Search results for: laser localization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1234

Search results for: laser localization

904 Broadband Platinum Disulfide Based Saturable Absorber Used for Optical Fiber Mode Locking Lasers

Authors: Hui Long, Chun Yin Tang, Ping Kwong Cheng, Xin Yu Wang, Wayesh Qarony, Yuen Hong Tsang

Abstract:

Two dimensional (2D) materials have recently attained substantial research interest since the discovery of graphene. However, the zero-bandgap feature of the graphene limits its nonlinear optical applications, e.g., saturable absorption for these applications require strong light-matter interaction. Nevertheless, the excellent optoelectronic properties, such as broad tunable bandgap energy and high carrier mobility of Group 10 transition metal dichalcogenides 2D materials, e.g., PtS2 introduce new degree of freedoms in the optoelectronic applications. This work reports our recent research findings regarding the saturable absorption property of PtS2 layered 2D material and its possibility to be used as saturable absorber (SA) for ultrafast mode locking fiber laser. The demonstration of mode locking operation by using the fabricated PtS2 as SA will be discussed. The PtS2/PVA SA used in this experiment is made up of some few layered PtS2 nanosheets fabricated via a simple ultrasonic liquid exfoliation. The operational wavelength located at ~1 micron is demonstrated from Yb-doped mode locking fiber laser ring cavity by using the PtS2 SA. The fabricated PtS2 saturable absorber offers strong nonlinear properties, and it is capable of producing regular mode locking laser pulses with pulse to pulse duration matched with the round-trip cavity time. The results confirm successful mode locking operation achieved by the fabricated PtS2 material. This work opens some new opportunities for these PtS2 materials for the ultrafast laser generation. Acknowledgments: This work is financially supported by Shenzhen Science and Technology Innovation Commission (JCYJ20170303160136888) and the Research Grants Council of Hong Kong, China (GRF 152109/16E, PolyU code: B-Q52T).

Keywords: platinum disulfide, PtS2, saturable absorption, saturable absorber, mode locking laser

Procedia PDF Downloads 188
903 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes

Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales

Abstract:

In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.

Keywords: calibration, data modeling, industrial processes, machine learning

Procedia PDF Downloads 298
902 Low-Cost Parking Lot Mapping and Localization for Home Zone Parking Pilot

Authors: Hongbo Zhang, Xinlu Tang, Jiangwei Li, Chi Yan

Abstract:

Home zone parking pilot (HPP) is a fast-growing segment in low-speed autonomous driving applications. It requires the car automatically cruise around a parking lot and park itself in a range of up to 100 meters inside a recurrent home/office parking lot, which requires precise parking lot mapping and localization solution. Although Lidar is ideal for SLAM, the car OEMs favor a low-cost fish-eye camera based visual SLAM approach. Recent approaches have employed segmentation models to extract semantic features and improve mapping accuracy, but these AI models are memory unfriendly and computationally expensive, making deploying on embedded ADAS systems difficult. To address this issue, we proposed a new method that utilizes object detection models to extract robust and accurate parking lot features. The proposed method could reduce computational costs while maintaining high accuracy. Once combined with vehicles’ wheel-pulse information, the system could construct maps and locate the vehicle in real-time. This article will discuss in detail (1) the fish-eye based Around View Monitoring (AVM) with transparent chassis images as the inputs, (2) an Object Detection (OD) based feature point extraction algorithm to generate point cloud, (3) a low computational parking lot mapping algorithm and (4) the real-time localization algorithm. At last, we will demonstrate the experiment results with an embedded ADAS system installed on a real car in the underground parking lot.

Keywords: ADAS, home zone parking pilot, object detection, visual SLAM

Procedia PDF Downloads 67
901 Powder Flow with Normalized Powder Particles Size Distribution and Temperature Analyses in Laser Melting Deposition: Analytical Modelling and Experimental Validation

Authors: Muhammad Arif Mahmood, Andrei C. Popescu, Mihai Oane, Diana Chioibascu, Carmen Ristoscu, Ion N. Mihailescu

Abstract:

Powder flow and temperature distributions are recognized as influencing factors during laser melting deposition (LMD) process, that not only affect the consolidation rate but also characteristics of the deposited layers. Herewith, two simplified analytical models will be presented to simulate the powder flow with the inclusion of powder particles size distribution in Gaussian form, under three powder jet nozzles, and temperature analyses during LMD process. The output of the 1st model will serve as the input in the 2nd model. The models will be validated with experimental data, i.e., weight measurement method for powder particles distribution and infrared imaging for temperature analyses. This study will increase the cost-efficiency of the LMD process by adjustment of the operating parameters for reaching optimal powder debit and energy. This research has received funds under the Marie Sklodowska-Curie grant agreement No. 764935, from the European Union’s Horizon 2020 research and innovation program.

Keywords: laser additive manufacturing, powder particles size distribution in Gaussian form, powder stream distribution, temperature analyses

Procedia PDF Downloads 134
900 Successful Excision of Lower Lip Mucocele Using 2780 nm Er,Cr:YSGG Laser

Authors: Lubna M. Al-Otaibi

Abstract:

