Search results for: one side class algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7727

Search results for: one side class algorithm

7397 Hybrid Gravity Gradient Inversion-Ant Colony Optimization Algorithm for Motion Planning of Mobile Robots

Authors: Meng Wu

Abstract:

Motion planning is a common task required to be fulfilled by robots. A strategy combining Ant Colony Optimization (ACO) and gravity gradient inversion algorithm is proposed for motion planning of mobile robots. In this paper, in order to realize optimal motion planning strategy, the cost function in ACO is designed based on gravity gradient inversion algorithm. The obstacles around mobile robot can cause gravity gradient anomalies; the gradiometer is installed on the mobile robot to detect the gravity gradient anomalies. After obtaining the anomalies, gravity gradient inversion algorithm is employed to calculate relative distance and orientation between mobile robot and obstacles. The relative distance and orientation deduced from gravity gradient inversion algorithm is employed as cost function in ACO algorithm to realize motion planning. The proposed strategy is validated by the simulation and experiment results.

Keywords: motion planning, gravity gradient inversion algorithm, ant colony optimization

Procedia PDF Downloads 142
7396 Penguins Search Optimization Algorithm for Chaotic Synchronization System

Authors: Sofiane Bououden, Ilyes Boulkaibet

Abstract:

In terms of security of the information signal, the meta-heuristic Penguins Search Optimization Algorithm (PeSOA) is applied to synchronize chaotic encryption communications in the case of sensitive dependence on initial conditions in chaotic generator oscillator. The objective of this paper is the use of the PeSOA algorithm to exploring search space with random and iterative processes for synchronization of symmetric keys in both transmission and reception. Simulation results show the effectiveness of the PeSOA algorithm in generating symmetric keys of the encryption process and synchronizing.

Keywords: meta-heuristic, PeSOA, chaotic systems, encryption, synchronization optimization

Procedia PDF Downloads 201
7395 A Genetic Algorithm Based Permutation and Non-Permutation Scheduling Heuristics for Finite Capacity Material Requirement Planning Problem

Authors: Watchara Songserm, Teeradej Wuttipornpun

Abstract:

This paper presents a genetic algorithm based permutation and non-permutation scheduling heuristics (GAPNP) to solve a multi-stage finite capacity material requirement planning (FCMRP) problem in automotive assembly flow shop with unrelated parallel machines. In the algorithm, the sequences of orders are iteratively improved by the GA characteristics, whereas the required operations are scheduled based on the presented permutation and non-permutation heuristics. Finally, a linear programming is applied to minimize the total cost. The presented GAPNP algorithm is evaluated by using real datasets from automotive companies. The required parameters for GAPNP are intently tuned to obtain a common parameter setting for all case studies. The results show that GAPNP significantly outperforms the benchmark algorithm about 30% on average.

Keywords: capacitated MRP, genetic algorithm, linear programming, automotive industries, flow shop, application in industry

Procedia PDF Downloads 492
7394 Hyperspectral Image Classification Using Tree Search Algorithm

Authors: Shreya Pare, Parvin Akhter

Abstract:

Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.

Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm

Procedia PDF Downloads 186
7393 Engaging Educators, Parents, and the Education Stakeholders in Enhancing Curriculum Practice in Grade R Mathematics Class

Authors: Seipati Baloyi-Mothibedi, Wendy Setlalentoa

Abstract:

Recently scholars have shown much interest in the engagement and involvement of educational stakeholders in early childhood development (ECD) research, which has yielded positive results for ECD globally, especially in South Africa. Realising this gap, this study reports on the establishment of the research group comprising teachers, parents, and education stakeholders, which aimed to enhance curriculum practice in a grade R mathematics class. We adopted bricolage as a theoretical lens, mainly for its multi-layered, multi-methodological, multi-perspectival, and metatheoretical benefits to make sense in reviewing the literature as well as the empirical part of the study. A participatory action research (PAR) study using collaborative information sessions, meetings, workshops, and as well transcend movements were employed in order to engage the team to have first-hand information in enhancing curriculum practice in a grade R mathematics class was conducted. We adopted audiovisuals, photo voices, and lesson demonstrations to generate the data. The generated data were transcribed into texts that were further analysed using three levels based on the spoken or written texts and social and discursive practices. At the end of the discourses, the findings showed that engagement, involvement, and inclusion of different education stakeholders were instrumental in enhancing curriculum practice in a grade R mathematics class for the highest attainment. From the findings, we developed a strategy for engagement and involvement of teachers, parents, and the education stakeholders in enhancing curriculum practice in grade R mathematics class.

