Search results for: joint task force
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5102

Search results for: joint task force

4772 Testing of Infill Walls with Joint Reinforcement Subjected to in Plane Lateral Load

Authors: J. Martin Leal-Graciano, Juan J. Pérez-Gavilán, A. Reyes-Salazar, J. H. Castorena, J. L. Rivera-Salas

Abstract:

The experimental results about the global behavior of twelve 1:2 scaled reinforced concrete frame subject to in-plane lateral load are presented. The main objective was to generate experimental evidence about the use of steel bars within mortar bed-joints as shear reinforcement in infill walls. Similar to the Canadian and New Zealand standards, the Mexican code includes specifications for this type of reinforcement. However, these specifications were obtained through experimental studies of load-bearing walls, mainly confined walls. Little information is found in the existing literature about the effects of joint reinforcement on the seismic behavior of infill masonry walls. Consequently, the Mexican code establishes the same equations to estimate the contribution of joint reinforcement for both confined walls and infill walls. A confined masonry construction and a reinforced concrete frame infilled with masonry walls have similar appearances. However, substantial differences exist between these two construction systems, which are mainly related to the sequence of construction and to how these structures support vertical and lateral loads. To achieve the objective established, ten reinforced concrete frames with masonry infill walls were built and tested in pairs, having both specimens in the pair identical characteristics except that one of them included joint reinforcement. The variables between pairs were the type of units, the size of the columns of the frame and the aspect ratio of the wall. All cases included tie-columns and tie-beams on the perimeter of the wall to anchor the joint reinforcement. Also, two bare frame with identical characteristic to the infilled frames were tested. The purpose was to investigate the effects of the infill wall on the behavior of the system to in-plane lateral load. In addition, the experimental results were compared with the prediction of the Mexican code. All the specimens were tested in cantilever under reversible cyclic lateral load. To simulate gravity load, constant vertical load was applied on the top of the columns. The results indicate that the contribution of the joint reinforcement to lateral strength depends on the size of the columns of the frame. Larger size columns produce a failure mode that is predominantly a sliding mode. Sliding inhibits the production of new inclined cracks, which are necessary to activate (deform) the joint reinforcement. Regarding the effects of joint reinforcement in the performance of confined masonry walls, many facts were confirmed for infill walls: this type of reinforcement increases the lateral strength of the wall, produces a more distributed cracking and reduces the width of the cracks. Moreover, it reduces the ductility demand of the system at maximum strength. The prediction of the lateral strength provided by the Mexican code is property in some cases; however, the effect of the size of the columns on the contribution of joint reinforcement needs to be better understood.

Keywords: experimental study, Infill wall, Infilled frame, masonry wall

Procedia PDF Downloads 58
4771 Adhesive Bonded Joints Characterization and Crack Propagation in Composite Materials under Cyclic Impact Fatigue and Constant Amplitude Fatigue Loadings

Authors: Andres Bautista, Alicia Porras, Juan P. Casas, Maribel Silva

Abstract:

The Colombian aeronautical industry has stimulated research in the mechanical behavior of materials under different loading conditions aircrafts are generally exposed during its operation. The Calima T-90 is the first military aircraft built in the country, used for primary flight training of Colombian Air Force Pilots, therefore, it may be exposed to adverse operating situations such as hard landings which cause impact loads on the aircraft that might produce the impact fatigue phenomenon. The Calima T-90 structure is mainly manufactured by composites materials generating assemblies and subassemblies of different components of it. The main method of bonding these components is by using adhesive joints. Each type of adhesive bond must be studied on its own since its performance depends on the conditions of the manufacturing process and operating characteristics. This study aims to characterize the typical adhesive joints of the aircraft under usual loads. To this purpose, the evaluation of the effect of adhesive thickness on the mechanical performance of the joint under quasi-static loading conditions, constant amplitude fatigue and cyclic impact fatigue using single lap-joint specimens will be performed. Additionally, using a double cantilever beam specimen, the influence of the thickness of the adhesive on the crack growth rate for mode I delamination failure, as a function of the critical energy release rate will be determined. Finally, an analysis of the fracture surface of the test specimens considering the mechanical interaction between the substrate (composite) and the adhesive, provide insights into the magnitude of the damage, the type of failure mechanism that occurs and its correlation with the way crack propagates under the proposed loading conditions.

Keywords: adhesive, composites, crack propagation, fatigue

Procedia PDF Downloads 186
4770 Comparative Analysis of Characterologic Features of Cadets with High Psychomotor Skills Who Study in Polish Air Force Academy

Authors: Justyna Skrzyńska, Zdzisław Kobos, Zbigniew Wochyński

Abstract:

The assessment of characterologic type is an essential element which decides about the proper task performance in the Air Forces. The aim of the research was to specify the percentage distribution of characterologic features by cadets studying particular courses in Polish Air Force Academy with the use of questionnaire. 34 first-year cadets chosen by lot and disunited into aircrafts pilots (N-10), helicopter pilots (N-13) and navigators(N-11) participated in the research. All of the questioned have had their psychomotor education examined in Military Aviation Medicine Institute in Warsaw, Poland. Moreover all of them are characterised by very good fitness. In the research, an anonymous poll(based on Myers-Briggs Type Indicator) appraising cadets’ characterologic type has been used. Cadets were provided with the same accommodation and nutrition. The findings have shown that percentage distribution was diversified, however it could be distinctly observed that most of future helicopter pilots (69%) are introverts whereas the majority of aircrafts pilots (70%) and navigators (100%) are extraverts. Moreover, it was also observed that 70% of cadets studying aircrafts pilotage run regular lifestyle and have judging skill according to Myers-Briggs Type Indicator. In future navigators group, 73% of students do not have this characteristic. The research has shown that cadets studying pilotage are more likely to demonstrate the characteristics which are essential for a performance of the important tasks in pilots environment than the cadets studying navigation.

