Search results for: physical layer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8029

Search results for: physical layer

7699 Electrodeposition of NiO Films from Organic Solvent-Based Electrolytic Solutions for Solar Cell Application

Authors: Thierry Pauporté, Sana Koussi, Fabrice Odobel

Abstract:

The preparation of semiconductor oxide layers and structures by soft techniques is an important field of research. Higher performances are expected from the optimizing of the oxide films and then use of new methods of preparation for a better control of their chemical, morphological, electrical and optical properties. We present the preparation of NiO by electrodeposition from pure polar aprotic medium and mixtures with water. The effect of the solvent, of the electrochemical deposition parameters and post-deposition annealing treatment on the structural, morphological and optical properties of the films is investigated. We remarkably show that the solvent is inserted in the deposited layer and act as a blowing agent, giving rise to mesoporous films after elimination by thermal annealing. These layers of p-type oxide have been successfully used, after sensitization by a dye, in p-type dye-sensitized solar cells. The effects of the solvent on the layer properties and the application of these layers in p-type dye-sensitized solar cells are described.

Keywords: NiO, layer, p-type sensitized solar cells, electrodeposition

Procedia PDF Downloads 271
7698 Violent Videogame Playing and Its Relations to Antisocial Behaviors

Authors: Martin Jelínek, Petr Květon

Abstract:

The presented study focuses on relations between violent videogames playing and various types of antisocial behavior, namely bullying (verbal, indirect, and physical), physical aggression and delinquency. Relevant relationships were also examined with respect to gender. Violent videogames exposure (VGV) was measured by respondents’ most favored games and self-evaluation of its level of violence and frequency of playing. Antisocial behaviors were assessed by self-report questionnaires. The research sample consisted of 333 (166 males, 167 females) primary and secondary school students at the age between 10 and 19 years (m=14.98, sd=1.77). It was found that violent videogames playing is associated with physical aggression (rho=0.288, 95% CI [0.169;0.400]) and bullying (rho=0.369, 95% CI [0.254;0.476]). By means of gender, these relations were slightly weaker in males (VGV - physical aggression: rho=0.104, 95% CI [-0.061;0.264], VGV – bullying: rho=.200, 95% CI [0.032;0.356]) than in females (VGV - physical aggression: rho=0.257, 95% CI [0.089;0.411], VGV – bullying: rho=0.279, 95% CI [0.110;0.432]).

Keywords: aggression, bullying, gender, violent video games

Procedia PDF Downloads 393
7697 Nurses' Knowledge and Attitudes toward the Use of Physical Restraints

Authors: Fatema Salman, Ridha Hammam, Fatima Khairallah, Fatima Aradi, Nafeesa Abdulla, Mohammed Alsafar

Abstract:

Purpose: This study aims at measuring the extent of nurses’ knowledge and attitudes toward the use of physical restraints in different hospital wards at Salmaniya Medical Complex (SMC). Background: The habitual use of physical restraint is a widespread practice among nurses working in the clinical settings. Restraints inflict many deleterious consequences on patients physically and psychologically which in turn increases their morbidity and mortality risk and jeopardizes care quality. Nurses’ knowledge and attitudes toward physical restraints are crucial determinants of the persistence of this practice. Literature review: the evidence of lack of knowledge among nurses regarding the use of physical restraints is overwhelming in various clinical settings, especially in two main areas which are the negative consequences and the available alternatives to physical restraints. Studies explored nurses’ attitudes toward physical restraints yielded inconsistent findings. Equally comparable, some studies found that nurses hold positive attitudes toward the use of physical restraints while some others reported just the opposite. Methods: Self-administered knowledge and attitudes scales to 106 nurses working in the SMC. Findings: nurses hold the moderate level of knowledge about restraints (M=58%) with weak negative attitudes (M = -20%) toward using it. Significant moderately-strong negative correlation (r= -0.57, r2= 0.32, p= 0.000) was uncovered between nurses knowledge and their attitudes which provided an empirical explanation of this phenomenon (use of physical restraints). Recommendations: Induction of awareness program that especially focuses on the negative consequences and encourages the use of alternatives is an evident need. This effort necessarily should be adjoined with policy and procedure adjustments.

Keywords: attitudes, knowledge, nurses, restraints

Procedia PDF Downloads 276
7696 Perfectly Matched Layer Boundary Stabilized Using Multiaxial Stretching Functions

Authors: Adriano Trono, Federico Pinto, Diego Turello, Marcelo A. Ceballos

Abstract:

Numerical modeling of dynamic soil-structure interaction problems requires an adequate representation of the unbounded characteristics of the ground, material non-linearity of soils, and geometrical non-linearities such as large displacements due to rocking of the structure. In order to account for these effects simultaneously, it is often required that the equations of motion are solved in the time domain. However, boundary conditions in conventional finite element codes generally present shortcomings in fully absorbing the energy of outgoing waves. In this sense, the Perfectly Matched Layers (PML) technique allows a satisfactory absorption of inclined body waves, as well as surface waves. However, the PML domain is inherently unstable, meaning that it its instability does not depend upon the discretization considered. One way to stabilize the PML domain is to use multiaxial stretching functions. This development is questionable because some Jacobian terms of the coordinate transformation are not accounted for. For this reason, the resulting absorbing layer element is often referred to as "uncorrected M-PML” in the literature. In this work, the strong formulation of the "corrected M-PML” absorbing layer is proposed using multiaxial stretching functions that incorporate all terms of the coordinate transformation. The results of the stable model are compared with reference solutions obtained from extended domain models.