Keywords: engagement, involvement, curriculum practice, grade R, mathematics class

Procedia PDF Downloads 106
7392 Investigating Introvert and Extrovert University Students’ Perception of the Use of Interactive Digital Tools in a Face-To-Face ESP Class

Authors: Eunice Tang

Abstract:

The main focus of this study is investigating introvert and extrovert university students’ perception of the use of interactive digital tools (such as Padlet and Mentimeter) in a face-to-face English for Specific Purposes (ESP) class after all classes in the university had been switched to online mode for three semesters. The subjects of the study were business students from three ESP classes at The Hong Kong University of Science and Technology. The basic tool for data collection was an anonymous online survey, which included 3 required multiple-choice questions and 3 open questions (2 required; 1 optional) about the effects of interactive digital tools on their amount of contribution to the class discussions, their perception of the role of interactive digital tools to the sharing of ideas and whether the students considered themselves introvert or extrovert. The online survey will be emailed to all 54 students in the three ESP classes and subjected to a three-week data collection period. The survey results will then be analyzed qualitatively, particularly on the effect the use of interactive digital tools had on the amount of contribution to the class among introvert and extrovert students, their perception of a language class with and without digital tools and most importantly, the implication to educators about how interactive digital tools can be used (or not) to cater for the needs of the introvert and extrovert students. The pandemic has given educators various opportunities to use interactive digital tools in class, especially in an online environment. It is interesting for educators to explore the potential of such tools when classes are back face-to-face. This research thus offers the students’ perspective on using interactive digital tools in a face-to-face classroom. While a lot has been said about introverted students responding positively to digital learning online, the student's perception of their own personality collected in the survey and the digital impact tools have on their contribution to class may shed some light on the potential of interactive digital tools in a post-pandemic era.

Keywords: psychology for language learning, interactive digital tools, personality-based investigation, ESP

Procedia PDF Downloads 191
7391 The Application of Collision Damage Analysis in Reconstruction of Sedan-Scooter Accidents

Authors: Chun-Liang Wu, Kai-Ping Shaw, Cheng-Ping Yu, Wu-Chien Chien, Hsiao-Ting Chen, Shao-Huang Wu

Abstract:

Objective: This study analyzed three criminal judicial cases. We applied the damage analysis of the two vehicles to verify other evidence, such as dashboard camera records of each accident, reconstruct the scenes, and pursue the truth. Methods: Evidence analysis, the method is to collect evidence and the reason for the results in judicial procedures, then analyze the involved damage evidence to verify other evidence. The collision damage analysis method is to inspect the damage to the vehicles and utilize the principles of tool mark analysis, Newtonian physics, and vehicle structure to understand the relevant factors when the vehicles collide. Results: Case 1: Sedan A turned right at the T junction and collided with Scooter B, which was going straight on the left road. The dashboard camera records showed that the left side of Sedan A’s front bumper collided with the body of Scooter B and rider B. After the analysis of the study, the truth was that the front of the left side of Sedan A impacted the right pedal of Scooter B and the right lower limb of rider B. Case 2: Sedan C collided with Scooter D on the left road at the crossroads. The dashboard camera record showed that the left side of the Sedan C’s front bumper collided with the body of Scooter D and rider D. After the analysis of the study, the truth was that the left side of the Sedan C impacted the left side of the car body and the front wheel of Scooter D and rider D. Case 3: Sedan E collided with Scooter F on the right road at the crossroads. The dashboard camera record showed that the right side of the Sedan E’s front bumper collided with the body of Scooter F and rider F. After the analysis of the study, the truth was that the right side of the front bumper and the right side of the Sedan F impacted the Scooter. Conclusion: The application of collision damage analysis in the reconstruction of a sedan-scooter collision could discover the truth and provide the basis for judicial justice. The cases and methods could be the reference for the road safety policy.