Keywords: pilot, Myers-Briggs Type indicator, questionnaire research, cadets, psychomotor education

Procedia PDF Downloads 453
4769 Mechanical Properties and Crack Extension Mechanism of Rock Contained Blocks Under Uniaxial Compression

Authors: Ruiyang Bi

Abstract:

Natural rock masses are cut into rock blocks of different shapes and sizes by intersecting joints. These rock blocks often determine the mechanical properties of the rock mass. In this study, fine sandstone cube specimens were produced, and three intersecting joint cracks were cut inside the specimen. Uniaxial compression tests were conducted using mechanical tests and numerical simulation methods to study the mechanical properties and crack propagation mechanism of triangular blocks within the rock. During the test, the mechanical strength, acoustic emission characteristics and strain field evolution of the specimen were analyzed. Discrete element software was used to study the expansion of microcracks during the specimen failure process, and the crack types were divided. The simulation results show that as the inclination angles of the three joints increase simultaneously, the mechanical strength of the specimen first decreases and then increases, and the crack type is mainly shear. As the inclination angle of a single joint increases, the strength of the specimen gradually decreases. When the inclination angles of the two joints increase at the same time, the strength of the specimen gradually decreases. The research results show that the stability of the rock mass is affected by the joint inclination angle and the size of the cut blocks. The greater the joint dip and block size, the more significant the development of micro-cracks in the rock mass, and the worse the stability.

Keywords: rock joints, uniaxial compression, crack extension, discrete element simulation

Procedia PDF Downloads 31
4768 An Intelligent Thermal-Aware Task Scheduler in Multiprocessor System on a Chip

Authors: Sina Saadati

Abstract:

Multiprocessors Systems-On-Chips (MPSOCs) are used widely on modern computers to execute sophisticated software and applications. These systems include different processors for distinct aims. Most of the proposed task schedulers attempt to improve energy consumption. In some schedulers, the processor's temperature is considered to increase the system's reliability and performance. In this research, we have proposed a new method for thermal-aware task scheduling which is based on an artificial neural network (ANN). This method enables us to consider a variety of factors in the scheduling process. Some factors like ambient temperature, season (which is important for some embedded systems), speed of the processor, computing type of tasks and have a complex relationship with the final temperature of the system. This Issue can be solved using a machine learning algorithm. Another point is that our solution makes the system intelligent So that It can be adaptive. We have also shown that the computational complexity of the proposed method is cheap. As a consequence, It is also suitable for battery-powered systems.

Keywords: task scheduling, MOSOC, artificial neural network, machine learning, architecture of computers, artificial intelligence

Procedia PDF Downloads 77
4767 Study of Bolt Inclination in a Composite Single Bolted Joint

Authors: Faci Youcef, Ahmed Mebtouche, Djillali Allou, Maalem Badredine

Abstract:

The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during the load. Digital image correlation techniques permit the obtaining of the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure.

Keywords: damage, inclination, analyzed, carbon

Procedia PDF Downloads 34
4766 Hybrid Bimodal Magnetic Force Microscopy

Authors: Fernández-Brito David, Lopez-Medina Javier Alonso, Murillo-Bracamontes Eduardo Antonio, Palomino-Ovando Martha Alicia, Gervacio-Arciniega José Juan

Abstract:

Magnetic Force Microscopy (MFM) is an Atomic Force Microscopy (AFM) technique that characterizes, at a nanometric scale, the magnetic properties of ferromagnetic materials. Conventional MFM works by scanning in two different AFM modes. The first one is tapping mode, in which the cantilever has short-range force interactions with the sample, with the purpose to obtain the topography. Then, the lift AFM mode starts, raising the cantilever to maintain a fixed distance between the tip and the surface of the sample, only interacting with the magnetic field forces of the sample, which are long-ranged. In recent years, there have been attempts to improve the MFM technique. Bimodal MFM was first theoretically developed and later experimentally proven. In bimodal MFM, the AFM internal piezoelectric is used to cause the cantilever oscillations in two resonance modes simultaneously, the first mode detects the topography, while the second is more sensitive to the magnetic forces between the tip and the sample. However, it has been proven that the cantilever vibrations induced by the internal AFM piezoelectric ceramic are not optimal, affecting the bimodal MFM characterizations. Moreover, the Secondary Resonance Magnetic Force Microscopy (SR-MFM) was developed. In this technique, a coil located below the sample generates an external magnetic field. This alternating magnetic field excites the cantilever at a second frequency to apply the Bimodal MFM mode. Nonetheless, for ferromagnetic materials with a low coercive field, the external field used in SR-MFM technique can modify the magnetic domains of the sample. In this work, a Hybrid Bimodal MFM (HB-MFM) technique is proposed. In HB-MFM, the bimodal MFM is used, but the first resonance frequency of the cantilever is induced by the magnetic field of the ferromagnetic sample due to its vibrations caused by a piezoelectric element placed under the sample. The advantages of this new technique are demonstrated through the preliminary results obtained by HB-MFM on a hard disk sample. Additionally, traditional two pass MFM and HB-MFM measurements were compared.