Keywords: mixed finite elements, multiaxial stretching functions, perfectly matched layer, soil-structure interaction

Procedia PDF Downloads 43
7695 Nice Stadium: Design of a Flat Single Layer ETFE Roof

Authors: A. Escoffier, A. Albrecht, F. Consigny

Abstract:

In order to host the Football Euro in 2016, many French cities have launched architectural competitions in recent years to improve the quality of their stadiums. The winning project in Nice was designed by Wilmotte architects together with Elioth structural engineers. It has a capacity of 35,000 seats. Its roof structure consists of a complex 3D shape timber and steel lattice and is covered by 25,000m² of ETFE, 10,500m² of PES-PVC fabric and 8,500m² of photovoltaic panels. This paper focuses on the ETFE part of the cover. The stadium is one of the first constructions to use flat single layer ETFE on such a big area. Due to its relatively recent appearance in France, ETFE structures are not yet covered by any regulations and the existing codes for fabric structures cannot be strictly applied. Rather, they are considered as cladding systems and therefore have to be approved by an “Appréciation Technique d’Expérimentation” (ATEx), during which experimental tests have to be performed. We explain the method that we developed to justify the ETFE, which eventually led to bi-axial tests to clarify the allowable stress in the film.

Keywords: biaxial test, creep, ETFE, single layer, stadium roof

Procedia PDF Downloads 222
7694 Investigation of Various Variabilities of Attitudes toward Teaching as a Profession Levels of Physical Education and Sports School Students

Authors: Turan Cetinkaya, Abdurrahman Kırtepe

Abstract:

The aim of this study is to determine the relation of the level attitudes toward teaching as a profession to various variables of the students in physical education and sports departments. 277 students who are studying at the departments of physical education and sports teaching, sports management and coaching in Ahi Evran University, College of Physical Education and Sports participated to the research. Personal information tool and teaching profession scale consisting 34 items were used as data collection tool in the research. Distribution, frequency, t test and anova test were used in comparison of the related data. As a result of statistical analysis, attitudes toward teaching as a profession levels do not differ according to gender, but significant differences were detected in the exercise regularly and department.

Keywords: teaching profession, attitude, physical education and sports students, university students

Procedia PDF Downloads 260
7693 Measurement and Evaluation Patterns Practiced by Physical Education Teachers in North Badia in Jordan

Authors: Aman Kasawneh, Wasfi Khazalah, Abedalbasit Abedalhafiz

Abstract:

This study aimed to identify the patterns of measurement and evaluation practiced by physical education in the schools of North Badia in Jordan, as well as identifying the statistical differences according to gender, educational qualification, and the experience. The sample consisted of 118 physical education teachers 58 males and 60 females chosen randomly from the schools of North Badia in Jordan. The completed a questionnaire developed by the researchers after verifying its validity and reliability. The results indicated a clear weakness in the practice of measurement and evaluation patterns by physical education teachers. Also no significant differences were found between male and female teachers, however, significant differences were found between bachelor degree holders and their counter parts and between teachers with less than eight years of experience. The researchers recommended the necessity of preparing the P.E teachers regarding the patterns of measurement and evaluation within the sport field as one of the essentials for improving and developing physical education at schools.

Keywords: evaluation, measurement, evaluation, physical education teacher, Jordanian

Procedia PDF Downloads 427
7692 Micro-Arc Oxidation Titanium and Post Treatment by Cold Plasma and Graft Polymerization of Acrylic Acid for Biomedical Application

Authors: Shu-Chuan Liao, Chia-Ti Chang, Ko-Shao Chen

Abstract:

Titanium and its alloy are widely used in many fields such as dentistry or orthopaedics. Due to their high strength low elastic modulus that chemical inertness and bio inert. The micro-arc oxidation used to formation a micro porous ceramic oxide layer film on Titanium surface and also to improve the resistance corrosion. For improving the biocompatibility, micro-arc oxidation surfaces bio-inert need to introduce reactive group. We introduced boundary layer by used plasma enhanced chemical vapor deposition of hexamethyldisilazane (HMDS) and organic active layer by UV light graft reactive monomer acrylic acid (AAc) therefore we can immobilize Chondroitin sulphate on surface easily by crosslinking EDC/NHS. The surface properties and composition of the modified layer were measured by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and water contact angle. Water contact angle of the plasma-treated Ti surface decreases from 60° to 38°, which is an indication of hydrophilicity. The results of electrochemical polarization analysis showed that the sample plasma treated at micro-arc oxidation after plasma treatment has the best corrosion resistance. The result showed that we can immobilize chondroitin sulfate successful by a series of modification and MTT assay indicated the biocompatibility has been improved in this study.