Mucocele is a common benign neoplasm of the oral cavity and the most common after fibroma. The lesion develops as a result of retention or extravasation of mucous material from minor salivary glands. Extravasation type of mucocele results from trauma and mostly occurs in the lower lip of young patients. The various treatment options available for the treatment of mucocele are associated with a relatively high incidence of recurrence making surgical intervention necessary for a permanent cure. The conventional surgical procedure, however, arouses apprehension in the patient and is associated with bleeding and postoperative pain. Recently, treatment of mucocele with lasers has become a viable treatment option. Various types of lasers are being used and are preferable over the conventional surgical procedure as they provide good hemostasis, reduced postoperative swelling and pain, reduced bacterial population, lesser need for suturing, faster healing and low recurrence rates. Er,Cr:YSGG is a solid-state laser with great affinity to water molecule. Its hydrokinetic cutting action allows it to work effectively on hydrated tissues without any thermal damage. However, up to date, only a few studies have reported its use in the removal of lip mucocele, especially in children. In this case, a 6 year old female patient with history of trauma to the lower lip presented with a soft, sessile, whitish-bluish 4 mm papule. The lesion was present for approximately four months and was fluctuant in size. The child developed a habit of biting the lesion causing injury, bleeding and discomfort. Surgical excision under local anaesthesia was performed using 2780 nm Er,Cr:YSGG Laser (WaterLase iPlus, Irvine, CA) with a Gold handpiece and MZ6 tip (3.5w, 50 Hz, 20% H2O, 20% Air, S mode). The tip was first applied in contact mode with focused beam using the Circumferential Incision Technique (CIT) to excise the tissue followed by the removal of the underlying causative minor salivary gland. Bleeding was stopped using Laser Dry Bandage setting (0.5w, 50 Hz, 1% H2O, 20% Air, S mode) and no suturing was needed. Safety goggles were worn and high-speed suction was used for smoke evacuation. Mucocele excision using 2780 nm Er,Cr:YSGG laser was rapid, easy to perform with excellent precision and allowed for histopathological examination of the excised tissue. The patient was comfortable and there were minimum bleeding and no sutures, postoperative pain, scarring or recurrence. Laser assisted mucocele excision appears to have efficient and reliable benefits in young patients and should be considered as an alternative to conventional surgical and non-surgical techniques.

Keywords: Erbium, excision, laser, lip, mucocele

Procedia PDF Downloads 236
899 TA6V Selective Laser Melting as an Innovative Method Produce Complex Shapes

Authors: Rafał Kamiński, Joel Rech, Philippe Bertrand, Christophe Desrayaud

Abstract:

Additive manufacturing is a hot topic for industry. Among the additive techniques, Selective Laser Melting (SLM) becomes even more popular, especially for making parts for aerospace applications, thanks to its design freedom (customized and light structures) and its reduced time to market. However, some functional surfaces have to be machined to achieve small tolerances and low surface roughness to fulfill industry specifications. The complex shapes designed for SLM (ex: titanium turbine blades) necessitate the use of ball end milling operations like in the conventional process after forging. However, the metallurgical state of TA6V is very different from the one obtained usually from forging, because of the laser sintering layer by layer. So this paper aims to investigate the influence of new TA6V metallurgies produced by SLM on the machinability in ball end milling. Machinability is considered as the property of a material to obtain easily and by a cheap way a functional surface. This means, for instance, the property to limit cutting tool wear rate and to get smooth surfaces. So as to reach this objective, SLM parts have been produced and heat treated with various conditions leading to various metallurgies that are compared with a standard equiaxed α+β wrought microstructure. The machinability is analyzed by measuring surface roughness, tool wear and cutting forces for a range of cutting conditions (depth of cut 'ap', feed per tooth 'fz', spindle speed 'N') in accordance with industrial practices. This work has revealed that TA6V produced by SLM can lead to a better machinability that standard wrought alloys.

Keywords: ball milling, selective laser melting, surface roughness, titanium, wear

Procedia PDF Downloads 279
898 Development of a Novel Nanobiosystem for the Selective Nanophotothermolysis of Meticilin Resistant Staphyloccocous Aureus Using Anti-MRSA Antibody Functionalized Gold Nanoparticles

Authors: Lucian Mocan, Cristian Matea, Flaviu A. Tabaran, Teodora Mocan, Cornel Iancu

Abstract:

Introduction: Due to antibiotic resistance, systemic infections caused by Meticilin resistant Staphyloccocous Aureus (MRSA) are the main cause of millions of deaths each year. Development of new active biomolecules that are highly effective and refractory to antibiotic resistance may open new avenues in the field of antimicrobial therapy. In this research, we have focused on the development of a novel nanobiosystem with high affinity for MRSA microorganism to mediate its selective laser thermal ablation. Materials and Methods: Gold nanoparticles (15nm in diameter) linked to a specific antibody against MRSA surface were selectively delivered (at various concentrations and incubation times) and internalized into MRSA microorganism following the treatment these multidrug-resistant bacteria were irradiated using a 2w, 808 nm LASER. Results and Discussions: The post-irradiation necrotic rate ranged from 51.2% (for 1 mg/L) to 87.3% (for 50 mg/L) at 60 seconds (p<0.001), while at 30 minute the necrotic rate increased from 64.3% (1 mg/L) to 92.1% (50 mg/L), p value<0.001. Significantly lower apoptotic rates were obtained in irradiated MRSA treated with GNPs only (control) treated for 60 seconds and 30 minutes at concentrations ranging from 1 mg/L to 50 mg/L. We show here that the optimal LASER mediated the necrotic effect of MRSA after incubation with anti-MRSA-Ab was obtained at a concentration of 50 mg/L. Conclusion: In the presented research, we obtained a very efficacious pulse laser mode treatment of individual MRSA agents with minimal effects on the surrounding medium, providing highly localized destruction only for MRSA microorganism.

Keywords: MRSA, photothermolysis, antibiotic resistance, gold nanoparticles

Procedia PDF Downloads 438
897 The Strategy of Orbit Avoidance for Optical Remote Sensing Satellite

Authors: Dianxun Zheng, Wuxing Jing, Lin Hetong

Abstract:

Optical remote sensing satellite, always running on the Sun-synchronous orbit, equipped laser warning equipment to alert CCD camera from laser attack. There have three ways to protect the CCD camera, closing the camera cover satellite attitude maneuver and satellite orbit avoidance. In order to enhance the safety of optical remote sensing satellite in orbit, this paper explores the strategy of satellite avoidance. The avoidance strategy is expressed as the evasion of pre-determined target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes a satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-object avoid maneuvers. On occasions of fulfilling the orbit tasks of the satellite, the orbit can be restored back to virtual satellite through orbit maneuvers. There into, the avoid maneuvers adopts pulse guidance. and the fuel consumption is also optimized. The avoidance strategy discussed in this article is applicable to avoidance for optical remote sensing satellite when encounter the laser hostile attacks.