Keywords: magnetic force microscopy, atomic force microscopy, magnetism, bimodal MFM

Procedia PDF Downloads 49
4765 Investigation of Distortion and Impact Strength of 304 L Butt Joint Using Different Weld Groove

Authors: A. Sharma, S. S. Sandhu, A.Shahi, A. Kumar

Abstract:

In this study, the effects of geometric configurations of butt joints i.e. double V groove, double U groove and UV groove of AISI 304L of thickness 12 mm by using Gas Tungsten Arc Welding (GTAW) are investigated. The magnitude of transverse shrinkage stress and distortion generated during welding under the unrestrained conditions of butt joints is the main objective of the study. The effect of groove design on impact strength and metallurgical properties are also studied. The Finite element analysis for the groove design is done and compared the actual experimentation. The experimental results and the FEM results were compared and reveal a very good correlation for distortion and weld groove design for multipass joint with a standard analogy of 80%. In the case of VV groove design it was found that the transverse stress and cumulative deflection have the lowest value. It was found that the UV groove design had the maximum ultimate and yield tensile strength, VV groove had the highest impact strength. Vicker’s hardness value of all the groove design was measured. Micro structural studies were carried out using conventional microscopic tools which revealed a lot of useful information for correlating the microstructure with mechanical properties.

Keywords: weld groove design, distortion, AISI 304 L, butt joint, FEM, GTAW

Procedia PDF Downloads 341
4764 Overcoming Challenges of Teaching English as a Foreign Language in Technical Classrooms: A Case Study at TVTC College of Technology

Authors: Sreekanth Reddy Ballarapu

Abstract:

The perception of the whole process of teaching and learning is undergoing a drastic and radical change. More and more student-centered, pragmatic, and flexible approaches are gradually replacing teacher-centered lecturing and structural-syllabus instruction. The issue of teaching English as a Foreign language is no exception in this regard. The traditional Present-Practice-Produce (P-P-P) method of teaching English is overtaken by Task-Based Teaching which is a subsidiary branch of Communicative Language Teaching. At this juncture this article strongly tries to convey that - Task-based learning, has an advantage over other traditional methods of teaching. All teachers of English must try to customize their texts into productive tasks, apply them, and evaluate the students as well as themselves. Task Based Learning is a double edged tool which can enhance the performance of both the teacher and the taught. The sample for this case study is a class of 35 students from Semester III - Network branch at TVTC College of Technology, Adhum - Kingdom of Saudi Arabia. The students are high school passed out and aged between 19-21years.For the present study the prescribed textbook Technical English 1 by David Bonamy was used and a number of language tasks were chalked out during the pre- task stage and the learners were made to participate voluntarily and actively. The Action Research methodology was adopted within the dual framework of Communicative Language Teaching and Task-Based Learning. The different tools such as questionnaires, feedback and interviews were used to collect data. This study provides information about various techniques of Communicative Language Teaching and Task Based Learning and focuses primarily on the advantages of using a Task Based Learning approach. This article presents in detail the objectives of the study, the planning and implementation of the action research, the challenges encountered during the execution of the plan, and the pedagogical outcome of this project. These research findings serve two purposes: first, it evaluates the effectiveness of Task Based Learning and, second, it empowers the teacher's professionalism in designing and implementing the tasks. In the end, the possibility of scope for further research is presented in brief.

Keywords: action research, communicative language teaching, task based learning, perception

Procedia PDF Downloads 213
4763 Experimental Study of Infill Walls with Joint Reinforcement Subjected to In-Plane Lateral Load

Authors: J. Martin Leal-Graciano, Juan J. Pérez-Gavilán, A. Reyes-Salazar, J. H. Castorena, J. L. Rivera-Salas

Abstract:

The experimental results about the global behavior of twelve 1:2 scaled reinforced concrete frames subject to in-plane lateral load are presented. The main objective was to generate experimental evidence about the use of steel bars within mortar bed joints as shear reinforcement in infill walls. Similar to the Canadian and New Zealand standards, the Mexican code includes specifications for this type of reinforcement. However, these specifications were obtained through experimental studies of load-bearing walls, mainly confined walls. Little information is found in the existing literature about the effects of joint reinforcement on the seismic behavior of infill masonry walls. Consequently, the Mexican code establishes the same equations to estimate the contribution of joint reinforcement for both confined walls and infill walls. Confined masonry construction and a reinforced concrete frame infilled with masonry walls have similar appearances. However, substantial differences exist between these two construction systems, which are mainly related to the sequence of construction and to how these structures support vertical and lateral loads. To achieve the objective established, ten reinforced concrete frames with masonry infill walls were built and tested in pairs, having both specimens in the pair identical characteristics except that one of them included joint reinforcement. The variables between pairs were the type of units, the size of the columns of the frame, and the aspect ratio of the wall. All cases included tie columns and tie beams on the perimeter of the wall to anchor the joint reinforcement. Also, two bare frames with identical characteristics to the infilled frames were tested. The purpose was to investigate the effects of the infill wall on the behavior of the system to in-plane lateral load. In addition, the experimental results were compared with the prediction of the Mexican code. All the specimens were tested in a cantilever under reversible cyclic lateral load. To simulate gravity load, constant vertical load was applied on the top of the columns. The results indicate that the contribution of the joint reinforcement to lateral strength depends on the size of the columns of the frame. Larger size columns produce a failure mode that is predominantly a sliding mode. Sliding inhibits the production of new inclined cracks, which are necessary to activate (deform) the joint reinforcement. Regarding the effects of joint reinforcement in the performance of confined masonry walls, many facts were confirmed for infill walls. This type of reinforcement increases the lateral strength of the wall, produces a more distributed cracking, and reduces the width of the cracks. Moreover, it reduces the ductility demand of the system at maximum strength. The prediction of the lateral strength provided by the Mexican code is a property in some cases; however, the effect of the size of the columns on the contribution of joint reinforcement needs to be better understood.