Keywords: MAO, plasma, graft polymerization, biomedical application

Procedia PDF Downloads 234
7691 Wind Turbine Wake Prediction and Validation under a Stably-Stratified Atmospheric Boundary Layer

Authors: Yilei Song, Linlin Tian, Ning Zhao

Abstract:

Turbulence energetics and structures in the wake of large-scale wind turbines under the stably-stratified atmospheric boundary layer (SABL) can be complicated due to the presence of low-level jets (LLJs), a region of higher wind speeds than the geostrophic wind speed. With a modified one-k-equation, eddy viscosity model specified for atmospheric flows as the sub-grid scale (SGS) model, a realistic atmospheric state of the stable ABL is well reproduced by large-eddy simulation (LES) techniques. Corresponding to the precursor stably stratification, the detailed wake properties of a standard 5-MW wind turbine represented as an actuator line model are provided. An engineering model is proposed for wake prediction based on the simulation statistics and gets validated. Results confirm that the proposed wake model can provide good predictions for wind turbines under the SABL.

Keywords: large-eddy simulation, stably-stratified atmospheric boundary layer, wake model, wind turbine wake

Procedia PDF Downloads 147
7690 Microstructure and Oxidation Behaviors of Al, Y Modified Silicide Coatings Prepared on an Nb-Si Based Ultrahigh Temperature Alloy

Authors: Xiping Guo, Jing Li

Abstract:

The microstructure of an Si-Al-Y co-deposition coating prepared on an Nb-Si based ultra high temperature alloy by pack cementation process at 1250°C for eight hours was studied. The results showed that the coating was composed of a (Nb,X)Si₂ (X represents Ti, Cr and Hf elements) outer layer, a (Ti,Nb)₅Si₄ middle layer and an Al, Cr-rich inner layer. For comparison, the oxidation behaviors of the coating at 800, 1050 and 1350°C were investigated respectively. Linear oxidation kinetics was found with the parabolic rate constants of 5.29×10⁻², 9×10⁻²and 5.81 mg² cm⁻⁴ h⁻¹, respectively. Catastrophic pesting oxidation has not been found at 800°C even for 100 h. The surface of the scale was covered by compact glassy SiO₂ film. The coating was able to effectively protect the Nb-Si based alloy from oxidation at 1350°C for at least 100 h. The formation process of the scale was testified following an epitaxial growth mechanism. The mechanism responsible for the oxidation behavior of the Si-Al-Y co-deposition coating at 800, 1050 and 1350°C was proposed.

Keywords: Nb-Si based ultra high temperature alloy, oxidation resistance, pack cementation, silicide coating, Al and Y modified

Procedia PDF Downloads 382
7689 Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity

Authors: Roslinda Nazar, Ezad Hafidz Hafidzuddin, Norihan M. Arifin, Ioan Pop

Abstract:

In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate, and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.

Keywords: boundary layer, exponentially stretching/shrinking sheet, generalized slip, heat transfer, numerical solutions

Procedia PDF Downloads 410
7688 Software-Defined Networking: A New Approach to Fifth Generation Networks: Security Issues and Challenges Ahead

Authors: Behrooz Daneshmand

Abstract:

Software Defined Networking (SDN) is designed to meet the future needs of 5G mobile networks. The SDN architecture offers a new solution that involves separating the control plane from the data plane, which is usually paired together. Network functions traditionally performed on specific hardware can now be abstracted and virtualized on any device, and a centralized software-based administration approach is based on a central controller, facilitating the development of modern applications and services. These plan standards clear the way for a more adaptable, speedier, and more energetic network beneath computer program control compared with a conventional network. We accept SDN gives modern inquire about openings to security, and it can significantly affect network security research in numerous diverse ways. Subsequently, the SDN architecture engages systems to effectively screen activity and analyze threats to facilitate security approach modification and security benefit insertion. The segregation of the data planes and control and, be that as it may, opens security challenges, such as man-in-the-middle attacks (MIMA), denial of service (DoS) attacks, and immersion attacks. In this paper, we analyze security threats to each layer of SDN - application layer - southbound interfaces/northbound interfaces - controller layer and data layer. From a security point of see, the components that make up the SDN architecture have a few vulnerabilities, which may be abused by aggressors to perform noxious activities and hence influence the network and its administrations. Software-defined network assaults are shockingly a reality these days. In a nutshell, this paper highlights architectural weaknesses and develops attack vectors at each layer, which leads to conclusions about further progress in identifying the consequences of attacks and proposing mitigation strategies.

Keywords: software-defined networking, security, SDN, 5G/IMT-2020

Procedia PDF Downloads 70
7687 Thermal Conductivity and Optical Absorption of GaInAsSb/GaSb Laser Structure: Impact of Annealing Time

Authors: Soufiene Ilahi, Noureddine Yacoubi

Abstract:

GaInAsSb grown on GaSb substrate is an interesting material employed as an active layer in vertical-cavity surface-emitting lasers (VCSELs) operating in mid-infrared emission. This material presents some advantages like highs optical absorption coefficient and good thermal conductivity, which is very desirable for VCSEL application. In this paper, we have investigated the effects of thermal annealing on optical properties and thermal conductivity of GaInAsSb/GaSb. The studies are carried out by means of the photo thermal deflection spectroscopy technique (PDS). In fact, optical absorption spectrum and thermal conductivity have been determined by a comparison between the experimental and theoretical phases of the PDS signal. We have found that thermal conductivity increased significantly to 13 W/m.K for GaInAsSb annealed during 60 min. In addition, we have found that bandgap energy is blue-shifted around 30 meV. The amplitudes signal of PDS reveals multiple reflections as a function of annealing time, which reflect the high crystalline quality of the layer.