Keywords: optical remote sensing satellite, always running on the sun-synchronous

Procedia PDF Downloads 400
896 Effect of He-Ne Laser Therapy on the Testis and Serum Testosterone Level in Adult Rats

Authors: Nadeem H. Meikha , Nazad H. Qader, Basheer M. Hasafa

Abstract:

The trial was conducted to examine the effect of He-Ne laser therapy on the testis and serum testosterone level in adult rats. Thirty five albino Western adult male rats aged 3-4 months and weighing approximately 250-300 g were used and divided into three treatments. Testicular tissue of rats in the first and second treatments were exposed once daily for three successively days to a dose of irradiation 1.02 j/cm2 (40 second), and to 2.03 j/cm2 (80 second) respectively, while the third group left without any treatments (control). The results showed that the process of irradiation adversely affected on the level of serum testosterone concentration of the irradiated rats in the first and second treatment comparing to the normal level in the control group. While the histological examination showed that decrease in number of germ cells with 40 second of irradiation at day three, with 80 second of irradiation the decreased started at day two and three. The spermatids number decreased in rate low, medium, high respectively for three days of 40 second of irradiation, while the spermatids number were adversely affected by dropping in a rate of medium, large and very large for three days of 80 second of irradiation, respectively. In conclusion our study revealed that any reduction in sertoli cells causes adverse affect on both spermatids and germinal cells which increase with the increasing of duration and repetition of irradiation.

Keywords: He-Ne laser, rats, testosterone, spermatids

Procedia PDF Downloads 274
895 Investigation of the Carbon Dots Optical Properties Using Laser Scanning Confocal Microscopy and TimE-resolved Fluorescence Microscopy

Authors: M. S. Stepanova, V. V. Zakharov, P. D. Khavlyuk, I. D. Skurlov, A. Y. Dubovik, A. L. Rogach

Abstract:

Carbon dots are small carbon-based spherical nanoparticles, which are typically less than 10 nm in size that can be modified with surface passivation and heteroatoms doping. The light-absorbing ability of carbon dots has attracted a significant amount of attention in photoluminescence for bioimaging and fluorescence sensing applications owing to their advantages, such as tunable fluorescence emission, photo- and thermostability and low toxicity. In this study, carbon dots were synthesized by the solvothermal method from citric acid and ethylenediamine dissolved in water. The solution was heated for 5 hours at 200°C and then cooled down to room temperature. The carbon dots films were obtained by evaporation from a high-concentration aqueous solution. The increase of both luminescence intensity and light transmission was obtained as a result of a 405 nm laser exposure to a part of the carbon dots film, which was detected using a confocal laser scanning microscope (LSM 710, Zeiss). Blueshift up to 35 nm of the luminescence spectrum is observed as luminescence intensity, which is increased more than twofold. The exact value of the shift depends on the time of the laser exposure. This shift can be caused by the modification of surface groups at the carbon dots, which are responsible for long-wavelength luminescence. In addition, a shift of the absorption peak by 10 nm and a decrease in the optical density at the wavelength of 350 nm is detected, which is responsible for the absorption of surface groups. The obtained sample was also studied with time-resolved confocal fluorescence microscope (MicroTime 100, PicoQuant), which made it possible to receive a time-resolved photoluminescence image and construct emission decays of the laser-exposed and non-exposed areas. 5 MHz pulse rate impulse laser has been used as a photoluminescence excitation source. Photoluminescence decay was approximated by two exhibitors. The laser-exposed area has the amplitude of the first-lifetime component (A1) twice as much as before, with increasing τ1. At the same time, the second-lifetime component (A2) decreases. These changes evidence a modification of the surface groups of carbon dots. The detected effect can be used to create thermostable fluorescent marks, the physical size of which is bounded by the diffraction limit of the optics (~ 200-300 nm) used for exposure and to improve the optical properties of carbon dots or in the field of optical encryption. Acknowledgements: This work was supported by the Ministry of Science and Higher Education of Russian Federation, goszadanie no. 2019-1080 and financially supported by Government of Russian Federation, Grant 08-08.

Keywords: carbon dots, photoactivation, optical properties, photoluminescence and absorption spectra

Procedia PDF Downloads 165
894 Raman Tweezers Spectroscopy Study of Size Dependent Silver Nanoparticles Toxicity on Erythrocytes

Authors: Surekha Barkur, Aseefhali Bankapur, Santhosh Chidangil

Abstract:

Raman Tweezers technique has become prevalent in single cell studies. This technique combines Raman spectroscopy which gives information about molecular vibrations, with optical tweezers which use a tightly focused laser beam for trapping the single cells. Thus Raman Tweezers enabled researchers analyze single cells and explore different applications. The applications of Raman Tweezers include studying blood cells, monitoring blood-related disorders, silver nanoparticle-induced stress, etc. There is increased interest in the toxic effect of nanoparticles with an increase in the various applications of nanoparticles. The interaction of these nanoparticles with the cells may vary with their size. We have studied the effect of silver nanoparticles of sizes 10nm, 40nm, and 100nm on erythrocytes using Raman Tweezers technique. Our aim was to investigate the size dependence of the nanoparticle effect on RBCs. We used 785nm laser (Starbright Diode Laser, Torsana Laser Tech, Denmark) for both trapping and Raman spectroscopic studies. 100 x oil immersion objectives with high numerical aperture (NA 1.3) is used to focus the laser beam into a sample cell. The back-scattered light is collected using the same microscope objective and focused into the spectrometer (Horiba Jobin Vyon iHR320 with 1200grooves/mm grating blazed at 750nm). Liquid nitrogen cooled CCD (Symphony CCD-1024x256-OPEN-1LS) was used for signal detection. Blood was drawn from healthy volunteers in vacutainer tubes and centrifuged to separate the blood components. 1.5 ml of silver nanoparticles was washed twice with distilled water leaving 0.1 ml silver nanoparticles in the bottom of the vial. The concentration of silver nanoparticles is 0.02mg/ml so the 0.03mg of nanoparticles will be present in the 0.1 ml nanoparticles obtained. The 25 ul of RBCs were diluted in 2 ml of PBS solution and then treated with 50 ul (0.015mg) of nanoparticles and incubated in CO2 incubator. Raman spectroscopic measurements were done after 24 hours and 48 hours of incubation. All the spectra were recorded with 10mW laser power (785nm diode laser), 60s of accumulation time and 2 accumulations. Major changes were observed in the peaks 565 cm-1, 1211 cm-1, 1224 cm-1, 1371 cm-1, 1638 cm-1. A decrease in intensity of 565 cm-1, increase in 1211 cm-1 with a reduction in 1224 cm-1, increase in intensity of 1371 cm-1 also peak disappearing at 1635 cm-1 indicates deoxygenation of hemoglobin. Nanoparticles with higher size were showing maximum spectral changes. Lesser changes observed in case of 10nm nanoparticle-treated erythrocyte spectra.

Keywords: erythrocytes, nanoparticle-induced toxicity, Raman tweezers, silver nanoparticles

Procedia PDF Downloads 291
893 Monocular 3D Person Tracking AIA Demographic Classification and Projective Image Processing

Authors: McClain Thiel

Abstract:

Object detection and localization has historically required two or more sensors due to the loss of information from 3D to 2D space, however, most surveillance systems currently in use in the real world only have one sensor per location. Generally, this consists of a single low-resolution camera positioned above the area under observation (mall, jewelry store, traffic camera). This is not sufficient for robust 3D tracking for applications such as security or more recent relevance, contract tracing. This paper proposes a lightweight system for 3D person tracking that requires no additional hardware, based on compressed object detection convolutional-nets, facial landmark detection, and projective geometry. This approach involves classifying the target into a demographic category and then making assumptions about the relative locations of facial landmarks from the demographic information, and from there using simple projective geometry and known constants to find the target's location in 3D space. Preliminary testing, although severely lacking, suggests reasonable success in 3D tracking under ideal conditions.

Keywords: monocular distancing, computer vision, facial analysis, 3D localization

Procedia PDF Downloads 139
892 Characteristics of the Particle Size Distribution and Exposure Concentrations of Nanoparticles Generated from the Laser Metal Deposition Process

Authors: Yu-Hsuan Liu, Ying-Fang Wang

Abstract:

The objectives of the present study are to characterize nanoparticles generated from the laser metal deposition (LMD) process and to estimate particle concentrations deposited in the head (H), that the tracheobronchial (TB) and alveolar (A) regions, respectively. The studied LMD chamber (3.6m × 3.8m × 2.9m) is installed with a robot laser metal deposition machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling inside the chamber for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L / min, respectively. The resultant size distributions were used to predict depositions of nanoparticles at the H, TB, and A regions of the respiratory tract using the UK National Radiological Protection Board’s (NRPB’s) LUDEP Software. Result that the number concentrations of nanoparticles in indoor background and LMD chamber were 4.8×10³ and 4.3×10⁵ # / cm³, respectively. However, the nanoparticles emitted from the LMD process was in the form of the uni-modal with number median diameter (NMD) and geometric standard deviation (GSD) as 142nm and 1.86, respectively. The fractions of the nanoparticles deposited on the alveolar region (A: 69.8%) were higher than the other two regions of the head region (H: 10.9%), tracheobronchial region (TB: 19.3%). This study conducted static sampling to measure the nanoparticles in the LMD process, and the results show that the fraction of particles deposited on the A region was higher than the other two regions. Therefore, applying the characteristics of nanoparticles emitted from LMD process could be provided valuable scientific-based evidence for exposure assessments in the future.

Keywords: exposure assessment, laser metal deposition process, nanoparticle, respiratory region

Procedia PDF Downloads 284
891 Development of a Shape Based Estimation Technology Using Terrestrial Laser Scanning

Authors: Gichun Cha, Byoungjoon Yu, Jihwan Park, Minsoo Park, Junghyun Im, Sehwan Park, Sujung Sin, Seunghee Park

Abstract:

The goal of this research is to estimate a structural shape change using terrestrial laser scanning. This study proceeds with development of data reduction and shape change estimation algorithm for large-capacity scan data. The point cloud of scan data was converted to voxel and sampled. Technique of shape estimation is studied to detect changes in structure patterns, such as skyscrapers, bridges, and tunnels based on large point cloud data. The point cloud analysis applies the octree data structure to speed up the post-processing process for change detection. The point cloud data is the relative representative value of shape information, and it used as a model for detecting point cloud changes in a data structure. Shape estimation model is to develop a technology that can detect not only normal but also immediate structural changes in the event of disasters such as earthquakes, typhoons, and fires, thereby preventing major accidents caused by aging and disasters. The study will be expected to improve the efficiency of structural health monitoring and maintenance.