Keywords: experimental study, infill wall, infilled frame, masonry wall

Procedia PDF Downloads 155
4762 Experimental Investigation of Cutting Forces and Temperature in Bone Drilling

Authors: Vishwanath Mali, Hemant Warhatkar, Raju Pawade

Abstract:

Drilling of bone has been always challenging for surgeons due to the adverse effect it may impart to bone tissues. Force has to be applied manually by the surgeon while performing conventional bone drilling which may lead to permanent death of bone tissues and nerves. During bone drilling the temperature of the bone tissues increases to higher values above 47 ⁰C that causes thermal osteonecrosis resulting into screw loosening and subsequent implant failures. An attempt has been made here to study the input drilling parameters and surgical drill bit geometry affecting bone health during bone drilling. A One Factor At a Time (OFAT) method is used to plan the experiments. Input drilling parameters studied include spindle speed and feed rate. The drill bit geometry parameter studied include point angle and helix angle. The output variables are drilling thrust force and bone temperature. The experiments were conducted on goat femur bone at room temperature 30 ⁰C. For measurement of thrust forces KISTLER cutting force dynamometer Type 9257BA was used. For continuous data acquisition of temperature NI LabVIEW software was used. Fixture was made on RPT machine for holding the bone specimen while performing drilling operation. Bone specimen were preserved in deep freezer (LABTOP make) under -40 ⁰C. In case of drilling parameters, it is observed that at constant feed rate when spindle speed increases, thrust force as well as temperature decreases and at constant spindle speed when feed rate increases thrust force as well as temperature increases. The effect of drill bit geometry shows that at constant helix angle when point angle increases thrust force as well as temperature increases and at constant point angle when helix angle increase thrust force as well as temperature decreases. Hence it is concluded that as the thrust force increases temperature increases. In case of drilling parameter, the lowest thrust force and temperature i.e. 35.55 N and 36.04 ⁰C respectively were recorded at spindle speed 2000 rpm and feed rate 0.04 mm/rev. In case of drill bit geometry parameter, the lowest thrust force and temperature i.e. 40.81 N and 34 ⁰C respectively were recorded at point angle 70⁰ and helix angle 25⁰ Hence to avoid thermal necrosis of bone it is recommended to use higher spindle speed, lower feed rate, low point angle and high helix angle. The hard nature of cortical bone contributes to a greater rise in temperature whereas a considerable drop in temperature is observed during cancellous bone drilling.

Keywords: bone drilling, helix angle, point angle, thrust force, temperature, thermal necrosis

Procedia PDF Downloads 288
4761 Flow Analysis for Different Pelton Turbine Bucket by Applying Computation Fluid Dynamic

Authors: Sedat Yayla, Azhin Abdullah

Abstract:

In the process of constructing hydroelectric power plants, the Pelton turbine, which is characterized by its simple manufacturing and construction, is performed in high head and low water flow. Parameters of the turbine have to be comprised in the designing process for obtaining hydraulic turbine with the highest efficiency during different operating conditions. The present investigation applied three-dimensional computational fluid dynamics (CFD). In addition, the bucket of Pelton turbine models with different splitter angle and inlet velocity values were examined for determining the force and visualizing the flow pattern on the bucket. The study utilized two diverse bucket models at various inlet velocities (20, 25, 30,35and 40m/s) and four different splitter angles (55, 75,90and 115 degree) for finding out the impacts of every single parameter on the effective force on the bucket. The acquired outcomes revealed that there is a linear relationship between force and inlet velocity on the bucket. Furthermore, the results also uncovered that the relationship between splitter angle and force on the bucket is linear until 90 degree.

Keywords: bucket design, computational fluid dynamics (CFD), free surface flow, two-phase flow, volume of fluid (VOF)

Procedia PDF Downloads 245
4760 Streaming Communication Component for Multi-Robots

Authors: George Oliveira, Luana D. Fronza, Luiza Medeiros, Patricia D. M. Plentz

Abstract:

The research presented in this article is part of a wide project that proposes a scheduling system for multi-robots in intelligent warehouses employing multi-robot path-planning (MPP) and multi-robot task allocation (MRTA) to reconcile multiple restrictions (task delivery time, task priorities, charging capacity, and robots battery capacity). We present the software component capable of interconnecting an open streaming processing architecture and robot operating system (ROS), ensuring communication and message exchange between robots and the environment in which they are inserted. Simulation results show the good performance of our proposed technique for connecting ROS and streaming platforms.