Keywords: thermal conductivity, bandgap energy of GaInAsSb, GaInAsSb active layer, optical absorption

Procedia PDF Downloads 122
7686 A Study on Functional Performance and Physical Self-esteem Levels of Differently-Abled Basket Ballplayers: A Case Series

Authors: Prerna Mohan Saxena, Avni Joshi, Raju K Parasher

Abstract:

Disability is a state of decreased functioning associated with disease, disorder, injury, or other health condition, which in the context of one’s environment is experienced as an impairment, activity limitation, or participation restriction. With the concept of disability evolving over the years, the current ICF model of disability has integrated this concept into a comprehensive whole of multiple dimensions of human functioning, including biological, psychological, social, and environmental aspects. Wheelchair basketball is one of the greatest examples of adapted sports for the disabled. Through this study, we aim to evaluate the functional performance and self-esteem levels in differently-abled pediatric wheelchair basketball players, providing an insight on their abilities and deficits and how they can be worked on at a larger level to improve overall performance. The study was conducted on 9 pediatric wheelchair basketball players at Amar Jyoti school for inclusive education Delhi their physical performance was assessed using a battery of tests, and physical self esteem was assessed using the Physical self-description instrument (PSDQ-S). Results showed that 9 participants age ranged between 10-21 years, mostly males with BMI ranging between 16.7 to 28.9 kg/m2 most of them had the experience of 5 to 6 years of playing the sport. The data showed physical performance in accordance to years of experience of playing, physical self esteem showed a different perspective, with experience players scoring less on it. This study supports a multidimensional construct of physical performance and physical self-esteem, suggesting that both may be applied on the wheelchair basketball players at competitive levels.

Keywords: ase series, physical performance, physical self-esteem, wheelchair basketball

Procedia PDF Downloads 104
7685 Exploration of Copper Fabric in Non-Asbestos Organic Brake-Pads for Thermal Conductivity Enhancement

Authors: Vishal Mahale, Jayashree Bijwe, Sujeet K. Sinha

Abstract:

Range of thermal conductivity (TC) of Friction Materials (FMs) is a critical issue since lower TC leads to accumulation of frictional heat on the working surface, which results in excessive fade while higher TC leads to excessive heat flow towards back-plate resulting in boiling of brake-fluid leading to ‘spongy brakes’. This phenomenon prohibits braking action, which is most undesirable. Therefore, TC of the FMs across the brake pads should not be high while along the brake pad, it should be high. To enhance TC, metals in the forms of powder and fibers are used in the FMs. Apart from TC improvement, metals provide strength and structural integrity to the composites. Due to higher TC Copper (Cu) powder/fiber is a most preferred metallic ingredient in FM industry. However, Cu powders/fibers are responsible for metallic wear debris generation, which has harmful effects on aquatic organisms. Hence to get rid of a problem of metallic wear debris generation and to keep the positive effect of TC improvement, incorporation of Cu fabric in NAO brake-pads can be an innovative solution. Keeping this in view, two realistic multi-ingredient FM composites with identical formulations were developed in the form of brake-pads. Out of which one composite series consisted of a single layer of Cu fabric in the body of brake-pad and designated as C1 while double layer of Cu fabric was incorporated in another brake-pad series with designation of C2. Distance of Cu fabric layer from the back-plate was kept constant for C1 and C2. One more composite (C0) was developed without Cu fabric for the sake of comparison. Developed composites were characterized for physical properties. Tribological performance was evaluated on full scale inertia dynamometer by following JASO C 406 testing standard. It was concluded that Cu fabric successfully improved fade resistance by increasing conductivity of the composite and also showed slight improvement in wear resistance. Worn surfaces of pads and disc were analyzed by SEM and EDAX to study wear mechanism.

Keywords: brake inertia dynamometer, copper fabric, non-asbestos organic (NAO) friction materials, thermal conductivity enhancement

Procedia PDF Downloads 115
7684 Multifunctional Polydopamine-Silver-Polydopamine Nanofilm With Applications in Digital Microfluidics and SERS

Authors: Yilei Xue, Yat-Hing Ham, Wenting Qiu, Wan Chan, Stefan Nagl

Abstract:

Polydopamine (PDA) is a popular material in biological and medical applications due to its excellent biocompatibility, outstanding physicochemical properties, and facile fabrication. In this project, a new sandwich-structured PDA and silver (Ag) hybrid material named PDA-Ag-PDA was synthesized and characterized layer-by-layer, where silver nanoparticles (Ag NPs) are wrapped in PDA coatings, using SEM, AFM, 3D surface metrology, and contact angle meter. The silver loading capacity is positively proportional to the roughness value of the initial PDA film. This designed film was subsequently integrated within a digital microfluidic (DMF) platform coupling with an oxygen sensor layer for on-chip antibacterial assay. The concentration of E. coli was quantified on DMF by real-time monitoring oxygen consumption during E. coli growth with the optical oxygen sensor layer. The PDA-Ag-PDA coating shows an 99.9% reduction in E. coli population under non-nutritive condition with 1-hour treatment and has a strong growth inhibition of E. coliin nutrient LB broth as well. Furthermore, PDA-Ag-PDA film maintaining a low cytotoxicity effect to human cells. After treating with PDA-Ag-PDA film for 24 hours, 82% HEK 293 and 86% HeLa cells were viable. The SERS enhancement factor of PDA-Ag-PDA is estimated to be 1.9 × 104 using Rhodamine 6G (R6G). Multifunctional PDA-Ag-PDA coating provides an alternative platform to conjugate biomolecules and perform biological applications on DMF, in particular, for the adhesive protein and cell study.