Keywords: evidence analysis, collision damage analysis, accident reconstruction, sedan-scooter collision, dashboard camera records

Procedia PDF Downloads 84
7390 Revolutionary Violence and Echoes of the «Thou Shalt Not Kill» Debate: A Tragic Reading of the Class Conflict in Colombia

Authors: Jaime Otavo

Abstract:

Oscar del Barco, a former member of Los Montoneros, an Argentine guerrilla group of the 1970s, published a letter in 2004 that sparked a heated debate in his country about revolutionary violence. Del Barco, on the subject of «No matarás» (Thou shalt not kill) –as this debate was known– wrote to Sergio Schmucler, his addressee, the following: "There is no 'ideal' that justifies the death of a man. The founding principle of any community is 'Thou shalt not kill'. Thou shalt not kill the man because every man is sacred, and every man is all men".In this paper, the «No matarás» debate will be used to problematize two interconnected ideas that, in Colombia, underpinned the use of revolutionary violence by the guerrilla movements that emerged in the 1970s. On the one hand, an anthropological optimism; on the other, a theological scheme of converting violence into justice. Based on this, two arguments are put forward: 1) that revolutionary violence arose from an ethical-political certainty, namely: the confidence in being on the right side of history (because the violent ones were others), but 2) that its persistence over time made visible a tragic element, that is, that the bipolarity between victim and executioner, good and evil, or friend and foe that is inscribed in the class struggle is a false dilemma for in the context of revolutionary violence –as in the context of Greek tragedy–, no one ever has to make a decision, nor can he do so. For this reason, it is maintained that the fundamental aspect about guerrilla violence in Colombia is that it imposed itself as a violence of negativity which not only exceeded the capacity of the extreme left to control its revolutionary praxis but also exploited the link with the political subjectivation to which it aspired, the proletariat as the gravedigger of the bourgeoisie.

Keywords: marxism, social movements, armed struggle, debate thou shalt not kill

Procedia PDF Downloads 85
7389 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.

Keywords: clustering, load profiling, load modeling, machine learning, energy efficiency and quality

Procedia PDF Downloads 169
7388 Two-Level Separation of High Air Conditioner Consumers and Demand Response Potential Estimation Based on Set Point Change

Authors: Mehdi Naserian, Mohammad Jooshaki, Mahmud Fotuhi-Firuzabad, Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee

Abstract:

In recent years, the development of communication infrastructure and smart meters have facilitated the utilization of demand-side resources which can enhance stability and economic efficiency of power systems. Direct load control programs can play an important role in the utilization of demand-side resources in the residential sector. However, investments required for installing control equipment can be a limiting factor in the development of such demand response programs. Thus, selection of consumers with higher potentials is crucial to the success of a direct load control program. Heating, ventilation, and air conditioning (HVAC) systems, which due to the heat capacity of buildings feature relatively high flexibility, make up a major part of household consumption. Considering that the consumption of HVAC systems depends highly on the ambient temperature and bearing in mind the high investments required for control systems enabling direct load control demand response programs, in this paper, a recent solution is presented to uncover consumers with high air conditioner demand among large number of consumers and to measure the demand response potential of such consumers. This can pave the way for estimating the investments needed for the implementation of direct load control programs for residential HVAC systems and for estimating the demand response potentials in a distribution system. In doing so, we first cluster consumers into several groups based on the correlation coefficients between hourly consumption data and hourly temperature data using K-means algorithm. Then, by applying a recent algorithm to the hourly consumption and temperature data, consumers with high air conditioner consumption are identified. Finally, demand response potential of such consumers is estimated based on the equivalent desired temperature setpoint changes.

