Search results for: intelligence cycle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3593

Search results for: intelligence cycle

3263 Testing the Life Cycle Theory on the Capital Structure Dynamics of Trade-Off and Pecking Order Theories: A Case of Retail, Industrial and Mining Sectors

Authors: Freddy Munzhelele

Abstract:

Setting: the empirical research has shown that the life cycle theory has an impact on the firms’ financing decisions, particularly the dividend pay-outs. Accordingly, the life cycle theory posits that as a firm matures, it gets to a level and capacity where it distributes more cash as dividends. On the other hand, the young firms prioritise investment opportunities sets and their financing; thus, they pay little or no dividends. The research on firms’ financing decisions also demonstrated, among others, the adoption of trade-off and pecking order theories on the dynamics of firms capital structure. The trade-off theory talks to firms holding a favourable position regarding debt structures particularly as to the cost and benefits thereof; and pecking order is concerned with firms preferring a hierarchical order as to choosing financing sources. The case of life cycle hypothesis explaining the financial managers’ decisions as regards the firms’ capital structure dynamics appears to be an interesting link, yet this link has been neglected in corporate finance research. If this link is to be explored as an empirical research, the financial decision-making alternatives will be enhanced immensely, since no conclusive evidence has been found yet as to the dynamics of capital structure. Aim: the aim of this study is to examine the impact of life cycle theory on the capital structure dynamics trade-off and pecking order theories of firms listed in retail, industrial and mining sectors of the JSE. These sectors are among the key contributors to the GDP in the South African economy. Design and methodology: following the postpositivist research paradigm, the study is quantitative in nature and utilises secondary data obtainable from the financial statements of sampled firm for the period 2010 – 2022. The firms’ financial statements will be extracted from the IRESS database. Since the data will be in panel form, a combination of the static and dynamic panel data estimators will used to analyse data. The overall data analyses will be done using STATA program. Value add: this study directly investigates the link between the life cycle theory and the dynamics of capital structure decisions, particularly the trade-off and pecking order theories.

Keywords: life cycle theory, trade-off theory, pecking order theory, capital structure, JSE listed firms

Procedia PDF Downloads 61
3262 The Role of Artificial Intelligence Algorithms in Psychiatry: Advancing Diagnosis and Treatment

Authors: Netanel Stern

Abstract:

Artificial intelligence (AI) algorithms have emerged as powerful tools in the field of psychiatry, offering new possibilities for enhancing diagnosis and treatment outcomes. This article explores the utilization of AI algorithms in psychiatry, highlighting their potential to revolutionize patient care. Various AI algorithms, including machine learning, natural language processing (NLP), reinforcement learning, clustering, and Bayesian networks, are discussed in detail. Moreover, ethical considerations and future directions for research and implementation are addressed.

Keywords: AI, software engineering, psychiatry, neuroimaging

Procedia PDF Downloads 116
3261 Leadership in the Era of AI: Growing Organizational Intelligence

Authors: Mark Salisbury

Abstract:

The arrival of artificially intelligent avatars and the automation they bring is worrying many of us, not only for our livelihood but for the jobs that may be lost to our kids. We worry about what our place will be as human beings in this new economy where much of it will be conducted online in the metaverse – in a network of 3D virtual worlds – working with intelligent machines. The Future of Leadership was written to address these fears and show what our place will be – the right place – in this new economy of AI avatars, automation, and 3D virtual worlds. But to be successful in this new economy, our job will be to bring wisdom to our workplace and the marketplace. And we will use AI avatars and 3D virtual worlds to do it. However, this book is about more than AI and the avatars that we will work with in the metaverse. It’s about building Organizational intelligence (OI) -- the capability of an organization to comprehend and create knowledge relevant to its purpose; in other words, it is the intellectual capacity of the entire organization. To increase organizational intelligence requires a new kind of knowledge worker, a wisdom worker, that requires a new kind of leadership. This book begins your story for how to become a leader of wisdom workers and be successful in the emerging wisdom economy. After this presentation, conference participants will be able to do the following: Recognize the characteristics of the new generation of wisdom workers and how they differ from their predecessors. Recognize that new leadership methods and techniques are needed to lead this new generation of wisdom workers. Apply personal and professional values – personal integrity, belief in something larger than yourself, and keeping the best interest of others in mind – to improve your work performance and lead others. Exhibit an attitude of confidence, courage, and reciprocity of sharing knowledge to increase your productivity and influence others. Leverage artificial intelligence to accelerate your ability to learn, augment your decision-making, and influence others.Utilize new technologies to communicate with human colleagues and intelligent machines to develop better solutions more quickly.

