of the seabed. The main goal of the work is to create regional bathymetric models and models of the sea surface in the area of the east coast of North America – a region of seamounts and undulating seafloor. The research includes an analysis of the methods and techniques used, an evaluation of the interpolation algorithms used, model thickening, and the creation of grid models. Obtained data are raster bathymetric models in NetCDF format, survey data from multibeam soundings in MB-System format, and satellite altimetry data from Copernicus Marine Environment Monitoring Service. The methodology includes data extraction, processing, mapping, and spatial analysis. Visualization of the obtained results was carried out with Geographic Information System tools. The result is an extension of the state of the knowledge of the quality and usefulness of the data used for seabed and sea surface modeling and knowledge of the accuracy of the generated models. Sea level is averaged over time and space (excluding waves, tides, etc.). Its changes, along with knowledge of the topography of the ocean floor - inform us indirectly about the volume of the entire water ocean. The true shape of the ocean surface is further varied by such phenomena as tides, differences in atmospheric pressure, wind systems, thermal expansion of water, or phases of ocean circulation. Depending on the location of the point, the higher the depth, the lower the trend of sea level change. Studies show that combining data sets, from different sources, with different accuracies can affect the quality of sea surface and seafloor topography models.

Keywords: seafloor, sea surface height, bathymetry, satellite altimetry

Procedia PDF Downloads 79
20255 Various Models of Quality Management Systems

Authors: Mehrnoosh Askarizadeh

Abstract:

People, process and IT are the most important assets of any organization. Optimal utilization of these resources has been the question of research in business for many decades. The business world have responded by inventing various methodologies that can be used for addressing problems of quality improvement, efficiency of processes, continuous improvement, reduction of waste, automation, strategy alignments etc. Some of these methodologies can be commonly called as Business Process Quality Management methodologies (BPQM). In essence, the first references to the process management can be traced back to Frederick Taylor and scientific management. Time and motion study was addressed to improvement of manufacturing process efficiency. The ideas of scientific management were in use for quite a long period until more advanced quality management techniques were developed in Japan and USA. One of the first prominent methods had been Total Quality Management (TQM) which evolved during 1980’s. About the same time, Six Sigma (SS) originated at Motorola as a separate method. SS spread and evolved; and later joined with ideas of Lean manufacturing to form Lean Six Sigma. In 1990’s due to emerging IT technologies, beginning of globalization, and strengthening of competition, companies recognized the need for better process and quality management. Business Process Management (BPM) emerged as a novel methodology that has taken all this into account and helped to align IT technologies with business processes and quality management. In this article we will study various aspects of above mentioned methods and identified their relations.

Keywords: e-process, quality, TQM, BPM, lean, six sigma, CPI, information technology, management

Procedia PDF Downloads 440
20254 Study on Ecological Water Demand Evaluation of Typical Mountainous Rivers in Zhejiang Province: Taking Kaihua River as an Example

Authors: Kaiping Xu, Aiju You, Lei Hua

Abstract:

In view of the ecological environmental problems and protection needs of mountainous rivers in Zhejiang province, a suitable ecological water demand evaluation system was established based on investigation and monitoring. Taking the Kaihua river as an example, the research on ecological water demand and the current situation evaluation were carried out. The main types of ecological water demand in Majin River are basic ecological flow and lake wetland outside the river, and instream flow and water demands for water quality in Zhongcun river. In the wet season, each ecological water demand is 18.05m3/s and 2.56m3 / s, and in the dry season is 3.00m3/s and 0.61m3/s. Three indexes of flow, duration and occurrence time are used to evaluate the ecological water demand. The degree of ecological water demand in the past three years is low level of satisfaction. Meanwhile, the existing problems are analyzed, and put forward reasonable and operable safeguards and suggestions.

Keywords: Zhejiang province, mountainous river, ecological water demand, Kaihua river, evaluation

Procedia PDF Downloads 240
20253 The Impact of System and Data Quality on Organizational Success in the Kingdom of Bahrain

Authors: Amal M. Alrayes

Abstract:

Data and system quality play a central role in organizational success, and the quality of any existing information system has a major influence on the effectiveness of overall system performance.Given the importance of system and data quality to an organization, it is relevant to highlight their importance on organizational performance in the Kingdom of Bahrain. This research aims to discover whether system quality and data quality are related, and to study the impact of system and data quality on organizational success. A theoretical model based on previous research is used to show the relationship between data and system quality, and organizational impact. We hypothesize, first, that system quality is positively associated with organizational impact, secondly that system quality is positively associated with data quality, and finally that data quality is positively associated with organizational impact. A questionnaire was conducted among public and private organizations in the Kingdom of Bahrain. The results show that there is a strong association between data and system quality, that affects organizational success.