Keywords: communication infrastructure, smart meters, power systems, HVAC system, residential HVAC systems

Procedia PDF Downloads 73
7387 The Development of Online-Class Scheduling Management System Conducted by the Case Study of Department of Social Science: Faculty of Humanities and Social Sciences Suan Sunandha Rajabhat University

Authors: Wipada Chaiwchan, Patcharee Klinhom

Abstract:

This research is aimed to develop the online-class scheduling management system and improve as a complex problem solution, this must take into consideration in various conditions and factors. In addition to the number of courses, the number of students and a timetable to study, the physical characteristics of each class room and regulations used in the class scheduling must also be taken into consideration. This system is developed to assist management in the class scheduling for convenience and efficiency. It can provide several instructors to schedule simultaneously. Both lecturers and students can check and publish a timetable and other documents associated with the system online immediately. It is developed in a web-based application. PHP is used as a developing tool. The database management system was MySQL. The tool that is used for efficiency testing of the system is questionnaire. The system was evaluated by using a Black-Box testing. The sample was composed of 2 groups: 5 experts and 100 general users. The average and the standard deviation of results from the experts were 3.50 and 0.67. The average and the standard deviation of results from the general users were 3.54 and 0.54. In summary, the results from the research indicated that the satisfaction of users was in a good level. Therefore, this system could be implemented in an actual workplace and satisfy the users’ requirement effectively

Keywords: timetable, schedule, management system, online

Procedia PDF Downloads 240
7386 Prevalence of Lupus Glomerulonephritis in Renal Biopsies in an Eastern Region of the Arab World

Authors: M. Fayez Al Homsi, Reem Al Homsi

Abstract:

Renal disease is a major cause of morbidity and mortality. Glomerular diseases make a small portion of the renal disease. Lupus glomerulonephritis (GN) is the commonest among the GN of systemic diseases. More than a hundred and eighty-eight consecutive renal biopsies are performed and evaluated for clinically suspected glomerular diseases over a period of two years. As in a standard practice after receiving the ultrasound-guided renal biopsies, the fresh biopsy is divided to three parts, one part is frozen for immunofluorescence evaluation, the second part is placed in 4% glutaraldehyde for electron microscopic evaluation, and the third part is placed in 10% buffered formalin for light microscopic evaluation. Primary glomerular diseases are detected in 83 biopsies; glomerulonephritis (GN) of systemic diseases are identified in 88, glomerular lesions in vascular diseases in 3, glomerular lesions in metabolic diseases in 7, hereditary nephropathies in 2, end-stage kidney in 2, and glomerular lesions in transplantation in 3 biopsies. Among the primary lesions, focal segmental glomerulosclerosis (28) and mesangial proliferative GN (26) were the most common. Lupus GN (67) and Ig A nephropathy (20) were the most common of the GN of systemic diseases. Lupus nephritis biopsies included one biopsy diagnosed as class 1 (normal), 17 biopsies class 2 (mesangial proliferation), 5 biopsies class 3 (focal proliferative GN), 39 biopsies class 4 diffuse proliferative GN), 3 biopsies class 5 (membranous GN), and 2 biopsies class 6 (crescentic GN). Lupus GN is the most common among GN of systemic diseases. While diabetes is very common here, diabetic GN (3 biopsies) is not as common as might one expects. Most likely this is due to sampling and reluctance on part of nephrologists and patients in sampling the kidney in diabetes mellitus.

Keywords: diabetes, glomerulonephritis, lupus, mesangial proliferation, nephropathy

Procedia PDF Downloads 133
7385 Extended Boolean Petri Nets Generating N-Ary Trees

Authors: Riddhi Jangid, Gajendra Pratap Singh

Abstract:

Petri nets, a mathematical tool, is used for modeling in different areas of computer sciences, biological networks, chemical systems and many other disciplines. A Petri net model of a given system is created by the graphical representation that describes the properties and behavior of the system. While looking for the behavior of any system, 1-safe Petri nets are of particular interest to many in the application part. Boolean Petri nets correspond to those class in 1- safe Petri nets that generate all the binary n-vectors in their reachability analysis. We study the class by changing different parameters like the token counts in the places and how the structure of the tree changes in the reachability analysis. We discuss here an extended class of Boolean Petri nets that generates n-ary trees in their reachability-based analysis.