Keywords: polydopamine, silver nanoparticles, digital microfluidic, optical sensor, antimicrobial assay, SERS

Procedia PDF Downloads 68
7683 The Inverse Problem in the Process of Heat and Moisture Transfer in Multilayer Walling

Authors: Bolatbek Rysbaiuly, Nazerke Rysbayeva, Aigerim Rysbayeva

Abstract:

Relevance: Energy saving elevated to public policy in almost all developed countries. One of the areas for energy efficiency is improving and tightening design standards. In the tie with the state standards, make high demands for thermal protection of buildings. Constructive arrangement of layers should ensure normal operation in which the humidity of materials of construction should not exceed a certain level. Elevated levels of moisture in the walls can be attributed to a defective condition, as moisture significantly reduces the physical, mechanical and thermal properties of materials. Absence at the design stage of modeling the processes occurring in the construction and predict the behavior of structures during their work in the real world leads to an increase in heat loss and premature aging structures. Method: To solve this problem, widely used method of mathematical modeling of heat and mass transfer in materials. The mathematical modeling of heat and mass transfer are taken into the equation interconnected layer [1]. In winter, the thermal and hydraulic conductivity characteristics of the materials are nonlinear and depends on the temperature and moisture in the material. In this case, the experimental method of determining the coefficient of the freezing or thawing of the material becomes much more difficult. Therefore, in this paper we propose an approximate method for calculating the thermal conductivity and moisture permeability characteristics of freezing or thawing material. Questions. Following the development of methods for solving the inverse problem of mathematical modeling allows us to answer questions that are closely related to the rational design of fences: Where the zone of condensation in the body of the multi-layer fencing; How and where to apply insulation rationally his place; Any constructive activities necessary to provide for the removal of moisture from the structure; What should be the temperature and humidity conditions for the normal operation of the premises enclosing structure; What is the longevity of the structure in terms of its components frost materials. Tasks: The proposed mathematical model to solve the following problems: To assess the condition of the thermo-physical designed structures at different operating conditions and select appropriate material layers; Calculate the temperature field in a structurally complex multilayer structures; When measuring temperature and moisture in the characteristic points to determine the thermal characteristics of the materials constituting the surveyed construction; Laboratory testing to significantly reduce test time, and eliminates the climatic chamber and expensive instrumentation experiments and research; Allows you to simulate real-life situations that arise in multilayer enclosing structures associated with freezing, thawing, drying and cooling of any layer of the building material.

Keywords: energy saving, inverse problem, heat transfer, multilayer walling

Procedia PDF Downloads 375
7682 A Cellular Automaton Model Examining the Effects of Oxygen, Hydrogen Ions, and Lactate on Early Tumour Growth

Authors: Maymona Al-Husari, Craig Murdoch, Steven Webb

Abstract:

Some tumors are known to exhibit an extracellular pH that is more acidic than the intracellular, creating a 'reversed pH gradient' across the cell membrane and this has been shown to affect their invasive and metastatic potential. Tumour hypoxia also plays an important role in tumour development and has been directly linked to both tumour morphology and aggressiveness. In this paper, we present a hybrid mathematical model of intracellular pH regulation that examines the effect of oxygen and pH on tumour growth and morphology. In particular, we investigate the impact of pH regulatory mechanisms on the cellular pH gradient and tumour morphology. Analysis of the model shows that: low activity of the Na+/H+ exchanger or a high rate of anaerobic glycolysis can give rise to a 'fingering' tumour morphology; and a high activity of the lactate/H+ symporter can result in a reversed transmembrane pH gradient across a large portion of the tumour mass. Also, the reversed pH gradient is spatially heterogenous within the tumour, with a normal pH gradient observed within an intermediate growth layer, that is the layer between the proliferative inner and outermost layer of the tumour.

Keywords: acidic pH, cellular automaton, ebola, tumour growth

Procedia PDF Downloads 308
7681 Laboratory Investigation of the Pavement Condition in Lebanon: Implementation of Reclaimed Asphalt Pavement in the Base Course and Asphalt Layer

Authors: Marinelle El-Khoury, Lina Bouhaya, Nivine Abbas, Hassan Sleiman

Abstract:

The road network in the north of Lebanon is a prime example of the lack of pavement design and execution in Lebanon.  These roads show major distresses and hence, should be tested and evaluated. The aim of this research is to investigate and determine the deficiencies in road surface design in Lebanon, and to propose an environmentally friendly asphalt mix design. This paper consists of several parts: (i) evaluating pavement performance and structural behavior, (ii) identifying the distresses using visual examination followed by laboratory tests, (iii) deciding the optimal solution where rehabilitation or reconstruction is required and finally, (iv) identifying a sustainable method, which uses recycled material in the proposed mix. The asphalt formula contains Reclaimed Asphalt Pavement (RAP) in the base course layer and in the asphalt layer. Visual inspection of the roads in Tripoli shows that these roads face a high level of distress severity. Consequently, the pavement should be reconstructed rather than simply rehabilitated. Coring was done to determine the pavement layer thickness. The results were compared to the American Association of State Highway and Transportation Officials (AASHTO) design methodology and showed that the existing asphalt thickness is lower than the required asphalt thickness. Prior to the pavement reconstruction, the road materials were tested according to the American Society for Testing and Materials (ASTM) specification to identify whether the materials are suitable. Accordingly, the ASTM tests that were performed on the base course are Sieve analysis, Atterberg limits, modified proctor, Los Angeles, and California Bearing Ratio (CBR) tests. Results show a CBR value higher than 70%. Hence, these aggregates could be used as a base course layer. The asphalt layer was also tested and the results of the Marshall flow and stability tests meet the ASTM specifications. In the last section, an environmentally friendly mix was proposed. An optimal RAP percentage of 30%, which produced a well graded base course and asphalt mix, was determined through a series of trials.