Keywords: data quality, performance, system quality, Kingdom of Bahrain

Procedia PDF Downloads 493
20252 Methodologies for Crack Initiation in Welded Joints Applied to Inspection Planning

Authors: Guang Zou, Kian Banisoleiman, Arturo González

Abstract:

Crack initiation and propagation threatens structural integrity of welded joints and normally inspections are assigned based on crack propagation models. However, the approach based on crack propagation models may not be applicable for some high-quality welded joints, because the initial flaws in them may be so small that it may take long time for the flaws to develop into a detectable size. This raises a concern regarding the inspection planning of high-quality welded joins, as there is no generally acceptable approach for modeling the whole fatigue process that includes the crack initiation period. In order to address the issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally, there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modeled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; and, 4) Modeling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. The conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach.

Keywords: crack initiation, fatigue reliability, inspection planning, welded joints

Procedia PDF Downloads 353
20251 Quality of Workplace Program Aiming at Increasing Productivity in the Civil Construction Area

Authors: Claudineia Brazil, Luciane Salvi, Margareth Haubrich

Abstract:

The research aims to understand the determinants of Quality of Life at Work (QWL) and the main indicators that influence the productivity of employees working in construction. The methodology is based on the qualitative theoretical approach, in which information is collected in works that have already been carried out, providing a more detailed compression of the research from the point of view of other authors. In this research, pioneering models for assessing Quality of Life at Work (QWL) were investigated, seeking to find the best quality of life indicators in the work environment. The elements investigated in the research were classified into three main groups: Organizational, Environmental and Behavioral. In order to obtain the results, the information obtained through bibliographic research was compared and it was possible to conclude that the focus on the quality of life at work influences the individual and collective productivity of employees, causing the company to be positively impacted. This advocates the need for strategic actions in the area of people management, which will meet these needs. Therefore, it is hoped that this study can contribute to the more effective management of human resources in organizations, reflecting on increased productivity.

Keywords: construction, management, productivity, quality of life at work

Procedia PDF Downloads 189
20250 Drinking Water Quality Assessment Using Fuzzy Inference System Method: A Case Study of Rome, Italy

Authors: Yas Barzegar, Atrin Barzegar

Abstract:

Drinking water quality assessment is a major issue today; technology and practices are continuously improving; Artificial Intelligence (AI) methods prove their efficiency in this domain. The current research seeks a hierarchical fuzzy model for predicting drinking water quality in Rome (Italy). The Mamdani fuzzy inference system (FIS) is applied with different defuzzification methods. The Proposed Model includes three fuzzy intermediate models and one fuzzy final model. Each fuzzy model consists of three input parameters and 27 fuzzy rules. The model is developed for water quality assessment with a dataset considering nine parameters (Alkalinity, Hardness, pH, Ca, Mg, Fluoride, Sulphate, Nitrates, and Iron). Fuzzy-logic-based methods have been demonstrated to be appropriate to address uncertainty and subjectivity in drinking water quality assessment; it is an effective method for managing complicated, uncertain water systems and predicting drinking water quality. The FIS method can provide an effective solution to complex systems; this method can be modified easily to improve performance.

Keywords: water quality, fuzzy logic, smart cities, water attribute, fuzzy inference system, membership function

Procedia PDF Downloads 75
20249 An Analysis of Institutional Audits: Basis for Teaching, Learning and Assessment Framework and Principles

Authors: Nabil El Kadhi, Minerva M. Bunagan

Abstract:

The dynamism in education, particularly in the area of teaching, learning and assessment has caused Higher Education Institutions (HEIs) worldwide to seek for ways to continuously improve their educational processes. HEIs use outcomes of institutional audits, assessments and accreditations, for improvement. In this study, the published institutional audit reports of HEIs in the Sultanate of Oman were analyzed to produce features of good practice; identify challenges along Teaching, Learning Assessment (TLA); and propose a framework that puts major emphasis in having a quality-assured TLA, including a set of principles that can be used as basis in succeeding an institutional visit. The TLA framework, which shows the TLA components, characteristics of the components, related expectation, including implementation tool/ strategy and pitfalls can be used by HEIs to have an adequate understanding of the scope of audit and be able to satisfy institutional audit requirements. The scope of this study can be widened by exploring the other requirements of the Institutional Audits in the Sultanate of Oman, particularly the area on Governance and Management and Student Support Services.