Keywords: terrestrial laser scanning, point cloud, shape information model, displacement measurement

Procedia PDF Downloads 234
890 Study of a Fabry-Perot Resonator

Authors: F. Hadjaj, A. Belghachi, A. Halmaoui, M. Belhadj, H. Mazouz

Abstract:

A laser is essentially an optical oscillator consisting of a resonant cavity, an amplifying medium and a pumping source. In semiconductor diode lasers, the cavity is created by the boundary between the cleaved face of the semiconductor crystal and air and also has reflective properties as a result of the differing refractive indices of the two media. For a GaAs-air interface a reflectance of 0.3 is typical and therefore the length of the semiconductor junction forms the resonant cavity. To prevent light, being emitted in unwanted directions from the junction and Sides perpendicular to the required direction are roughened. The objective of this work is to simulate the optical resonator Fabry-Perot and explore its main characteristics, such as FSR, Finesse, Linewidth, Transmission and so on that describe the performance of resonator.

Keywords: Fabry-Perot Resonator, laser diod, reflectance, semiconductor

Procedia PDF Downloads 352
889 Effect of O2 Pressure of Fe-Doped TiO2 Nanostructure on Morphology Properties for Gas Sensing

Authors: Samar Y. Al-Dabagh, Adawiya J. Haider, Mirvat D. Majed

Abstract:

Pure nanostructure TiO2 and thin films doped with transition metal Fe were prepared by pulsed laser deposition (PLD) on Si (111) substrate. The thin films structures were determined by X-ray diffraction (XRD). The morphology properties were determined from atomic force microscopy (AFM), which shows that the roughness increases when TiO2 is doped with Fe. Results show TiO2 doped with Fe metal thin films deposited on Si (111) substrate has maximum sensitivity to ethanol vapor at 10 mbar oxygen pressure than at 0.01 and 0.1 mbar with optimum operation temperature of 250°C.

Keywords: pulsed laser deposition (PLD), TiO2 doped thin films, nanostructure, gas sensor

Procedia PDF Downloads 382
888 Laser Based Microfabrication of a Microheater Chip for Cell Culture

Authors: Daniel Nieto, Ramiro Couceiro

Abstract:

Microfluidic chips have demonstrated their significant application potentials in microbiological processing and chemical reactions, with the goal of developing monolithic and compact chip-sized multifunctional systems. Heat generation and thermal control are critical in some of the biochemical processes. The paper presents a laser direct-write technique for rapid prototyping and manufacturing of microheater chips and its applicability for perfusion cell culture outside a cell incubator. The aim of the microheater is to take the role of conventional incubators for cell culture for facilitating microscopic observation or other online monitoring activities during cell culture and provides portability of cell culture operation. Microheaters (5 mm × 5 mm) have been successfully fabricated on soda-lime glass substrates covered with aluminum layer of thickness 120 nm. Experimental results show that the microheaters exhibit good performance in temperature rise and decay characteristics, with localized heating at targeted spatial domains. These microheaters were suitable for a maximum long-term operation temperature of 120ºC and validated for long-time operation at 37ºC. for 24 hours. Results demonstrated that the physiology of the cultured SW480 adenocarcinoma of the colon cell line on the developed microheater chip was consistent with that of an incubator.

Keywords: laser microfabrication, microheater, bioengineering, cell culture

Procedia PDF Downloads 297
887 Developing Manufacturing Process for the Graphene Sensors

Authors: Abdullah Faqihi, John Hedley

Abstract:

Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity.

Keywords: laser scribing, lightscribe DVD, graphene oxide, scanning electron microscopy

Procedia PDF Downloads 120
886 Laser Writing on Vitroceramic Disks for Petabyte Data Storage

Authors: C. Busuioc, S. I. Jinga, E. Pavel

Abstract:

The continuous need of more non-volatile memories with a higher storage capacity, smaller dimensions and weight, as well as lower costs, has led to the exploration of optical lithography on active media, as well as patterned magnetic composites. In this context, optical lithography is a technique that can provide a significant decrease of the information bit size to the nanometric scale. However, there are some restrictions that arise from the need of breaking the optical diffraction limit. Major achievements have been obtained by employing a vitoceramic material as active medium and a laser beam operated at low power for the direct writing procedure. Thus, optical discs with ultra-high density were fabricated by a conventional melt-quenching method starting from analytical purity reagents. They were subsequently used for 3D recording based on their photosensitive features. Naturally, the next step consists in the elucidation of the composition and structure of the active centers, in correlation with the use of silver and rare-earth compounds for the synthesis of the optical supports. This has been accomplished by modern characterization methods, namely transmission electron microscopy coupled with selected area electron diffraction, scanning transmission electron microscopy and electron energy loss spectroscopy. The influence of laser diode parameters, silver concentration and fluorescent compounds formation on the writing process and final material properties was investigated. The results indicate performances in terms of capacity with two order of magnitude higher than other reported information storage systems. Moreover, the fluorescent photosensitive vitroceramics may be integrated in other applications which appeal to nanofabrication as the driving force in electronics and photonics fields.

Keywords: data storage, fluorescent compounds, laser writing, vitroceramics

Procedia PDF Downloads 225
885 Magnetic Field Generation in Inhomogeneous Plasma via Ponderomotive Force

Authors: Fatemeh Shahi, Mehdi Sharifian, Laia Shahrassai, Elham Eskandari A.

Abstract:

A new mechanism is reported here for magnetic field generation in laser-plasma interaction by means of nonlinear ponderomotive force. The plasma considered here is unmagnetized inhomogeneous plasma with an exponentially decreasing profile. A damped periodic magnetic field with a relatively lower frequency is obtained using the ponderomotive force exerted on plasma electrons. Finally, with an electric field and by using Faraday’s law, the magnetic field profile in the plasma has been obtained. Because of the negative exponential density profile, the generated magnetic field is relatively slowly oscillating and damped through the plasma.