Keywords: marking vector, n-vector, petri nets, reachability

Procedia PDF Downloads 86
7384 Awarness the Effect of Quality Food and Nutrition on Health Will Help Develop a Healthy Lifestyle

Authors: Hamnah Nisar

Abstract:

As food is something which is particularly important for survival, in fact, it improves the quality of life and promotes health. Quality food is a key to a healthy life. Consumption of food depends on the knowledge we have regarding the nutrients it contains. Moreover, the awareness and knowledge about something is an initial stage for its improvement. We cannot work on anything unless we have knowledge about it. The pros and cons, effects, causes, dos, and don'ts, especially for an important things like food, are a necessity to learn. That is why my research would be all about analyzing what difference awareness makes on people and how making people more aware about a certain thing can help them improve their lifestyles and bring a positive change for them. The research would be done through questionnaires and interviews among two classes, one would be the upper class and the other would-be lower class. Because the upper class can easily access learning facilities and can know about the new things than the lower class. The questions would be related to what kind of food do they consume, what health issues they face, or what health issues are common among their regions. The results of the research would be helpful to know firstly the effects of awareness and education regarding food on health, how a basic thing like knowledge can have a significant effect on health and can be the cause of several diseases.

Keywords: nutrition, awareness, quality food, knowledge

Procedia PDF Downloads 79
7383 Forward Stable Computation of Roots of Real Polynomials with Only Real Distinct Roots

Authors: Nevena Jakovčević Stor, Ivan Slapničar

Abstract:

Any polynomial can be expressed as a characteristic polynomial of a complex symmetric arrowhead matrix. This expression is not unique. If the polynomial is real with only real distinct roots, the matrix can be chosen as real. By using accurate forward stable algorithm for computing eigen values of real symmetric arrowhead matrices we derive a forward stable algorithm for computation of roots of such polynomials in O(n^2 ) operations. The algorithm computes each root to almost full accuracy. In some cases, the algorithm invokes extended precision routines, but only in the non-iterative part. Our examples include numerically difficult problems, like the well-known Wilkinson’s polynomials. Our algorithm compares favorably to other method for polynomial root-finding, like MPSolve or Newton’s method.

Keywords: roots of polynomials, eigenvalue decomposition, arrowhead matrix, high relative accuracy

Procedia PDF Downloads 420
7382 A Hybrid Pareto-Based Swarm Optimization Algorithm for the Multi-Objective Flexible Job Shop Scheduling Problems

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a new hybrid particle swarm optimization algorithm is proposed for the multi-objective flexible job shop scheduling problem that is very important and hard combinatorial problem. The Pareto approach is used for solving the multi-objective problem. Several new local search heuristics are integrated into an algorithm based on the critical block concept to enhance the performance of the algorithm. The algorithm is compared with the recently published multi-objective algorithms based on benchmarks selected from the literature. Several metrics are used for quantifying performance and comparison of the achieved solutions. The algorithms are also compared based on the Weighting summation of objectives approach. The proposed algorithm can find the Pareto solutions more efficiently than the compared algorithms in less computational time.

Keywords: swarm-based optimization, local search, Pareto optimality, flexible job shop scheduling, multi-objective optimization

Procedia PDF Downloads 373
7381 An Improved Method to Compute Sparse Graphs for Traveling Salesman Problem

Authors: Y. Wang

Abstract:

The Traveling salesman problem (TSP) is NP-hard in combinatorial optimization. The research shows the algorithms for TSP on the sparse graphs have the shorter computation time than those for TSP according to the complete graphs. We present an improved iterative algorithm to compute the sparse graphs for TSP by frequency graphs computed with frequency quadrilaterals. The iterative algorithm is enhanced by adjusting two parameters of the algorithm. The computation time of the algorithm is O(CNmaxn2) where C is the iterations, Nmax is the maximum number of frequency quadrilaterals containing each edge and n is the scale of TSP. The experimental results showed the computed sparse graphs generally have less than 5n edges for most of these Euclidean instances. Moreover, the maximum degree and minimum degree of the vertices in the sparse graphs do not have much difference. Thus, the computation time of the methods to resolve the TSP on these sparse graphs will be greatly reduced.