Keywords: accreditation, audit, teaching, learning and assessment, quality assurance

Procedia PDF Downloads 304
20248 Machine Learning for Classifying Risks of Death and Length of Stay of Patients in Intensive Unit Care Beds

Authors: Itamir de Morais Barroca Filho, Cephas A. S. Barreto, Ramon Malaquias, Cezar Miranda Paula de Souza, Arthur Costa Gorgônio, João C. Xavier-Júnior, Mateus Firmino, Fellipe Matheus Costa Barbosa

Abstract:

Information and Communication Technologies (ICT) in healthcare are crucial for efficiently delivering medical healthcare services to patients. These ICTs are also known as e-health and comprise technologies such as electronic record systems, telemedicine systems, and personalized devices for diagnosis. The focus of e-health is to improve the quality of health information, strengthen national health systems, and ensure accessible, high-quality health care for all. All the data gathered by these technologies make it possible to help clinical staff with automated decisions using machine learning. In this context, we collected patient data, such as heart rate, oxygen saturation (SpO2), blood pressure, respiration, and others. With this data, we were able to develop machine learning models for patients’ risk of death and estimate the length of stay in ICU beds. Thus, this paper presents the methodology for applying machine learning techniques to develop these models. As a result, although we implemented these models on an IoT healthcare platform, helping clinical staff in healthcare in an ICU, it is essential to create a robust clinical validation process and monitoring of the proposed models.

Keywords: ICT, e-health, machine learning, ICU, healthcare

Procedia PDF Downloads 109
20247 A Comparative Study of the Proposed Models for the Components of the National Health Information System

Authors: M. Ahmadi, Sh. Damanabi, F. Sadoughi

Abstract:

National Health Information System plays an important role in ensuring timely and reliable access to Health information which is essential for strategic and operational decisions that improve health, quality and effectiveness of health care. In other words, by using the National Health information system you can improve the quality of health data, information and knowledge used to support decision making at all levels and areas of the health sector. Since full identification of the components of this system for better planning and management influential factors of performance seems necessary, therefore, in this study, different attitudes towards components of this system are explored comparatively. Methods: This is a descriptive and comparative kind of study. The society includes printed and electronic documents containing components of the national health information system in three parts: input, process, and output. In this context, search for information using library resources and internet search were conducted and data analysis was expressed using comparative tables and qualitative data. Results: The findings showed that there are three different perspectives presenting the components of national health information system, Lippeveld, Sauerborn, and Bodart Model in 2000, Health Metrics Network (HMN) model from World Health Organization in 2008 and Gattini’s 2009 model. All three models outlined above in the input (resources and structure) require components of management and leadership, planning and design programs, supply of staff, software and hardware facilities, and equipment. In addition, in the ‘process’ section from three models, we pointed up the actions ensuring the quality of health information system and in output section, except Lippeveld Model, two other models consider information products, usage and distribution of information as components of the national health information system. Conclusion: The results showed that all the three models have had a brief discussion about the components of health information in input section. However, Lippeveld model has overlooked the components of national health information in process and output sections. Therefore, it seems that the health measurement model of network has a comprehensive presentation for the components of health system in all three sections-input, process, and output.

Keywords: National Health Information System, components of the NHIS, Lippeveld Model

Procedia PDF Downloads 420
20246 Influence of a High-Resolution Land Cover Classification on Air Quality Modelling

Authors: C. Silveira, A. Ascenso, J. Ferreira, A. I. Miranda, P. Tuccella, G. Curci

Abstract:

Poor air quality is one of the main environmental causes of premature deaths worldwide, and mainly in cities, where the majority of the population lives. It is a consequence of successive land cover (LC) and use changes, as a result of the intensification of human activities. Knowing these landscape modifications in a comprehensive spatiotemporal dimension is, therefore, essential for understanding variations in air pollutant concentrations. In this sense, the use of air quality models is very useful to simulate the physical and chemical processes that affect the dispersion and reaction of chemical species into the atmosphere. However, the modelling performance should always be evaluated since the resolution of the input datasets largely dictates the reliability of the air quality outcomes. Among these data, the updated LC is an important parameter to be considered in atmospheric models, since it takes into account the Earth’s surface changes due to natural and anthropic actions, and regulates the exchanges of fluxes (emissions, heat, moisture, etc.) between the soil and the air. This work aims to evaluate the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), when different LC classifications are used as an input. The influence of two LC classifications was tested: i) the 24-classes USGS (United States Geological Survey) LC database included by default in the model, and the ii) CLC (Corine Land Cover) and specific high-resolution LC data for Portugal, reclassified according to the new USGS nomenclature (33-classes). Two distinct WRF-Chem simulations were carried out to assess the influence of the LC on air quality over Europe and Portugal, as a case study, for the year 2015, using the nesting technique over three simulation domains (25 km2, 5 km2 and 1 km2 horizontal resolution). Based on the 33-classes LC approach, particular emphasis was attributed to Portugal, given the detail and higher LC spatial resolution (100 m x 100 m) than the CLC data (5000 m x 5000 m). As regards to the air quality, only the LC impacts on tropospheric ozone concentrations were evaluated, because ozone pollution episodes typically occur in Portugal, in particular during the spring/summer, and there are few research works relating to this pollutant with LC changes. The WRF-Chem results were validated by season and station typology using background measurements from the Portuguese air quality monitoring network. As expected, a better model performance was achieved in rural stations: moderate correlation (0.4 – 0.7), BIAS (10 – 21µg.m-3) and RMSE (20 – 30 µg.m-3), and where higher average ozone concentrations were estimated. Comparing both simulations, small differences grounded on the Leaf Area Index and air temperature values were found, although the high-resolution LC approach shows a slight enhancement in the model evaluation. This highlights the role of the LC on the exchange of atmospheric fluxes, and stresses the need to consider a high-resolution LC characterization combined with other detailed model inputs, such as the emission inventory, to improve air quality assessment.