Keywords: complex distributed systems, mobile robots, smart warehouses, streaming platforms

Procedia PDF Downloads 158
4759 Bonding Strength of Adhesive Scarf Joints Improved by Nano-Silica Subjected to Humidity

Authors: B. Paygozar, S.A. Dizaji, A.C. Kandemir

Abstract:

In this study, the effects of the modified adhesive including different concentrations of Nano-silica are surveyed on the bonding strength of the adhesive scarf joints. The nanoparticles are added in two different concentrations, to an epoxy-based two-component structural adhesive, Araldite 2011, to survey the influences of the nanoparticle weight percentage on the failure load of the joints compared to that of the joints manufactured by the neat adhesive. The effects of being exposure to a moist ambience on the joint strength are also investigated for the joints produced of both neat and modified adhesives. For this purpose, an ageing process was carried out on the joints of both neat and improved kinds with variable immersion periods (20, 40 and 60 days). All the specimens were tested under a quasi-static tensile loading of 2 mm/min speed so as to find the quantities of the failure loads. Outcomes indicate that the failure loads of the joints with modified adhesives are measurably higher than that of the joint with neat adhesive, even while being put for a while under a moist condition. Another result points out that humidity lessens the bonding strength of all the joints of both types as the exposure time increases, which can be attributed to the change in the failure mode.

Keywords: bonding strength, humidity, nano-silica, scarf joint

Procedia PDF Downloads 148
4758 Kinetic Analysis for Assessing Gait Disorders in Muscular Dystrophy Disease

Authors: Mehdi Razeghi

Abstract:

Background: The purpose of this case series was to quantify gait to study muscular dystrophy disease. In this research, the quantitative differences between normal and waddling gaits were assessed by force plate analysis. Methods: Nineteen myopathy patients and twenty normal subjects serving as the control group participated in this research. In this study, quantitative analyses of gait have been used to investigate the differences between the mobility of normal subjects and myopathy patients. This study was carried out at the Iranian Muscular Dystrophy Association in Boali Hospital, Tehran, Iran, from October 2015 to July 2020. Patient data were collected from Iranian Muscular Dystrophy Association members. individuals signed an informed consent form approved by the ethics committee of the Azad University. All of the gait tests were performed using a Kistler force platform. Participants walked at a self-selected speed, barefoot, independently, and without assistive devices. Results: Our findings indicate that there were no significant differences between the patients and the control group in the anterior-posterior components of the ground reaction forces; however, there were considerable differences in the force components between the groups in the medial-lateral and vertical directions of the ground reaction force. In addition, there were significant differences in the time parameters between the groups in the vertical and medial-lateral directions.

Keywords: biomechanics, force plate analysis, gait disorder, ground reaction force, kinetic analysis, myopathy disease, rehabilitation engineering

Procedia PDF Downloads 53
4757 Evaluation of Dynamic and Vibrational Analysis of the Double Chambered Cylinder along Thermal Interactions

Authors: Mohammadreza Akbari, Leila Abdollahpour, Sara Akbari, Pooya Soleimani

Abstract:

Transferring thermo at the field of solid materials for instance tube-shaped structures, causing dynamical vibration at them. Majority of thermal and fluid processes are done engineering science at solid materials, for example, thermo-transferred pipes, fluids, chemical and nuclear reactors, include thermal processes, so, they need to consider the moment solid-fundamental structural strength unto these thermal interactions. Fluid and thermo retentive materials in front of external force to it like thermodynamical force, hydrodynamical force and static force continuously according to a function of time vibrated, and this action causes relative displacement of the structural materials elements, as a result, the moment resistance analysis preservation materials in thermal processes, the most important parameters for design are discussed. Including structural substrate holder temperature and fluid of the administrative and industrial center, is a cylindrical tube that for vibration analysis of cylindrical cells with heat and fluid transfer requires the use of vibration differential equations governing the structure of a tubular and thermal differential equations as the vibrating motive force at double-glazed cylinders.

Keywords: heat transfer, elements in cylindrical coordinates, analytical solving the governing equations, structural vibration

Procedia PDF Downloads 321
4756 Impact of Task Technology Fit on User Effectiveness, Efficiency and Creativity in Iranian Pharmaceutical Oraganizations

Authors: Milad Keshvardoost, Amir Khanlari, Nader Khalesi

Abstract:

Background: Any firm in the pharmaceutical industry requires efficient and effective management information systems (MIS) to support managerial functions. Purpose: The aim of this study is to investigate the impact of Task-Technology Fit on user effectiveness, efficiency, and creativity in Iranian pharmaceutical companies. Methodology: 345 reliable and validate questionnaires were distributed among selected samples, through the cluster method, to Information system users of eight leading Iranian pharmaceutical companies, based on the likert scale. The proposed model of the article is based on a model with Task technology fit, on user performance with the definition of efficiency, effectiveness, and creativity through mediation effects of perceived usefulness and ease of use. Results: This study confirmed that TTF with definitions of adequacy and compatibility has positive impacts on user performance Conclusion: We concluded that pharmaceutical users of IS, utilizing a system with a precise and intense observation of users' demands, may make facilitation for them to design an exclusive IS framework.