Keywords: frequency quadrilateral, iterative algorithm, sparse graph, traveling salesman problem

Procedia PDF Downloads 237
7380 A Multidimensional Genetic Algorithm Applicable for Our VRP Variant Dealing with the Problems of Infrastructure Defaults SVRDP-CMTW: “Safety Vehicle Routing Diagnosis Problem with Control and Modified Time Windows”

Authors: Ben Mansour Mouin, Elloumi Abdelkarim

Abstract:

We will discuss the problem of routing a fleet of different vehicles from a central depot to different types of infrastructure-defaults with dynamic maintenance requests, modified time windows, and control of default maintained. For this reason, we propose a modified metaheuristicto to solve our mathematical model. SVRDP-CMTW is a variant VRP of an optimal vehicle plan that facilitates the maintenance task of different types of infrastructure-defaults. This task will be monitored after the maintenance, based on its priorities, the degree of danger associated with each default, and the neighborhood at the black-spots. We will present, in this paper, a multidimensional genetic algorithm “MGA” by detailing its characteristics, proposed mechanisms, and roles in our work. The coding of this algorithm represents the necessary parameters that characterize each infrastructure-default with the objective of minimizing a combination of cost, distance and maintenance times while satisfying the priority levels of the most urgent defaults. The developed algorithm will allow the dynamic integration of newly detected defaults at the execution time. This result will be displayed in our programmed interactive system at the routing time. This multidimensional genetic algorithm replaces N genetic algorithm to solve P different type problems of infrastructure defaults (instead of N algorithm for P problem we can solve in one multidimensional algorithm simultaneously who can solve all these problemsatonce).

Keywords: mathematical model, VRP, multidimensional genetic algorithm, metaheuristics

Procedia PDF Downloads 202
7379 Track Initiation Method Based on Multi-Algorithm Fusion Learning of 1DCNN And Bi-LSTM

Authors: Zhe Li, Aihua Cai

Abstract:

Aiming at the problem of high-density clutter and interference affecting radar detection target track initiation in ECM and complex radar mission, the traditional radar target track initiation method has been difficult to adapt. To this end, we propose a multi-algorithm fusion learning track initiation algorithm, which transforms the track initiation problem into a true-false track discrimination problem, and designs an algorithm based on 1DCNN(One-Dimensional CNN)combined with Bi-LSTM (Bi-Directional Long Short-Term Memory )for fusion classification. The experimental dataset consists of real trajectories obtained from a certain type of three-coordinate radar measurements, and the experiments are compared with traditional trajectory initiation methods such as rule-based method, logical-based method and Hough-transform-based method. The simulation results show that the overall performance of the multi-algorithm fusion learning track initiation algorithm is significantly better than that of the traditional method, and the real track initiation rate can be effectively improved under high clutter density with the average initiation time similar to the logical method.

Keywords: track initiation, multi-algorithm fusion, 1DCNN, Bi-LSTM

Procedia PDF Downloads 100
7378 Linearization of Y-Force Equation of Rigid Body Equation of Motion and Behavior of Fighter Aircraft under Imbalance Weight on Wings during Combat

Authors: Jawad Zakir, Syed Irtiza Ali Shah, Rana Shaharyar, Sidra Mahmood

Abstract:

Y-force equation comprises aerodynamic forces, drag and side force with side slip angle β and weight component along with the coupled roll (φ) and pitch angles (θ). This research deals with the linearization of Y-force equation using Small Disturbance theory assuming equilibrium flight conditions for different state variables of aircraft. By using assumptions of Small Disturbance theory in non-linear Y-force equation, finally reached at linearized lateral rigid body equation of motion; which says that in linearized Y-force equation, the lateral acceleration is dependent on the other different aerodynamic and propulsive forces like vertical tail, change in roll rate (Δp) from equilibrium, change in yaw rate (Δr) from equilibrium, change in lateral velocity due to side force, drag and side force components due to side slip, and the lateral equation from coupled rotating frame to decoupled rotating frame. This paper describes implementation of this lateral linearized equation for aircraft control systems. Another significant parameter considered on which y-force equation depends is ‘c’ which shows that any change bought in the weight of aircrafts wing will cause Δφ and cause lateral force i.e. Y_c. This simplification also leads to lateral static and dynamic stability. The linearization of equations is required because much of mathematics control system design for aircraft is based on linear equations. This technique is simple and eases the linearization of the rigid body equations of motion without using any high-speed computers.