Keywords: land use, spatial resolution, WRF-Chem, air quality assessment

Procedia PDF Downloads 156
20245 Relationship between Physical Activity Level and Functional Movement in 16-years old Schoolchildren: A Multilevel Modelling Approach

Authors: Josip Karuc, Marjeta Mišigoj-Duraković, Goran Marković, Vedran Hadžić, Michael J. Duncan, Hrvoje Podnar, Maroje Sorić

Abstract:

As a part of the CRO-PALS longitudinal study, this investigation aimed to examine the association between different levels of physical activity (PA) and movement quality in 16-years old school children. The total number of participants in this research was 725. Movement quality was assessed via the Functional Movement Screen (FMSTM), and the PA level was estimated using the School Health Action, Planning, and Evaluation System (SHAPES) questionnaire. In addition, body fat and socioeconomic status (SES) were assessed. In order to investigate the association between total FMS score and different levels of PA, multilevel modeling was employed for boys (n=359) and girls (n=366) separately. All models were adjusted for age, body fat, and SES. Among boys, MVPA, MPA, and VPA were not significant predictors of the total FMS score (β=0.000, p=0.78; β=-0.002, p=0.455; β=0.004, p=0.158, respectively). On the contrary, among girls, VPA and MVPA showed significant effects on the total FMS score (β=0.011, p=0.001, β=0.005, p=0.006, respectively). The findings of this research provide evidence that the intensity of PA is a minor but relevant factor in describing the association between PA and movement quality in adolescent girls but not in boys. This means that the PA level does not guarantee optimal functional movement patterns. Therefore, practicing functional movement patterns in an isolated manner and at moderate to vigorous intensity could be beneficial in order to reduce the risk of injury incidence and potential orthopedic abnormalities in later life. This work was supported by the Croatian Science Foundation, grant no: IP-2016-06-9926 and grant no: DOK-2018-01-2328.

Keywords: functional movement screen, fundamental movement patterns, movement quality, pediatric

Procedia PDF Downloads 161
20244 Animal Modes of Surgical or Other External Causes of Trauma Wound Infection

Authors: Ojoniyi Oluwafeyekikunmi Okiki

Abstract:

Notwithstanding advances in disturbing wound care and control, infections remain a main motive of mortality, morbidity, and financial disruption in tens of millions of wound sufferers around the sector. Animal models have become popular gear for analyzing a big selection of outside worrying wound infections and trying out new antimicrobial techniques. This evaluation covers experimental infections in animal models of surgical wounds, pores and skin abrasions, burns, lacerations, excisional wounds, and open fractures. Animal modes of external stressful wound infections stated via extraordinary investigators vary in animal species used, microorganism traces, the quantity of microorganisms carried out, the dimensions of the wounds, and, for burn infections, the period of time the heated object or liquid is in contact with the skin. As antibiotic resistance continues to grow, new antimicrobial procedures are urgently needed. Those have to be examined using popular protocols for infections in external stressful wounds in animal models.

Keywords: surgical wounds, animals, wound infections, burns, wound models, colony-forming gadgets, lacerated wounds

Procedia PDF Downloads 8
20243 Adapted Intersection over Union: A Generalized Metric for Evaluating Unsupervised Classification Models

Authors: Prajwal Prakash Vasisht, Sharath Rajamurthy, Nishanth Dara

Abstract:

In a supervised machine learning approach, metrics such as precision, accuracy, and coverage can be calculated using ground truth labels to help in model tuning, evaluation, and selection. In an unsupervised setting, however, where the data has no ground truth, there are few interpretable metrics that can guide us to do the same. Our approach creates a framework to adapt the Intersection over Union metric, referred to as Adapted IoU, usually used to evaluate supervised learning models, into the unsupervised domain, which solves the problem by factoring in subject matter expertise and intuition about the ideal output from the model. This metric essentially provides a scale that allows us to compare the performance across numerous unsupervised models or tune hyper-parameters and compare different versions of the same model.