Keywords: magnetic field generation, laser-plasma interaction, ponderomotive force, inhomogeneous plasma

Procedia PDF Downloads 293
884 Influence of the 3D Printing Parameters on the Dynamic Characteristics of Composite Structures

Authors: Ali Raza, Rūta Rimašauskienė

Abstract:

In the current work, the fused deposition modelling (FDM) technique is used to manufacture PLA reinforced with carbon fibre composite structures with two unique layer patterns, 0°\0° and 0°\90°. The purpose of the study is to investigate the dynamic characteristics of each fabricated composite structure. The Macro Fiber Composite (MFC) is embedded with 0°/0° and 0°/90° structures to investigate the effect of an MFC (M8507-P2 type) patch on vibration amplitude suppression under dynamic loading circumstances. First, modal analysis testing was performed using a Polytec 3D laser vibrometer to identify bending mode shapes, natural frequencies, and vibration amplitudes at the corresponding natural frequencies. To determine the stiffness of each structure, several loads were applied at the free end of the structure, and the deformation was recorded using a laser displacement sensor. The findings confirm that a structure with 0°\0° layers pattern was found to have more stiffness compared to a 0°\90° structure. The maximum amplitude suppression in each structure was measured using a laser displacement sensor at the first resonant frequency when the control voltage signal with optimal phase was applied to the MFC. The results confirm that the 0°/0° pattern's structure exhibits a higher displacement reduction than the 0°/90° pattern. Moreover, stiffer structures have been found to perform amplitude suppression more effectively.

Keywords: carbon fibre composite, MFC, modal analysis stiffness, stiffness

Procedia PDF Downloads 63
883 A Radiofrequency Based Navigation Method for Cooperative Robotic Communities in Surface Exploration Missions

Authors: Francisco J. García-de-Quirós, Gianmarco Radice

Abstract:

When considering small robots working in a cooperative community for Moon surface exploration, navigation and inter-nodes communication aspects become a critical issue for the mission success. For this approach to succeed, it is necessary however to deploy the required infrastructure for the robotic community to achieve efficient self-localization as well as relative positioning and communications between nodes. In this paper, an exploration mission concept in which two cooperative robotic systems co-exist is presented. This paradigm hinges on a community of reference agents that provide support in terms of communication and navigation to a second agent community tasked with exploration goals. The work focuses on the role of the agent community in charge of the overall support and, more specifically, will focus on the positioning and navigation methods implemented in RF microwave bands, which are combined with the communication services. An analysis of the different methods for range and position calculation are presented, as well as the main limiting factors for precision and resolution, such as phase and frequency noise in RF reference carriers and drift mechanisms such as thermal drift and random walk. The effects of carrier frequency instability due to phase noise are categorized in different contributing bands, and the impact of these spectrum regions are considered both in terms of the absolute position and the relative speed. A mission scenario is finally proposed, and key metrics in terms of mass and power consumption for the required payload hardware are also assessed. For this purpose, an application case involving an RF communication network in UHF Band is described, in coexistence with a communications network used for the single agents to communicate within the both the exploring agents as well as the community and with the mission support agents. The proposed approach implements a substantial improvement in planetary navigation since it provides self-localization capabilities for robotic agents characterized by very low mass, volume and power budgets, thus enabling precise navigation capabilities to agents of reduced dimensions. Furthermore, a common and shared localization radiofrequency infrastructure enables new interaction mechanisms such as spatial arrangement of agents over the area of interest for distributed sensing.

Keywords: cooperative robotics, localization, robot navigation, surface exploration

Procedia PDF Downloads 294
882 Damage Localization of Deterministic-Stochastic Systems

Authors: Yen-Po Wang, Ming-Chih Huang, Ming-Lian Chang

Abstract:

A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective.

Keywords: damage locating vectors, deterministic-stochastic subspace system, shaking table tests, system identification

Procedia PDF Downloads 327
881 Microstructure Analysis of Biopolymer Mixture (Chia-Gelatin) by Laser Confocal Microscopy

Authors: Emmanuel Flores Huicochea, Guadalupe Borja Mendiola, Jacqueline Flores Lopez, Rodolfo Rendon Villalobos

Abstract:

The usual procedure to investigate the properties of biodegradable films has been to prepare the film, measure the mechanical or transport properties and then decide whether the mixture has better properties than the individual components, instead of investigating whether the mixture has biopolymer-biopolymer interaction, then prepare the film and finally measure the properties of the film. The work investigates the presence of interaction biopolymer-biopolymer in a mixture of chia biopolymer and gelatin using Laser Confocal Microscopy (LCM). Previously, the chia biopolymer was obtained from chia seed. CML analysis of mixtures of chia biopolymer-gelatin without Na⁺ ions exhibited aggregates of different size, in the range of 100-400 μm, of defined color, for the two colors, but no mixing of color was observed. The increased of gelatin in the mixture decreases the size and number of aggregates. The tridimensional microstructure reveled that there are two layers of biopolymers, chia and gelatin well defined. The mixture chia biopolymer-gelatin with 10 mM Na⁺ and with a ratio 75:25 (chia-gelatin) showed lower aggregated size than others mixture with and without ions. This result could be explained because the chia biopolymer is a polyelectrolyte and the added sodium ions reduce the molecular rigidity by neutralizing the negative charges that the chia biopolymer possesses and therefore a better biopolymer-biopolymer interaction is allowed between the biopolymer of chia and gelatin.