Keywords: Y-force linearization, small disturbance theory, side slip, aerodynamic force drag, lateral rigid body equation of motion

Procedia PDF Downloads 501
7377 Genetic Algorithm Optimization of Microcantilever Based Resonator

Authors: Manjula Sutagundar, B. G. Sheeparamatti, D. S. Jangamshetti

Abstract:

Micro Electro Mechanical Systems (MEMS) resonators have shown the potential of replacing quartz crystal technology for sensing and high frequency signal processing applications because of inherent advantages like small size, high quality factor, low cost, compatibility with integrated circuit chips. This paper presents the optimization and modelling and simulation of the optimized micro cantilever resonator. The objective of the work is to optimize the dimensions of a micro cantilever resonator for a specified range of resonant frequency and specific quality factor. Optimization is carried out using genetic algorithm. The genetic algorithm is implemented using MATLAB. The micro cantilever resonator is modelled in CoventorWare using the optimized dimensions obtained from genetic algorithm. The modeled cantilever is analysed for resonance frequency.

Keywords: MEMS resonator, genetic algorithm, modelling and simulation, optimization

Procedia PDF Downloads 554
7376 A Variable Incremental Conductance MPPT Algorithm Applied to Photovoltaic Water Pumping System

Authors: Sarah Abdourraziq, Rachid Elbachtiri

Abstract:

The use of solar energy as a source for pumping water is one of the promising areas in the photovoltaic (PV) application. The energy of photovoltaic pumping systems (PVPS) can be widely improved by employing an MPPT algorithm. This will lead consequently to maximize the electrical motor speed of the system. This paper presents a modified incremental conductance (IncCond) MPPT algorithm with direct control method applied to a standalone PV pumping system. The influence of the algorithm parameters on system behavior is investigated and compared with the traditional (INC) method. The studied system consists of a PV panel, a DC-DC boost converter, and a PMDC motor-pump. The simulation of the system by MATLAB-SIMULINK is carried out. Simulation results found are satisfactory.

Keywords: photovoltaic pumping system (PVPS), incremental conductance (INC), MPPT algorithm, boost converter

Procedia PDF Downloads 406
7375 Model Order Reduction Using Hybrid Genetic Algorithm and Simulated Annealing

Authors: Khaled Salah

Abstract:

Model order reduction has been one of the most challenging topics in the past years. In this paper, a hybrid solution of genetic algorithm (GA) and simulated annealing algorithm (SA) are used to approximate high-order transfer functions (TFs) to lower-order TFs. In this approach, hybrid algorithm is applied to model order reduction putting in consideration improving accuracy and preserving the properties of the original model which are two important issues for improving the performance of simulation and computation and maintaining the behavior of the original complex models being reduced. Compared to conventional mathematical methods that have been used to obtain a reduced order model of high order complex models, our proposed method provides better results in terms of reducing run-time. Thus, the proposed technique could be used in electronic design automation (EDA) tools.

Keywords: genetic algorithm, simulated annealing, model reduction, transfer function

Procedia PDF Downloads 144
7374 Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems

Authors: Vijaya K. Srivastava, Davide Spinello

Abstract:

This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.

Keywords: constrained integer problems, enumerative search algorithm, Heuristic algorithm, Tunneling algorithm

Procedia PDF Downloads 328
7373 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection

Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi

Abstract:

In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.

Keywords: cardiac anomalies, ECG, HTM, real time anomaly detection

Procedia PDF Downloads 235
7372 Symmetric Key Encryption Algorithm Using Indian Traditional Musical Scale for Information Security

Authors: Aishwarya Talapuru, Sri Silpa Padmanabhuni, B. Jyoshna

Abstract:

Cryptography helps in preventing threats to information security by providing various algorithms. This study introduces a new symmetric key encryption algorithm for information security which is linked with the "raagas" which means Indian traditional scale and pattern of music notes. This algorithm takes the plain text as input and starts its encryption process. The algorithm then randomly selects a raaga from the list of raagas that is assumed to be present with both sender and the receiver. The plain text is associated with the thus selected raaga and an intermediate cipher-text is formed as the algorithm converts the plain text characters into other characters, depending upon the rules of the algorithm. This intermediate code or cipher text is arranged in various patterns in three different rounds of encryption performed. The total number of rounds in the algorithm is equal to the multiples of 3. To be more specific, the outcome or output of the sequence of first three rounds is again passed as the input to this sequence of rounds recursively, till the total number of rounds of encryption is performed. The raaga selected by the algorithm and the number of rounds performed will be specified at an arbitrary location in the key, in addition to important information regarding the rounds of encryption, embedded in the key which is known by the sender and interpreted only by the receiver, thereby making the algorithm hack proof. The key can be constructed of any number of bits without any restriction to the size. A software application is also developed to demonstrate this process of encryption, which dynamically takes the plain text as input and readily generates the cipher text as output. Therefore, this algorithm stands as one of the strongest tools for information security.

Keywords: cipher text, cryptography, plaintext, raaga

Procedia PDF Downloads 291
7371 Harmony Search-Based K-Coverage Enhancement in Wireless Sensor Networks

Authors: Shaimaa M. Mohamed, Haitham S. Hamza, Imane A. Saroit

Abstract:

Many wireless sensor network applications require K-coverage of the monitored area. In this paper, we propose a scalable harmony search based algorithm in terms of execution time, K-Coverage Enhancement Algorithm (KCEA), it attempts to enhance initial coverage, and achieve the required K-coverage degree for a specific application efficiently. Simulation results show that the proposed algorithm achieves coverage improvement of 5.34% compared to K-Coverage Rate Deployment (K-CRD), which achieves 1.31% when deploying one additional sensor. Moreover, the proposed algorithm is more time efficient.

Keywords: Wireless Sensor Networks (WSN), harmony search algorithms, K-Coverage, Mobile WSN

Procedia PDF Downloads 529
7370 A New Graph Theoretic Problem with Ample Practical Applications

Authors: Mehmet Hakan Karaata

Abstract:

In this paper, we first coin a new graph theocratic problem with numerous applications. Second, we provide two algorithms for the problem. The first solution is using a brute-force techniques, whereas the second solution is based on an initial identification of the cycles in the given graph. We then provide a correctness proof of the algorithm. The applications of the problem include graph analysis, graph drawing and network structuring.

Keywords: algorithm, cycle, graph algorithm, graph theory, network structuring

Procedia PDF Downloads 391
7369 Considering the Reliability of Measurements Issue in Distributed Adaptive Estimation Algorithms

Authors: Wael M. Bazzi, Amir Rastegarnia, Azam Khalili

Abstract:

In this paper we consider the issue of reliability of measurements in distributed adaptive estimation problem. To this aim, we assume a sensor network with different observation noise variance among the sensors and propose new estimation method based on incremental distributed least mean-square (IDLMS) algorithm. The proposed method contains two phases: I) Estimation of each sensors observation noise variance, and II) Estimation of the desired parameter using the estimated observation variances. To deal with the reliability of measurements, in the second phase of the proposed algorithm, the step-size parameter is adjusted for each sensor according to its observation noise variance. As our simulation results show, the proposed algorithm considerably improves the performance of the IDLMS algorithm in the same condition.

Keywords: adaptive filter, distributed estimation, sensor network, IDLMS algorithm

Procedia PDF Downloads 638
7368 Consensus Problem of High-Order Multi-Agent Systems under Predictor-Based Algorithm

Authors: Cheng-Lin Liu, Fei Liu

Abstract:

For the multi-agent systems with agent's dynamics described by high-order integrator, and usual consensus algorithm composed of the state coordination control parts is proposed. Under communication delay, consensus algorithm in asynchronously-coupled form just can make the agents achieve a stationary consensus, and sufficient consensus condition is obtained based on frequency-domain analysis. To recover the original consensus state of the high-order agents without communication delay, besides, a predictor-based consensus algorithm is constructed via multiplying the delayed neighboring agents' states by a delay-related compensation part, and sufficient consensus condition is also obtained. Simulation illustrates the correctness of the results.

Keywords: high-order dynamic agents, communication delay, consensus, predictor-based algorithm

Procedia PDF Downloads 574