Keywords: general metric, unsupervised learning, classification, intersection over union

Procedia PDF Downloads 47
20242 Lean Models Classification: Towards a Holistic View

Authors: Y. Tiamaz, N. Souissi

Abstract:

The purpose of this paper is to present a classification of Lean models which aims to capture all the concepts related to this approach and thus facilitate its implementation. This classification allows the identification of the most relevant models according to several dimensions. From this perspective, we present a review and an analysis of Lean models literature and we propose dimensions for the classification of the current proposals while respecting among others the axes of the Lean approach, the maturity of the models as well as their application domains. This classification allowed us to conclude that researchers essentially consider the Lean approach as a toolbox also they design their models to solve problems related to a specific environment. Since Lean approach is no longer intended only for the automotive sector where it was invented, but to all fields (IT, Hospital, ...), we consider that this approach requires a generic model that is capable of being implemented in all areas.

Keywords: lean approach, lean models, classification, dimensions, holistic view

Procedia PDF Downloads 434
20241 Quality Assessment of New Zealand Mānuka Honeys Using Hyperspectral Imaging Combined with Deep 1D-Convolutional Neural Networks

Authors: Hien Thi Dieu Truong, Mahmoud Al-Sarayreh, Pullanagari Reddy, Marlon M. Reis, Richard Archer

Abstract:

New Zealand mānuka honey is a honeybee product derived mainly from Leptospermum scoparium nectar. The potent antibacterial activity of mānuka honey derives principally from methylglyoxal (MGO), in addition to the hydrogen peroxide and other lesser activities present in all honey. MGO is formed from dihydroxyacetone (DHA) unique to L. scoparium nectar. Mānuka honey also has an idiosyncratic phenolic profile that is useful as a chemical maker. Authentic mānuka honey is highly valuable, but almost all honey is formed from natural mixtures of nectars harvested by a hive over a time period. Once diluted by other nectars, mānuka honey irrevocably loses value. We aimed to apply hyperspectral imaging to honey frames before bulk extraction to minimise the dilution of genuine mānuka by other honey and ensure authenticity at the source. This technology is non-destructive and suitable for an industrial setting. Chemometrics using linear Partial Least Squares (PLS) and Support Vector Machine (SVM) showed limited efficacy in interpreting chemical footprints due to large non-linear relationships between predictor and predictand in a large sample set, likely due to honey quality variability across geographic regions. Therefore, an advanced modelling approach, one-dimensional convolutional neural networks (1D-CNN), was investigated for analysing hyperspectral data for extraction of biochemical information from honey. The 1D-CNN model showed superior prediction of honey quality (R² = 0.73, RMSE = 2.346, RPD= 2.56) to PLS (R² = 0.66, RMSE = 2.607, RPD= 1.91) and SVM (R² = 0.67, RMSE = 2.559, RPD=1.98). Classification of mono-floral manuka honey from multi-floral and non-manuka honey exceeded 90% accuracy for all models tried. Overall, this study reveals the potential of HSI and deep learning modelling for automating the evaluation of honey quality in frames.

Keywords: mānuka honey, quality, purity, potency, deep learning, 1D-CNN, chemometrics

Procedia PDF Downloads 138
20240 Tourists' Perception to the Service Quality of White Water Rafting in Bali: Case Study of Ayung River

Authors: Ni Putu Evi Wijayanti, Made Darmiati, Ni Ketut Wiwiek Agustina, Putu Gde Arie Yudhistira, Marcel Hardono

Abstract:

This research study discusses the tourists’ perception to white water rafting service quality in Bali (Case Study: Ayung River). The aim is to determine the tourists’ perception to: firstly, the services quality of white water rafting trip in Bali, secondly, is to determine which dimensions of the service quality that need to take main handling priority in accordance with the level of important service of white water rafting company’s working performance toward the service quality of rafting in Bali especially on Ayung Riveri, lastly, is to know the efforts are needed to improve the service quality of white water rafting trip for tourist in Bali, specifically on Ayung River. This research uses the concept of the service quality with five principal dimensions, namely: Tangibles, Reliability, Responsiveness, Assurance, Empathy. Location of the research is tourist destination area of the Ayung River, that lies between the boundary of Badung Regency at Western part and Gianyar Regency eastern side. There are three rafting companies located on the Ayung River. This research took 100 respondents who were selected as a sample by using purposive sampling method. Data were collected through questionnaires distributed to domestic tourists then tabulated using the weighting scale (Likert scale) and analyzed using analysis of the benefit performance (important performance analysis) in the form of Cartesian diagram. The results of the research are translated into three points. Firstly, there are 23 indicators assessed by the service aspect of domestic tourists where the highest value is the aspect of familiarity between the tourist and employees with points (0.29) and the lowest score is the aspect of the clarity of the Ayung River water discharge value (-0.35). This shows that the indicator has not been fully able to meet the expectations of service aspects of the rating. Secondly, the dimensions of service quality that requires serious attention is the dimension of tangibles. The third point is the efforts that needs to be done adapted to the results of the Cartesian diagram breaks down into four quadrants. Based on the results of the research suggested to the manager of the white water rafting tour in order to continuously improve the service quality to tourists, performing new innovations in terms of product variations, provide insight and training to its employees to increase their competence, especially in the field of excellent service so that the satisfaction rating can be achieved.

Keywords: perception, rafting, service quality, tourist satisfaction

Procedia PDF Downloads 243
20239 Effect of Modified Atmosphere Packaging and Storage Temperatures on Quality of Shelled Raw Walnuts

Authors: M. Javanmard

Abstract:

This study was aimed at analyzing the effects of packaging (MAP) and preservation conditions on the packaged fresh walnut kernel quality. The central composite plan was used for evaluating the effect of oxygen (0–10%), carbon dioxide (0-10%), and temperature (4-26 °C) on qualitative characteristics of walnut kernels. Also, the response level technique was used to find the optimal conditions for interactive effects of factors, as well as estimating the best conditions of process using least amount of testing. Measured qualitative parameters were: peroxide index, color, decreased weight, mould and yeast counting test, and sensory evaluation. The results showed that the defined model for peroxide index, color, weight loss, and sensory evaluation is significant (p < 0.001), so that increase of temperature causes the peroxide value, color variation, and weight loss to increase and it reduces the overall acceptability of walnut kernels. An increase in oxygen percentage caused the color variation level and peroxide value to increase and resulted in lower overall acceptability of the walnuts. An increase in CO2 percentage caused the peroxide value to decrease, but did not significantly affect other indices (p ≥ 0.05). Mould and yeast were not found in any samples. Optimal packaging conditions to achieve maximum quality of walnuts include: 1.46% oxygen, 10% carbon dioxide, and temperature of 4 °C.

Keywords: shelled walnut, MAP, quality, storage temperature

Procedia PDF Downloads 388
20238 The Effect of Particle Porosity in Mixed Matrix Membrane Permeation Models

Authors: Z. Sadeghi, M. R. Omidkhah, M. E. Masoomi

Abstract:

The purpose of this paper is to examine gas transport behavior of mixed matrix membranes (MMMs) combined with porous particles. Main existing models are categorized in two main groups; two-phase (ideal contact) and three-phase (non-ideal contact). A new coefficient, J, was obtained to express equations for estimating effect of the particle porosity in two-phase and three-phase models. Modified models evaluates with existing models and experimental data using Matlab software. Comparison of gas permeability of proposed modified models with existing models in different MMMs shows a better prediction of gas permeability in MMMs.

Keywords: mixed matrix membrane, permeation models, porous particles, porosity

Procedia PDF Downloads 384
20237 Parent’s Evaluation of the Services Offered to Their Children with Autism in UAE Centres

Authors: Mohammad Ali Fteiha, Ghanem Al Bustami

Abstract:

The study aimed to identify the assessment of parents of children with Autism for services provided by the Center for special care in the United Arab Emirates, in terms of quality, comprehensive and the impact of some factors related to the diagnosis and place of service provision and efficient working procedures of service and the child age. In order to achieve the objective of the study, researchers used Parent’s Satisfaction Scale, and Parents Evaluation of Services Effectiveness, both the scale and the parents reports provided with accepted level of validity and reliability. Sample includes 300 families of children with Autism receiving educational and rehabilitation services, treatment and support services in both governmental and private centers in United Arab Emirates. ANOVA test was used through SPSS program to analyze the collected data. The results of the study have indicated that there are significant differences in the assessment of services provided by centers due to a place of service, the nature of the diagnosis, child's age at the time of the study, as well as statistically significance differences due to age when first diagnosed. The results also showed positive evaluation for the good level of services as international standard, and the quality of these services provided by autism centers in the United Arab Emirates, especially in governmental centers. At the same time, the results showed the presence of many needs problems faced by the parents do not have appropriate solutions. Based on the results the recommendations were stated.