Keywords: asphalt mix, reclaimed asphalt pavement, California bearing ratio, sustainability

Procedia PDF Downloads 100
7680 Macular Ganglion Cell Inner Plexiform Layer Thinning

Authors: Hye-Young Shin, Chan Kee Park

Abstract:

Background: To compare the thinning patterns of the ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (pRNFL) as measured using Cirrus high-definition optical coherence tomography (HD-OCT) in patients with visual field (VF) defects that respect the vertical meridian. Methods: Twenty eyes of eleven patients with VF defects that respect the vertical meridian were enrolled retrospectively. The thicknesses of the macular GCIPL and pRNFL were measured using Cirrus HD-OCT. The 5% and 1% thinning area index (TAI) was calculated as the proportion of abnormally thin sectors at the 5% and 1% probability level within the area corresponding to the affected VF. The 5% and 1% TAI were compared between the GCIPL and pRNFL measurements. Results: The color-coded GCIPL deviation map showed a characteristic vertical thinning pattern of the GCIPL, which is also seen in the VF of patients with brain lesions. The 5% and 1% TAI were significantly higher in the GCIPL measurements than in the pRNFL measurements (all P < 0.01). Conclusions: Macular GCIPL analysis clearly visualized a characteristic topographic pattern of retinal ganglion cell (RGC) loss in patients with VF defects that respect the vertical meridian, unlike pRNFL measurements. Macular GCIPL measurements provide more valuable information than pRNFL measurements for detecting the loss of RGCs in patients with retrograde degeneration of the optic nerve fibers.

Keywords: brain lesion, macular ganglion cell, inner plexiform layer, spectral-domain optical coherence tomography

Procedia PDF Downloads 317
7679 PitMod: The Lorax Pit Lake Hydrodynamic and Water Quality Model

Authors: Silvano Salvador, Maryam Zarrinderakht, Alan Martin

Abstract:

Open pits, which are the result of mining, are filled by water over time until the water reaches the elevation of the local water table and generates mine pit lakes. There are several specific regulations about the water quality of pit lakes, and mining operations should keep the quality of groundwater above pre-defined standards. Therefore, an accurate, acceptable numerical model predicting pit lakes’ water balance and water quality is needed in advance of mine excavation. We carry on analyzing and developing the model introduced by Crusius, Dunbar, et al. (2002) for pit lakes. This model, called “PitMod”, simulates the physical and geochemical evolution of pit lakes over time scales ranging from a few months up to a century or more. Here, a lake is approximated as one-dimensional, horizontally averaged vertical layers. PitMod calculates the time-dependent vertical distribution of physical and geochemical pit lake properties, like temperature, salinity, conductivity, pH, trace metals, and dissolved oxygen, within each model layer. This model considers the effect of pit morphology, climate data, multiple surface and subsurface (groundwater) inflows/outflows, precipitation/evaporation, surface ice formation/melting, vertical mixing due to surface wind stress, convection, background turbulence and equilibrium geochemistry using PHREEQC and linking that to the geochemical reactions. PitMod, which is used and validated in over 50 mines projects since 2002, incorporates physical processes like those found in other lake models such as DYRESM (Imerito 2007). However, unlike DYRESM PitMod also includes geochemical processes, pit wall runoff, and other effects. In addition, PitMod is actively under development and can be customized as required for a particular site.

Keywords: pit lakes, mining, modeling, hydrology

Procedia PDF Downloads 119
7678 Orthogonal Basis Extreme Learning Algorithm and Function Approximation

Authors: Ying Li, Yan Li

Abstract:

A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.

Keywords: neural network, orthogonal basis extreme learning, function approximation

Procedia PDF Downloads 509
7677 Lead-Free Inorganic Cesium Tin-Germanium Triiodide Perovskites for Photovoltaic Application

Authors: Seyedeh Mozhgan Seyed-Talebi, Javad Beheshtian

Abstract:

The toxicity of lead associated with the lifecycle of perovskite solar cells (PSCs( is a serious concern which may prove to be a major hurdle in the path toward their commercialization. The current proposed lead-free PSCs including Ag(I), Bi(III), Sb(III), Ti(IV), Ge(II), and Sn(II) low-toxicity cations are still plagued with the critical issues of poor stability and low efficiency. This is mainly because of their chemical stability. In the present research, utilization of all inorganic CsSnGeI3 based materials offers the advantages to enhance resistance of device to degradation, reduce the cost of cells, and minimize the carrier recombination. The presence of inorganic halide perovskite improves the photovoltaic parameters of PCSs via improved surface coverage and stability. The inverted structure of simulated devices using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves TCOHTL/Perovskite/ETL/Au contact layer. PEDOT:PSS, PCBM, and CsSnGeI3 used as hole transporting layer (HTL), electron transporting layer (ETL), and perovskite absorber layer in the inverted structure for the first time. The holes are injected from highly stable and air tolerant Sn0.5Ge0.5I3 perovskite composition to HTM and electrons from the perovskite to ETL. Simulation results revealed a great dependence of power conversion efficiency (PCE) on the thickness and defect density of perovskite layer. Here the effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnGeI3 based perovskite devices is investigated. Comparison between simulated CsSnGeI3 based PCSs and similar real testified devices with spiro-OMeTAD as HTL showed that the extraction of carriers at the interfaces of perovskite absorber depends on the energy level mismatches between perovskite and HTL/ETL. We believe that optimization results reported here represent a critical avenue for fabricating the stable, low-cost, efficient, and eco-friendly all-inorganic Cs-Sn-Ge based lead-free perovskite devices.

Keywords: hole transporting layer, lead-free, perovskite solar cell, SCAPS-1D, Sn-Ge based

Procedia PDF Downloads 125
7676 Impact of Geomagnetic Variation over Sub-Auroral Ionospheric Region during High Solar Activity Year 2014

Authors: Arun Kumar Singh, Rupesh M. Das, Shailendra Saini

Abstract:

The present work is an attempt to evaluate the sub-auroral ionospheric behavior under changing space weather conditions especially during high solar activity year 2014. In view of this, the GPS TEC along with Ionosonde data over Indian permanent scientific base 'Maitri', Antarctica (70°46′00″ S, 11°43′56″ E) has been utilized. The results suggested that the nature of ionospheric responses to the geomagnetic disturbances mainly depended upon the status of high latitudinal electro-dynamic processes along with the season of occurrence. Fortunately, in this study, both negative and positive ionospheric impact to the geomagnetic disturbances has been observed in a single year but in different seasons. The study reveals that the combination of equator-ward plasma transportation along with ionospheric compositional changes causes a negative ionospheric impact during summer and equinox seasons. However, the combination of pole-ward contraction of the oval region along with particle precipitation may lead to exhibiting positive ionospheric response during the winter season. Other than this, some Ionosonde based new experimental evidence also provided clear evidence of particle precipitation deep up to the low altitudinal ionospheric heights, i.e., up to E-layer by the sudden and strong appearance of E-layer at 100 km altitudes. The sudden appearance of E-layer along with a decrease in F-layer electron density suggested the dominance of NO⁺ over O⁺ at a considered region under geomagnetic disturbed condition. The strengthening of E-layer is responsible for modification of auroral electrojet and field-aligned current system. The present study provided a good scientific insight on sub-auroral ionospheric to the changing space weather condition.

Keywords: high latitude ionosphere, space weather, geomagnetic storms, sub-storm

Procedia PDF Downloads 144
7675 Design Charts for Strip Footing on Untreated and Cement Treated Sand Mat over Underlying Natural Soft Clay

Authors: Sharifullah Ahmed, Sarwar Jahan Md. Yasin

Abstract:

Shallow foundations on unimproved soft natural soils can undergo a high consolidation and secondary settlement. For low and medium rise building projects on such soil condition, pile foundation may not be cost effective. In such cases an alternative to pile foundations may be shallow strip footings placed on a double layered improved soil system soil. The upper layer of this system is untreated or cement treated compacted sand and underlying layer is natural soft clay. This system will reduce the settlement to an allowable limit. The current research has been conducted with the settlement of a rigid plane-strain strip footing of 2.5 m width placed on the surface of a soil consisting of an untreated or cement treated sand layer overlying a bed of homogeneous soft clay. The settlement of the mentioned shallow foundation has been studied considering both cases with the thicknesses of the sand layer are 0.3 to 0.9 times the width of footing. The response of the clay layer is assumed as undrained for plastic loading stages and drained during consolidation stages. The response of the sand layer is drained during all loading stages. FEM analysis was done using PLAXIS 2D Version 8.0. A natural clay deposit of 15 m thickness and 18 m width has been modeled using Hardening Soil Model, Soft Soil Model, Soft Soil Creep Model, and upper improvement layer has been modeled using only Hardening Soil Model. The groundwater level is at the top level of the clay deposit that made the system fully saturated. Parametric study has been conducted to determine the effect of thickness, density, cementation of the sand mat and density, shear strength of the soft clay layer on the settlement of strip foundation under the uniformly distributed vertical load of varying value. A set of the chart has been established for designing shallow strip footing on the sand mat over thick, soft clay deposit through obtaining the particular thickness of sand mat for particular subsoil parameter to ensure no punching shear failure and no settlement beyond allowable level. Design guideline in the form of non-dimensional charts has been developed for footing pressure equivalent to medium-rise residential or commercial building foundation with strip footing on soft inorganic Normally Consolidated (NC) soil of Bangladesh having void ratio from 1.0 to 1.45.