Keywords: information systems, user performance, pharmaceuticals, task technology fit

Procedia PDF Downloads 146
4755 Work demand and Prevalence of Work-Related Musculoskeletal Disorders: A Case Study of Pakistan Aviation Maintenance Workers

Authors: Muzamil Mahmood, Afshan Naseem, Muhammad Zeeshan Mirza, Yasir Ahmad, Masood Raza

Abstract:

The purpose of this research is to analyze how aviation maintenance workers’ characteristics and work demand affect their development of work-related musculoskeletal disorders (WMSDs). Guided by literature on task characteristics, work demand, and WMSDs, data is collected from 128 aviation maintenance workers of private and public airlines. Data is then analyzed through descriptive and inferential statistics. It is found that task characteristics have a significant positive effect on WMSDs and an increase in tasks performed by aviation maintenance workers leads to increase in WMSDs. Work demand did not have a significant effect on WMSDs. The task characteristics of aviation maintenance workers moderates the relationship between their work demand and WMSDs. This reveals that task characteristics of aviation maintenance workers enhance the effect of work demand on WMSDs. The task characteristics of aviation maintenance workers are challenging and unpredictable. Subsequently, WMSDs are prevalent among aviation maintenance workers. The work demand of aviation maintenance workers does not influence their development of WMSDs. Pakistan Civil Aviation Authority should minimize the intensity of tasks assigned to aviation maintenance workers by introducing work dynamisms such as task sharing, job rotation, and probably teleworking to enhance flexibility. Human Resource and Recruitment Department need to consider the ability and fitness levels of potential aviation maintenance workers during recruitment. In addition, regular physical activities and ergonomic policies should be put in place by the management of the Pakistan Civil Aviation Authority to reduce the incidences of WMSDs.

Keywords: work related musculoskeletal disorders, ergonomics, occupational health and safety, human factors

Procedia PDF Downloads 125
4754 The Change in the Temporomandibular Joint Bone in Osteoarthritis Induced Mice

Authors: Boonyalitpun P., Pruckpattranon P., Thonghom A., Rotpenpian N.

Abstract:

Osteoarthritis is a musculoskeletal and neuromuscular abnormality, masticatory muscle, and other tissue that causes pain and breaks down the articular surface of the temporomandibular joint (TMJ). The aim of this study is to investigate the change in the mandibular condyle, in terms of thickness and porosity, and osteoclast marker in the mandibular condyle of TMJ induced osteoarthritis mice (TMJ-OA mice). We investigated the bony changes in the TMJ structure of a complete Freund adjuvant (CFA)-injected TMJ in a mice model over 28 days. On day 28, we observed any change in the TMJ by a micro computed tomography scan (micro-CT scan) in the parameters of trabecular microarchitecture. Then we studied the thickness of the condyles by hematoxylin and eosin staining. Moreover, we calculated the area around the TMJ’s condylar head containing the osteoclast expression by TRAP (Tartrate-resistant acid phosphatase) immunohistochemistry staining. The result found that the parameter of a micro-CT scan was no different from microarchitecture in the TMJ compared with the control group; however, mandibular condyles of the TMJ-OA group was significantly thinner than the control groups, and the osteoclast expression significantly increased in the TMJ-OA group. Therefore, our findings suggest that CFA-induced TMJ-OA represents an expression of osteoclast mandibular condyle of the TMJ, which is the proposed mechanism for a TMJ-OA model.

Keywords: condyle, osteoarthritis, osteoclast, temporomandibular joint

Procedia PDF Downloads 78
4753 Design and Development of a Mechanical Force Gauge for the Square Watermelon Mold

Authors: Morteza Malek Yarand, Hadi Saebi Monfared

Abstract:

This study aimed at designing and developing a mechanical force gauge for the square watermelon mold for the first time. It also tried to introduce the square watermelon characteristics and its production limitations. The mechanical force gauge performance and the product itself were also described. There are three main designable gauge models: a. hydraulic gauge, b. strain gauge, and c. mechanical gauge. The advantage of the hydraulic model is that it instantly displays the pressure and thus the force exerted by the melon. However, considering the inability to measure forces at all directions, complicated development, high cost, possible hydraulic fluid leak into the fruit chamber and the possible influence of increased ambient temperature on the fluid pressure, the development of this gauge was overruled. The second choice was to calculate pressure using the direct force a strain gauge. The main advantage of these strain gauges over spring types is their high precision in measurements; but with regard to the lack of conformity of strain gauge working range with water melon growth, calculations were faced with problems. Finally the mechanical pressure gauge has advantages, including the ability to measured forces and pressures on the mold surface during melon growth; the ability to display the peak forces; the ability to produce melon growth graph thanks to its continuous force measurements; the conformity of its manufacturing materials with the required physical conditions of melon growth; high air conditioning capability; the ability to permit sunlight reaches the melon rind (no yellowish skin and quality loss); fast and straightforward calibration; no damages to the product during assembling and disassembling; visual check capability of the product within the mold; applicable to all growth environments (field, greenhouses, etc.); simple process; low costs and so forth.

Keywords: mechanical force gauge, mold, reshaped fruit, square watermelon

Procedia PDF Downloads 253
4752 Management of Recurrent Temporomandibular Joint True Bony Ankylosis : A Case Report

Authors: Mahmoud A. Amin, Essam Taman, Ahmed Omran, Mahmoud Shawky, Ahmed Mekawy, Abdallah M. Kotkat, Saber Younes, Nehad N. Ghonemy, Amin Saad, Ezz-Aleslam, Abdullah M. Elosh

Abstract:

Introduction: TMJ is a one-of-a-kind, complicated synovial joint that helps with masticatory function by allowing the mandible to open and close the mouth. True ankylosis is a situation in which condylar movement is limited by a mechanical defect in the joint, whereas false ankylosis is a condition in which there is a restriction in mandibular movement due to muscular spasm myositis ossificans, and coronoid process hyperplasia. Ankylosis is characterized by the inability to open the mouth due to fusion of the TMJ condyle to the base of the skull as a result of trauma, infection, or systemic diseases such as rheumatoid arthritis (the most common) and psoraisis. Ankylosis causes facial asymmetry and affects the patient psychologically as well as speech, difficult mastication, poor oral hygiene, malocclusion, and other factors. TMJ is a technically challenging joint; hence TMJ ankylosis management is complicated. Case presentation: this case is a male patient 25 years old reported to our maxillofacial clinic in Damietta faculty of medicine, Al-Azhar University with the inability to open the mouth at all, with a history of difficulty of mouth breathing and eating foods, there was a history of falling from height at 2006, and the patient underwent corrective surgery before with no improvement because the ankylosis was relapsed short period after the previous operations with that done out of our hospital inter-incisor distant ZERO so, this condition need mandatory management. Clinical examination and radiological investigations were done after complete approval from the patient and his brother; tracheostomy was done for our patient before the operation. The patient entered the operation in our hospital and drastic improvement in mouth opening was noticed, helping to restore the physical psychological health of the patient.

Keywords: temporomandibular joint, TMJ, Ankylosis, mouth opening, physiotherapy, condylar plate

Procedia PDF Downloads 126
4751 The Role of Meaningful Work in Transformational Leadership and Work Outcomes Relationship

Authors: Zainur Rahman

Abstract:

Meaningful work is the topic that will be discussed in this article, especially in changing period. It has an important role because by reaching meaningful work, it will drive to be positive in the workplace. Therefore, task performance will be increased and cynicism about organizational change (CAOC) will be reduced. Moreover, it is influenced by situational factor, which is transformational leadership. In this conceptual paper, the author discusses how the construct of meaningful work influenced by transformational leadership that will have impact on the follower’ work outcomes in the organizational change. It is proposed that the construct of meaningful work are susceptible with situational variable. Transformational leaders who are respectful on the process of humanizing the followers affect task performance and reduce CAOC in organizational change.

Keywords: transformational leadership, meaningful work, task performance, CAOC

Procedia PDF Downloads 293
4750 Joining of Aluminum and Steel in Car Body Manufacturing

Authors: Mohammad Mahdi Mohammadi

Abstract:

Zinc-coated steel sheets have been joined with aluminum samples in an overlapping as well as in a butt-joint configuration. A bi-metal-wire composed from aluminum and steel was used for additional welding experiments. An advantage of the laser-assisted bi-metal-wire welding is that the welding process is simplified since the primary joint between aluminium and steel exists already and laser welding occurs only between similar materials. FEM-simulations of the process were chosen to determine the ideal dimensions with respect to the formability of the bi-metal-wire. A prototype demonstrated the feasibility of the process.

Keywords: car body, steel sheets, formability of bi-metal-wire, laser-assisted bi-metal-wire

Procedia PDF Downloads 485
4749 The Effect of Pulsator on Washing Performance in a Front-Loading Washer

Authors: Eung Ryeol Seo, Hee Tae Lim, Eunsuk Bang, Soon Cheol Kweon, Jeoung-Kyo Jeoung, Ji-Hoon Choic

Abstract:

The object of this study is to investigate the effect of pulsator on washing performance quantitatively for front-loading washer. The front-loading washer with pulsator shows washing performance improvement of 18% and the particle-based body simulation technique has been applied to figure out the relation between washing performance and mechanical forces exerted on textile during washing process. As a result, the mechanical forces, such as collision force and strain force, acting on the textile have turned out to be about twice numerically. The washing performance improvement due to additional pulsate system has been utilized for customers to save 50% of washing time.

Keywords: front-loading washer, mechanical force, fabric movement, pulsator, time-saving

Procedia PDF Downloads 243
4748 Fatigue-Induced Debonding Propagation in FM300 Adhesive

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

Fracture Mechanics is used to predict debonding propagation in adhesive joint between aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate and their results are compared. It was seen that generally the cases with stacking sequence of [0/45/-45/90]s have much shorter lives than cases with [0/90]2s. It was also seen that in cases with λ=0 the ends of the debonding front propagates forward more than its middle, while in cases with λ=0.5 or λ=1 it is vice versa. Moreover, regardless of value of λ, the difference between the debonding propagations of the ends and the middle of the debonding front is very close in cases λ=0.5 and λ=1. Another main conclusion was the non-dimensionalized debonding front profile is almost independent of sequence type or the applied load value.

Keywords: adhesive joint, debonding, fracture, LEFM, APDL

Procedia PDF Downloads 334
4747 A Sports-Specific Physiotherapy Center Treats Sports Injuries

Authors: Andrew Anis Fakhrey Mosaad

Abstract:

Introduction: Sports- and physical activity-related injuries may be more likely if there is a genetic predisposition, improper coaching and/or training, and no follow-up care from sports medicine. Goal: To evaluate the frequency of injuries among athletes receiving care at a sportsfocused physical therapy clinic. Methods: The survey of injuries in athletes' treatment records over a period of eight years of activity was done to obtain data. The data collected included: the patient's features, the sport, the type of injury, the injury's characteristics, and the body portion injured. Results: The athletes were drawn from 1090 patient/athlete records, had an average age of 25, participated in 44 different sports, and were 75% men on average. Joint injuries were the most frequent type of injury, then damage to the muscles and bones. The most prevalent type of injury was chronic (47%), while the knee, ankle, and shoulder were the most frequently damaged body parts. The most injured athletes were seen in soccer, futsal, and track and field, respectively, out of all the sports. Conclusion: The most popular sport among injured players was soccer, and the most common injury type was joint damage, with the knee being the most often damaged body area. The majority of the injuries were chronic.