Keywords: autism, evaluation, diagnosis, parents, autism programs, supportive services, government centers, private centers

Procedia PDF Downloads 558
20236 Data Management System for Environmental Remediation

Authors: Elizaveta Petelina, Anton Sizo

Abstract:

Environmental remediation projects deal with a wide spectrum of data, including data collected during site assessment, execution of remediation activities, and environmental monitoring. Therefore, an appropriate data management is required as a key factor for well-grounded decision making. The Environmental Data Management System (EDMS) was developed to address all necessary data management aspects, including efficient data handling and data interoperability, access to historical and current data, spatial and temporal analysis, 2D and 3D data visualization, mapping, and data sharing. The system focuses on support of well-grounded decision making in relation to required mitigation measures and assessment of remediation success. The EDMS is a combination of enterprise and desktop level data management and Geographic Information System (GIS) tools assembled to assist to environmental remediation, project planning, and evaluation, and environmental monitoring of mine sites. EDMS consists of seven main components: a Geodatabase that contains spatial database to store and query spatially distributed data; a GIS and Web GIS component that combines desktop and server-based GIS solutions; a Field Data Collection component that contains tools for field work; a Quality Assurance (QA)/Quality Control (QC) component that combines operational procedures for QA and measures for QC; Data Import and Export component that includes tools and templates to support project data flow; a Lab Data component that provides connection between EDMS and laboratory information management systems; and a Reporting component that includes server-based services for real-time report generation. The EDMS has been successfully implemented for the Project CLEANS (Clean-up of Abandoned Northern Mines). Project CLEANS is a multi-year, multimillion-dollar project aimed at assessing and reclaiming 37 uranium mine sites in northern Saskatchewan, Canada. The EDMS has effectively facilitated integrated decision-making for CLEANS project managers and transparency amongst stakeholders.

Keywords: data management, environmental remediation, geographic information system, GIS, decision making

Procedia PDF Downloads 161
20235 Economic Impact of a Distribution Company under Power System Restructuring

Authors: Safa’ Abdelkarim Hammad

Abstract:

The electrical power system is one of the main parts of the nation's infrastructure, and the availability and cost of electricity are critical factors in industrial competitiveness and strategy. Restructuring of the electricity supply industries is a very complex exercise based on national energy strategies and policies, macroeconomic developments, and national conditions, and its application varies from country to country. Electricity regulation of natural monopolies is a challenging task. Regulators face the problem of providing appropriate incentives for improvement of efficiency. Incentive regulation is often considered as an efficient regulatory tool to handle the problem, and it is widely applied in several countries. However, the exact regulation methodologies differ from one country to another. Network quantitative reliability evaluation is an essential factor with regard to the quality of supply. The main factors used to judge the reliability of supply is measured by the number and duration of interruptions experienced by customers. Several indicators are used to evaluate reliability in distribution networks. This paper addresses the impact of incentive regulation and performance benchmarking in the field of electricity distribution in Jordan. The theory of efficiency measurement and the most common models; NCSQS and DEA models are presented.

Keywords: incentive regulations, reliability, restructuring, Tarrif

Procedia PDF Downloads 121
20234 Formation of Academia-Industry Collaborative Model to Improve the Quality of Teaching-Learning Process

Authors: M. Dakshayini, P. Jayarekha

Abstract:

In traditional output-based education system, class room lecture and laboratory are the traditional delivery methods used during the course. Written examination and lab examination have been used as a conventional tool for evaluating student’s performance. Hence, there are certain apprehensions that the traditional education system may not efficiently prepare the students for competent professional life. This has led for the change from Traditional output-based education to Outcome-Based Education (OBE). OBE first sets the ideal programme learning outcome consecutively on increasing degree of complexity that students are expected to master. The core curriculum, teaching methodologies and assessment tools are then designed to achieve the proposed outcomes mainly focusing on what students can actually attain after they are taught. In this paper, we discuss a promising applications based learning and evaluation component involving industry collaboration to improve the quality of teaching and student learning process. Incorporation of this component definitely improves the quality of student learning in engineering education and helps the student to attain the competency as per the graduate attributes. This may also reduce the Industry-academia gap.