Keywords: biopolymer-biopolymer interaction, confocal laser microscopy, CLM, microstructure, mixture chia-gelatin

Procedia PDF Downloads 208
880 Innovative Technologies Functional Methods of Dental Research

Authors: Sergey N. Ermoliev, Margarita A. Belousova, Aida D. Goncharenko

Abstract:

Application of the diagnostic complex of highly informative functional methods (electromyography, reodentography, laser Doppler flowmetry, reoperiodontography, vital computer capillaroscopy, optical tissue oximetry, laser fluorescence diagnosis) allows to perform a multifactorial analysis of the dental status and to prescribe complex etiopathogenetic treatment. Introduction. It is necessary to create a complex of innovative highly informative and safe functional diagnostic methods for improvement of the quality of patient treatment by the early detection of stomatologic diseases. The purpose of the present study was to investigate the etiology and pathogenesis of functional disorders identified in the pathology of hard tissue, dental pulp, periodontal, oral mucosa and chewing function, and the creation of new approaches to the diagnosis of dental diseases. Material and methods. 172 patients were examined. Density of hard tissues of the teeth and jaw bone was studied by intraoral ultrasonic densitometry (USD). Electromyographic activity of masticatory muscles was assessed by electromyography (EMG). Functional state of dental pulp vessels assessed by reodentography (RDG) and laser Doppler flowmetry (LDF). Reoperiodontography method (RPG) studied regional blood flow in the periodontal tissues. Microcirculatory vascular periodontal studied by vital computer capillaroscopy (VCC) and laser Doppler flowmetry (LDF). The metabolic level of the mucous membrane was determined by optical tissue oximetry (OTO) and laser fluorescence diagnosis (LFD). Results and discussion. The results obtained revealed changes in mineral density of hard tissues of the teeth and jaw bone, the bioelectric activity of masticatory muscles, regional blood flow and microcirculation in the dental pulp and periodontal tissues. LDF and OTO methods estimated fluctuations of saturation level and oxygen transport in microvasculature of periodontal tissues. With LFD identified changes in the concentration of enzymes (nicotinamide, flavins, lipofuscin, porphyrins) involved in metabolic processes Conclusion. Our preliminary results confirmed feasibility and safety the of intraoral ultrasound densitometry technique in the density of bone tissue of periodontium. Conclusion. Application of the diagnostic complex of above mentioned highly informative functional methods allows to perform a multifactorial analysis of the dental status and to prescribe complex etiopathogenetic treatment.

Keywords: electromyography (EMG), reodentography (RDG), laser Doppler flowmetry (LDF), reoperiodontography method (RPG), vital computer capillaroscopy (VCC), optical tissue oximetry (OTO), laser fluorescence diagnosis (LFD)

Procedia PDF Downloads 280
879 Metalorganic Chemical Vapor Deposition Overgrowth on the Bragg Grating for Gallium Nitride Based Distributed Feedback Laser

Authors: Junze Li, M. Li

Abstract:

Laser diodes fabricated from the III-nitride material system are emerging solutions for the next generation telecommunication systems and optical clocks based on Ca at 397nm, Rb at 420.2nm and Yb at 398.9nm combined 556 nm. Most of the applications require single longitudinal optical mode lasers, with very narrow linewidth and compact size, such as communication systems and laser cooling. In this case, the GaN based distributed feedback (DFB) laser diode is one of the most effective candidates with gratings are known to operate with narrow spectra as well as high power and efficiency. Given the wavelength range, the period of the first-order diffraction grating is under 100 nm, and the realization of such gratings is technically difficult due to the narrow line width and the high quality nitride overgrowth based on the Bragg grating. Some groups have reported GaN DFB lasers with high order distributed feedback surface gratings, which avoids the overgrowth. However, generally the strength of coupling is lower than that with Bragg grating embedded into the waveguide within the GaN laser structure by two-step-epitaxy. Therefore, the overgrowth on the grating technology need to be studied and optimized. Here we propose to fabricate the fine step shape structure of first-order grating by the nanoimprint combined inductively coupled plasma (ICP) dry etching, then carry out overgrowth high quality AlGaN film by metalorganic chemical vapor deposition (MOCVD). Then a series of gratings with different period, depths and duty ratios are designed and fabricated to study the influence of grating structure to the nano-heteroepitaxy. Moreover, we observe the nucleation and growth process by step-by-step growth to study the growth mode for nitride overgrowth on grating, under the condition that the grating period is larger than the mental migration length on the surface. The AFM images demonstrate that a smooth surface of AlGaN film is achieved with an average roughness of 0.20 nm over 3 × 3 μm2. The full width at half maximums (FWHMs) of the (002) reflections in the XRD rocking curves are 278 arcsec for the AlGaN film, and the component of the Al within the film is 8% according to the XRD mapping measurement, which is in accordance with design values. By observing the samples with growth time changing from 200s, 400s to 600s, the growth model is summarized as the follow steps: initially, the nucleation is evenly distributed on the grating structure, as the migration length of Al atoms is low; then, AlGaN growth alone with the grating top surface; finally, the AlGaN film formed by lateral growth. This work contributed to carrying out GaN DFB laser by fabricating grating and overgrowth on the nano-grating patterned substrate by wafer scale, moreover, growth dynamics had been analyzed as well.

Keywords: DFB laser, MOCVD, nanoepitaxy, III-niitride

Procedia PDF Downloads 187
878 Clinical Parameters Response to Low Level Laser Versus Monochromatic Near Infrared Photo Energy in Diabetic Patient with Peripheral Neuropathy

Authors: Abeer Ahmed Abdehameed

Abstract:

Background: Diabetic sensorimotor polyneuropathy (DSP) is one of the most common micro vascular complications of type 2 diabetes. Loss of sensation is thought to contribute to lake of static and dynamic stability and increased risk of falling. Purpose: The purpose of this study was to compare the effects of low level laser (LLL) and monochromatic near infrared photo energy (MIRE) on pain , cutaneous sensation, static stability and index of lower limb blood flow in diabetic with peripheral neuropathy. Methods: Forty subjects with diabetic peripheral neuropathy were recruited for study. They were divided into two groups: The ( MIRE) group that included (20) patients and (LLL) group included (20) patients. All patients in the study had been subjected to various physical assessment procedures including pain, cutaneous sensation, Doppler flow meter and static stability assessments. The baseline measurements were followed by treatment sessions that conducted twice a week for 6 successive weeks. Results: The statistical analysis of the data had revealed significant improvement of the pain in both groups, with significant improvement in cutaneous sensation and static balance in (MIRE) group compared to (LLL) group; on the other hand results showed no significant differences on lower limb blood flow in both groups. Conclusion: Low level laser and monochromatic near infrared therapy can improve painful symptoms in patients with diabetic neuropathy. On the other hand (MIRE) is useful in improving cutaneous sensation and static stability in patients with diabetic neuropathy.