Keywords: sports injuries, athletes, joint injuries, injured players

Procedia PDF Downloads 47
4746 Semantic Processing in Chinese: Category Effects, Task Effects and Age Effects

Authors: Yi-Hsiu Lai

Abstract:

The present study aimed to elucidate the nature of semantic processing in Chinese. Language and cognition related to the issue of aging are examined from the perspective of picture naming and category fluency tasks. Twenty Chinese-speaking adults (ranging from 25 to 45 years old) and twenty Chinese-speaking seniors (ranging from 65 to 75 years old) in Taiwan participated in this study. Each of them individually completed two tasks: a picture naming task and a category fluency task. Instruments for the naming task were sixty black-and-white pictures: thirty-five object and twenty-five action pictures. Category fluency task also consisted of two semantic categories – objects (or nouns) and actions (or verbs). Participants were asked to report as many items within a category as possible in one minute. Scores of action fluency and of object fluency were a summation of correct responses in these two categories. Category effects (actions vs. objects) and age effects were examined in these tasks. Objects were further divided into two major types: living objects and non-living objects. Actions were also categorized into two major types: action verbs and process verbs. Reaction time to each picture/question was additionally calculated and analyzed. Results of the category fluency task indicated that the content of information in Chinese seniors was comparatively deteriorated, thus producing smaller number of semantic-lexical items. Significant group difference was also found in the results of reaction time. Category Effect was significant for both Chinese adults and seniors in the semantic fluency task. Findings in the present study helped characterize the nature of semantic processing in Chinese-speaking adults and seniors and contributed to the issue of language and aging.

Keywords: semantic processing, aging, Chinese, category effects

Procedia PDF Downloads 337
4745 Comparative Study of Static and Dynamic Bending Forces during 3-Roller Cone Frustum Bending Process

Authors: Mahesh K. Chudasama, Harit K. Raval

Abstract:

3-roller conical bending process is widely used in the industries for manufacturing of conical sections and shells. It involves static as well dynamic bending stages. Analytical models for prediction of bending force during static as well as dynamic bending stage are available in the literature. In this paper, bending forces required for static bending stage and dynamic bending stages have been compared using the analytical models. It is concluded that force required for dynamic bending is very less as compared to the bending force required during the static bending stage.

Keywords: analytical modeling, cone frustum, dynamic bending, static bending

Procedia PDF Downloads 284
4744 Characterization of the Groundwater Aquifers at El Sadat City by Joint Inversion of VES and TEM Data

Authors: Usama Massoud, Abeer A. Kenawy, El-Said A. Ragab, Abbas M. Abbas, Heba M. El-Kosery

Abstract:

Vertical Electrical Sounding (VES) and Transient Electro Magnetic (TEM) survey have been applied for characterizing the groundwater aquifers at El Sadat industrial area. El-Sadat city is one of the most important industrial cities in Egypt. It has been constructed more than three decades ago at about 80 km northwest of Cairo along the Cairo–Alexandria desert road. Groundwater is the main source of water supplies required for domestic, municipal, and industrial activities in this area due to the lack of surface water sources. So, it is important to maintain this vital resource in order to sustain the development plans of this city. In this study, VES and TEM data were identically measured at 24 stations along three profiles trending NE–SW with the elongation of the study area. The measuring points were arranged in a grid like pattern with both inter-station spacing and line–line distance of about 2 km. After performing the necessary processing steps, the VES and TEM data sets were inverted individually to multi-layer models, followed by a joint inversion of both data sets. Joint inversion process has succeeded to overcome the model-equivalence problem encountered in the inversion of individual data set. Then, the joint models were used for the construction of a number of cross sections and contour maps showing the lateral and vertical distribution of the geo-electrical parameters in the subsurface medium. Interpretation of the obtained results and correlation with the available geological and hydrogeological information revealed TWO aquifer systems in the area. The shallow Pleistocene aquifer consists of sand and gravel saturated with fresh water and exhibits large thickness exceeding 200 m. The deep Pliocene aquifer is composed of clay and sand and shows low resistivity values. The water bearing layer of the Pleistocene aquifer and the upper surface of Pliocene aquifer are continuous and no structural features have cut this continuity through the investigated area.

Keywords: El Sadat city, joint inversion, VES, TEM

Procedia PDF Downloads 345
4743 Design of Process Parameters in Electromagnetic Forming Apparatus by FEM

Authors: Hyeong-Gyu Park, Hak-Gon Noh, Beom-Soo Kang, Jeong Kim

Abstract:

Electromagnetic forming (EMF) process is one of a high-speed forming process, which uses an electromagnetic body (Lorentz) force to deform work-piece. Advantages of EMF are summarized as improvement of formability, reduction in wrinkling, non-contact forming. In this study, the spiral coil is considered to evaluate formability in terms of pressure distribution of the forming process. It also is represented forming results of numerical analysis using ANSYS code. In the numerical simulation, RLC circuit coupled with spiral coil was made to consider the design parameters such as system input current and electromagnetic force. The simulation results show that even though input peak currents level are same level in each case, forming condition is certainly different because of frequency of input current and magnitude of current density and magnetic flux density. Finally, the simulation results appear that electromagnetic forming force apparently affected by input current frequency which determines magnitude of current density and magnetic flux density.

Keywords: electromagnetic forming, high-speed forming, RLC circuit, Lorentz force

Procedia PDF Downloads 435