Keywords: outcome-based education, programme learning outcome, teaching-learning process, evaluation, industry collaboration

Procedia PDF Downloads 449
20233 Diagnostic Efficacy and Usefulness of Digital Breast Tomosynthesis (DBT) in Evaluation of Breast Microcalcifications as a Pre-Procedural Study for Stereotactic Biopsy

Authors: Okhee Woo, Hye Seon Shin

Abstract:

Purpose: To investigate the diagnostic power of digital breast tomosynthesis (DBT) in evaluation of breast microcalcifications and usefulness as a pre-procedural study for stereotactic biopsy in comparison with full-field digital mammogram (FFDM) and FFDM plus magnification image (FFDM+MAG). Methods and Materials: An IRB approved retrospective observer performance study on DBT, FFDM, and FFDM+MAG was done. Image quality was rated in 5-point scoring system for lesion clarity (1, very indistinct; 2, indistinct; 3, fair; 4, clear; 5, very clear) and compared by Wilcoxon test. Diagnostic power was compared by diagnostic values and AUC with 95% confidence interval. Additionally, procedural report of biopsy was analysed for patient positioning and adequacy of instruments. Results: DBT showed higher lesion clarity (median 5, interquartile range 4-5) than FFDM (3, 2-4, p-value < 0.0001), and no statistically significant difference to FFDM+MAG (4, 4-5, p-value=0.3345). Diagnostic sensitivity and specificity of DBT were 86.4% and 92.5%; FFDM 70.4% and 66.7%; FFDM+MAG 93.8% and 89.6%. The AUCs of DBT (0.88) and FFDM+MAG (0.89) were larger than FFDM (0.59, p-values < 0.0001) but there was no statistically significant difference between DBT and FFDM+MAG (p-value=0.878). In 2 cases with DBT, petit needle could be appropriately prepared; and other 3 without DBT, patient repositioning was needed. Conclusion: DBT showed better image quality and diagnostic values than FFDM and equivalent to FFDM+MAG in the evaluation of breast microcalcifications. Evaluation with DBT as a pre-procedural study for breast stereotactic biopsy can lead to more accurate localization and successful biopsy and also waive the need for additional magnification images.

Keywords: DBT, breast cancer, stereotactic biopsy, mammography

Procedia PDF Downloads 304
20232 A Practical Survey on Zero-Shot Prompt Design for In-Context Learning

Authors: Yinheng Li

Abstract:

The remarkable advancements in large language models (LLMs) have brought about significant improvements in natural language processing tasks. This paper presents a comprehensive review of in-context learning techniques, focusing on different types of prompts, including discrete, continuous, few-shot, and zero-shot, and their impact on LLM performance. We explore various approaches to prompt design, such as manual design, optimization algorithms, and evaluation methods, to optimize LLM performance across diverse tasks. Our review covers key research studies in prompt engineering, discussing their methodologies and contributions to the field. We also delve into the challenges faced in evaluating prompt performance, given the absence of a single ”best” prompt and the importance of considering multiple metrics. In conclusion, the paper highlights the critical role of prompt design in harnessing the full potential of LLMs and provides insights into the combination of manual design, optimization techniques, and rigorous evaluation for more effective and efficient use of LLMs in various Natural Language Processing (NLP) tasks.

Keywords: in-context learning, prompt engineering, zero-shot learning, large language models

Procedia PDF Downloads 81
20231 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland

Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski

Abstract:

PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.

Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks

Procedia PDF Downloads 148
20230 Combining the Dynamic Conditional Correlation and Range-GARCH Models to Improve Covariance Forecasts

Authors: Piotr Fiszeder, Marcin Fałdziński, Peter Molnár

Abstract:

The dynamic conditional correlation model of Engle (2002) is one of the most popular multivariate volatility models. However, this model is based solely on closing prices. It has been documented in the literature that the high and low price of the day can be used in an efficient volatility estimation. We, therefore, suggest a model which incorporates high and low prices into the dynamic conditional correlation framework. Empirical evaluation of this model is conducted on three datasets: currencies, stocks, and commodity exchange-traded funds. The utilisation of realized variances and covariances as proxies for true variances and covariances allows us to reach a strong conclusion that our model outperforms not only the standard dynamic conditional correlation model but also a competing range-based dynamic conditional correlation model.

Keywords: volatility, DCC model, high and low prices, range-based models, covariance forecasting

Procedia PDF Downloads 183
20229 Evaluation of Three Potato Cultivars for Processing (Crisp French Fries)

Authors: Hatim Bastawi

Abstract:

Three varieties of potatoes, namely Agria, Alpha and Diamant were evaluated for their suitability for industrial production of French fries. The evaluation was under taken after testing quality parameters of specific gravity, dry matter, peeling ratio, and defect after frying and panel test. The variety Agria ranked the best followed by Alpha with regard to the parameters tested. On the other hand, Diamant showed significantly higher defect percentage than the other cultivars. Also, it was significantly judged of low acceptance by panelists.

Keywords: cultivars, crisps, French fries

Procedia PDF Downloads 261