Keywords: design charts, ground improvement, PLAXIS 2D, primary and secondary settlement, sand mat, soft clay

Procedia PDF Downloads 102
7674 The Relation between Sports Practice and the Academic Performance

Authors: Albert Perez-Bellmunt, Eila Rivera, Aida Valls, Berta Estragues, Sara Ortiz, Roberto Seijas, Pedro Alvarez

Abstract:

INTRODUCTION: Physical and sports activity on a regular basis present numerous health benefits such as the prevention of cardiovascular and metabolic diseases. Also, there is a relation between sport and the psychological or the cognitive process of children and young people. The objective of the present study is to know if the sports practice has any positive influence on the university academic performance. MATERIALS AND METHODS: The level of the physical activity of 220 students of different degrees in health science was evaluated and compared with the academic results (grades). To assess the level of physical and sports activity, the Global Physical Activity Questionnaire (to calculate the sporting level in a general way) and the International Physical Activity Questionnaire (to estimate the physical activity carried out during the days leading up to the academic exams) were used. RESULTS: The students that realized an average level of sports activity the days before the exam obtained better grades than the rest of their classmate and the result was statistically significant. Controversially, if the sports level was analyzed in a general way, no relationship was observed between academic performance and the level of sport realized. CONCLUSION: A moderate physical activity, on the days leading up to an assessment, can be a positive factor for the university academic performance. Despite the fact that a regular sports activity improves many cognitive and physiological processes, the present study did not observe a direct relationship between sport/physical activity and academic performance.

Keywords: academic performance, academic results, global physical activity questionnaire, physical activity questionnaire, sport, sport practice

Procedia PDF Downloads 168
7673 The Impact of Quality of Life on Satisfaction and Intent to Return for Distance Running

Authors: Chin-Huang Huang, Chun-Chu Yeh

Abstract:

Physical activities have a positive impact on individuals’ health and well-being. They also play an important role in promoting quality of life (QoL). The distance running enhances participants’ life satisfaction and provides positive experiences in physical activity. This study aims to measure the perception of QoL and to find the effect on satisfaction and intent to return for distance runners. Exploratory factor analysis is carried out to extract four major factorial dimensions of QoL, including multiple functions, spiritual, physical and cognitive factors. The main factors of QoL will be introduced into the regression function on satisfaction and return intention. The results show that the QoL factors including multiple functions, spiritual, physical and cognitive factors have a positive and significant impact on satisfaction for participants. The multiple functions and physical factors are also significantly positively correlated to the intent of return for runners.

Keywords: quality of life, physical activity, distance running, satisfaction

Procedia PDF Downloads 439
7672 Environmental Awareness on Formal Education Level: A Program Approach through Physical Education Course

Authors: Jocelyn Floresca

Abstract:

This paper aimed to present the by-product of the introduction of environmental ecology awareness on a formal education level utilizing the program course of Physical Education, particularly in the tertiary level. It is based on the premise that the radical need for environmental protection may not only necessarily be the work of people in the pure sciences but also deemed necessary to look into more avenues of the school setting particularly in the field of Physical Education. In the Philippines, most schools’ Physical Education focuses on the advancement of sports, fitness and wellness which are mostly done in the confines of a closed building. The paper dwells into the introduction of Physical Education as an outdoor recreation activity where in the participants of the study had the opportunity to indulge in activities undertaken outside the confines of buildings and going into large areas of the environment. It looked into the individual participant’s environmental social behaviour and effects on the participant’s perceptions in terms of the set objectives of Physical Education before and after the study’s intervention. The study utilized the formal course in Physical Education on nature walks, mountaineering and bird watching as interventions to gain perceptions and understanding. The introduction of the environmental ecology activities as a formal Physical Education course has resulted in deeper awareness that led to understanding the need to protect the environment, appreciation of the value of natural areas and acquiring behaviour for a sustainable use of the environment during the practice of Physical Education. Also, prior to the introduction of environmental ecology in Physical Education as a formal study; participants have no knowledge of what dwells in the identified sites of intervention. Whereas after the study, participants were able to identify various species of birds and plants found in the sites of the study that may lead to further conservation of the particular species.

Keywords: appreciation, conservation, environmental ecology, outdoor

Procedia PDF Downloads 267
7671 Facile Synthesis of Metal Nanoparticles on Graphene via Galvanic Displacement Reaction for Sensing Application

Authors: Juree Hong, Sanggeun Lee, Jungmok Seo, Taeyoon Lee

Abstract:

We report a facile synthesis of metal nano particles (NPs) on graphene layer via galvanic displacement reaction between graphene-buffered copper (Cu) and metal ion-containing salts. Diverse metal NPs can be formed on graphene surface and their morphologies can be tailored by controlling the concentration of metal ion-containing salt and immersion time. The obtained metal NP-decorated single-layer graphene (SLG) has been used as hydrogen gas (H2) sensing material and exhibited highly sensitive response upon exposure to 2% of H2.

Keywords: metal nanoparticle, galvanic displacement reaction, graphene, hydrogen sensor

Procedia PDF Downloads 402
7670 A Physical Theory of Information vs. a Mathematical Theory of Communication

Authors: Manouchehr Amiri

Abstract:

This article introduces a general notion of physical bit information that is compatible with the basics of quantum mechanics and incorporates the Shannon entropy as a special case. This notion of physical information leads to the Binary data matrix model (BDM), which predicts the basic results of quantum mechanics, general relativity, and black hole thermodynamics. The compatibility of the model with holographic, information conservation, and Landauer’s principles are investigated. After deriving the “Bit Information principle” as a consequence of BDM, the fundamental equations of Planck, De Broglie, Beckenstein, and mass-energy equivalence are derived.

Keywords: physical theory of information, binary data matrix model, Shannon information theory, bit information principle

Procedia PDF Downloads 134