Keywords: diabetic neuropathy, doppler flow meter, low level laser, monochromatic near infrared photo energy

Procedia PDF Downloads 314
877 Gaussian Operations with a Single Trapped Ion

Authors: Bruna G. M. Araújo, Pedro M. M. Q. Cruz

Abstract:

In this letter, we review the literature of the major concepts that govern Gaussian quantum information. As we work with quantum information and computation with continuous variables, Gaussian states are needed to better describe these systems. Analyzing a single ion locked in a Paul trap we use the interaction picture to obtain a toolbox of Gaussian operations with the ion-laser interaction Hamiltionian. This is achieved exciting the ion through the combination of two lasers of distinct frequencies corresponding to different sidebands of the external degrees of freedom. First we study the case of a trap with 1 mode and then the case with 2 modes. In this way, we achieve different continuous variables gates just by changing the external degrees of freedom of the trap and combining the Hamiltonians of blue and red sidebands.

Keywords: Paul trap, ion-laser interaction, Gaussian operations

Procedia PDF Downloads 685
876 Electrochemical Performance of Femtosecond Laser Structured Commercial Solid Oxide Fuel Cells Electrolyte

Authors: Mohamed A. Baba, Gazy Rodowan, Brigita Abakevičienė, Sigitas Tamulevičius, Bartlomiej Lemieszek, Sebastian Molin, Tomas Tamulevičius

Abstract:

Solid oxide fuel cells (SOFC) efficiently convert hydrogen to energy without producing any disturbances or contaminants. The core of the cell is electrolyte. For improving the performance of electrolyte-supported cells, it is desirable to extend the available exchange surface area by micro-structuring of the electrolyte with laser-based micromachining. This study investigated the electrochemical performance of cells micro machined using a femtosecond laser. Commercial ceramic SOFC (Elcogen, AS) with a total thickness of 400 μm was structured by 1030 nm wavelength Yb: KGW fs-laser Pharos (Light Conversion) using 100 kHz repetition frequency and 290 fs pulse length light by scanning with the galvanometer scanner (ScanLab) and focused with a f-Theta telecentric lens (SillOptics). The sample height was positioned using a motorized z-stage. The microstructures were formed using a laser spiral trepanning in Ni/YSZ anode supported membrane at the central part of the ceramic piece of 5.5 mm diameter at active area of the cell. All surface was drilled with 275 µm diameter holes spaced by 275 µm. The machining processes were carried out under ambient conditions. The microstructural effects of the femtosecond laser treatment on the electrolyte surface were investigated prior to the electrochemical characterisation using a scanning electron microscope (SEM) Quanta 200 FEG (FEI). The Novo control Alpha-A was used for electrochemical impedance spectroscopy on a symmetrical cell configuration with an excitation amplitude of 25 mV and a frequency range of 1 MHz to 0.1 Hz. The fuel cell characterization of the cell was examined on open flanges test setup by Fiaxell. Using nickel mesh on the anode side and au mesh on the cathode side, the cell was electrically linked. The cell was placed in a Kittec furnace with a Process IDentifier temperature controller. The wires were connected to a Solartron 1260/1287 frequency analyzer for the impedance and current-voltage characterization. In order to determine the impact of the anode's microstructure on the performance of the commercial cells, the acquired results were compared to cells with unstructured anode. Geometrical studies verified that the depth of the -holes increased linearly according to laser energy and scanning times. On the other hand, it reduced as the scanning speed increased. The electrochemical analysis demonstrates that the open circuit voltage OCV values of the two cells are equal. Further, the modified cell's initial slope reduces to 0.209 from 0.253 of the unmodified cell, revealing that the surface modification considerably decreases energy loss. Plus, the maximum power density for the cell with the microstructure and the reference cell respectively, are 1.45 and 1.16 Wcm⁻².

Keywords: electrochemical performance, electrolyte-supported cells, laser micro-structuring, solid oxide fuel cells

Procedia PDF Downloads 68
875 Experimental Device for Fluorescence Measurement by Optical Fiber Combined with Dielectrophoretic Sorting in Microfluidic Chips

Authors: Jan Jezek, Zdenek Pilat, Filip Smatlo, Pavel Zemanek

Abstract:

We present a device that combines fluorescence spectroscopy with fiber optics and dielectrophoretic micromanipulation in PDMS (poly-(dimethylsiloxane)) microfluidic chips. The device allows high speed detection (in the order of kHz) of the fluorescence signal, which is coming from the sample by an inserted optical fiber, e.g. from a micro-droplet flow in a microfluidic chip, or even from the liquid flowing in the transparent capillary, etc. The device uses a laser diode at a wavelength suitable for excitation of fluorescence, excitation and emission filters, optics for focusing the laser radiation into the optical fiber, and a highly sensitive fast photodiode for detection of fluorescence. The device is combined with dielectrophoretic sorting on a chip for sorting of micro-droplets according to their fluorescence intensity. The electrodes are created by lift-off technology on a glass substrate, or by using channels filled with a soft metal alloy or an electrolyte. This device found its use in screening of enzymatic reactions and sorting of individual fluorescently labelled microorganisms. The authors acknowledge the support from the Grant Agency of the Czech Republic (GA16-07965S) and Ministry of Education, Youth and Sports of the Czech Republic (LO1212) together with the European Commission (ALISI No. CZ.1.05/2.1.00/01.0017).

Keywords: dielectrophoretic sorting, fiber optics, laser, microfluidic chips, microdroplets, spectroscopy

Procedia PDF Downloads 719