Keywords: metaverse, generative artificial intelligence, automation, leadership, organizational intelligence, wisdom worker

Procedia PDF Downloads 43
3260 Characteristics and Feature Analysis of PCF Labeling among Construction Materials

Authors: Sung-mo Seo, Chang-u Chae

Abstract:

The Product Carbon Footprint Labeling has been run for more than four years by the Ministry of Environment and there are number of products labeled by KEITI, as for declaring products with their carbon emission during life cycle stages. There are several categories for certifying products by the characteristics of usage. Building products which are applied to a building as combined components. In this paper, current status of PCF labeling has been compared with LCI DB for data composition. By this comparative analysis, we suggest carbon labeling development.

Keywords: carbon labeling, LCI DB, building materials, life cycle assessment

Procedia PDF Downloads 421
3259 Hamiltonian Paths and Cycles Passing through Prescribed Edges in the Balanced Hypercubes

Authors: Dongqin Cheng

Abstract:

The n-dimensional balanced hypercube BHn (n ≥ 1) has been proved to be a bipartite graph. Let P be a set of edges whose induced subgraph consists of pairwise vertex-disjoint paths. For any two vertices u, v from different partite sets of V (BHn). In this paper, we prove that if |P| ≤ 2n − 2 and the subgraph induced by P has neither u nor v as internal vertices, or both of u and v as end-vertices, then BHn contains a Hamiltonian path joining u and v passing through P. As a corollary, if |P| ≤ 2n−1, then the BHn contains a Hamiltonian cycle passing through P.

Keywords: interconnection network, balanced hypercube, Hamiltonian cycle, prescribed edges

Procedia PDF Downloads 205
3258 The Importance of Information in Psychological Operations for Counterterrorism

Authors: Abbas Fazelinia

Abstract:

Terrorism is not a new phenomenon to the world, yet it remains difficult to define and to counter. Countering terrorism requires several measures that must be taken at the same time. Counterterrorism strategies of most countries depend on military measures. However, those strategies should also focus on nonlethal measures, such as economic, political, and social measures. The psychological dimensions of terrorism must be understood, evaluated, and used in countering terrorism. This study suggests that psychological operations, as nonlethal military operations, can be used to influence individuals not to join terrorist organizations and to facilitate defections from terrorist organizations. However, in order to implement effective psychological operations, one has to have appropriate intelligence about terrorist organizations. Examining terrorist organizations help us to identify their vulnerabilities and obtain this intelligence. This article concludes that terrorists’ motivations, terrorist organizations’ radicalization, recruitment, and conversion processes, ideology, goals, strategies, and general structure form the intelligence requirement for psychological operations in counterterrorism. The methodology used in this article is a mixed method.

Keywords: psychological operations, terrorist, counterterrorism, terrorism

Procedia PDF Downloads 332
3257 The Human Rights Code: Fundamental Rights as the Basis of Human-Robot Coexistence

Authors: Gergely G. Karacsony

Abstract:

Fundamental rights are the result of thousand years’ progress of legislation, adjudication and legal practice. They serve as the framework of peaceful cohabitation of people, protecting the individual from any abuse by the government or violation by other people. Artificial intelligence, however, is the development of the very recent past, being one of the most important prospects to the future. Artificial intelligence is now capable of communicating and performing actions the same way as humans; such acts are sometimes impossible to tell from actions performed by flesh-and-blood people. In a world, where human-robot interactions are more and more common, a new framework of peaceful cohabitation is to be found. Artificial intelligence, being able to take part in almost any kind of interaction where personal presence is not necessary without being recognized as a non-human actor, is now able to break the law, violate people’s rights, and disturb social peace in many other ways. Therefore, a code of peaceful coexistence is to be found or created. We should consider the issue, whether human rights can serve as the code of ethical and rightful conduct in the new era of artificial intelligence and human coexistence. In this paper, we will examine the applicability of fundamental rights to human-robot interactions as well as to the actions of artificial intelligence performed without human interaction whatsoever. Robot ethics has been a topic of discussion and debate of philosophy, ethics, computing, legal sciences and science fiction writing long before the first functional artificial intelligence has been introduced. Legal science and legislation have approached artificial intelligence from different angles, regulating different areas (e.g. data protection, telecommunications, copyright issues), but they are only chipping away at the mountain of legal issues concerning robotics. For a widely acceptable and permanent solution, a more general set of rules would be preferred to the detailed regulation of specific issues. We argue that human rights as recognized worldwide are able to be adapted to serve as a guideline and a common basis of coexistence of robots and humans. This solution has many virtues: people don’t need to adjust to a completely unknown set of standards, the system has proved itself to withstand the trials of time, legislation is easier, and the actions of non-human entities are more easily adjudicated within their own framework. In this paper we will examine the system of fundamental rights (as defined in the most widely accepted source, the 1966 UN Convention on Human Rights), and try to adapt each individual right to the actions of artificial intelligence actors; in each case we will examine the possible effects on the legal system and the society of such an approach, finally we also examine its effect on the IT industry.

Keywords: human rights, robot ethics, artificial intelligence and law, human-robot interaction

Procedia PDF Downloads 244
3256 Effects on Spiritual Intelligence on Young Adult Muslim Female: Integration of Planned Behaviour Theory in Predicting Consumer Attitude towards Halal Cosmetic

Authors: Azreen Jihan Che Mohd Hashim, Rosidah Musa

Abstract:

Although 'Spiritual Intelligence' (SI) is hard to measure, it is impossible without a noble value that may affect the attitude in purchasing behavior process, so this paper aims to report on a pilot study analysis results in order to evaluate the degree of SI towards consumers’ attitude in purchasing halal cosmetics and, in turn, to reaffirm intention to purchase by using Theory Planned Behaviour (TPB). It is a descriptive cross-sectional study among the Muslim women as the subjects, working and staying in Klang valley area in Malaysia. The purpose of the study is to develop a new measurement scale to unravel and decompose the underlying dimensions of SI from the perspective of the Muslim deemed imperative. About 200 respondents of users and non-users of halal cosmetics are selected. The structure equation modeling (SEM) was conducted to examine the relationships among god, society and self, which are the dimensions of SI. A finding indicates that, in influencing attitude, those who obligate high spiritual intelligence have a good relationship with god, society and self which may influence them to purchase halal cosmetic product. This study offers important findings and implications for future research as it presents a framework on the importance of SI.

Keywords: spiritual intelligence, god, society, self, young adult Muslim female

Procedia PDF Downloads 369
3255 Transformative Digital Trends in Supply Chain Management: The Role of Artificial Intelligence

Authors: Srinivas Vangari

Abstract:

With the technological advancements around the globe, artificial intelligence (AI) has boosted supply chain management (SCM) by improving efficiency, sensitivity, and promptness. Artificial intelligence-based SCM provides comprehensive perceptions of consumer behavior in dynamic market situations and trends, foreseeing the accurate demand. It reduces overproduction and stockouts while optimizing production planning and streamlining operations. Consequently, the AI-driven SCM produces a customer-centric supply with resilient and robust operations. Intending to delve into the transformative significance of AI in SCM, this study focuses on improving efficiency in SCM with the integration of AI, understanding the production demand, accurate forecasting, and particular production planning. The study employs a mixed-method approach and expert survey insights to explore the challenges and benefits of AI applications in SCM. Further, a case analysis is incorporated to identify the best practices and potential challenges with the critical success features in AI-driven SCM. Key findings of the study indicate the significant advantages of the AI-integrated SCM, including optimized inventory management, improved transportation and logistics management, cost optimization, and advanced decision-making, positioning AI as a pivotal force in the future of supply chain management.

Keywords: artificial intelligence, supply chain management, accurate forecast, accurate planning of production, understanding demand

Procedia PDF Downloads 21
3254 Similitude for Thermal Scale-up of a Multiphase Thermolysis Reactor in the Cu-Cl Cycle of a Hydrogen Production

Authors: Mohammed W. Abdulrahman

Abstract:

The thermochemical copper-chlorine (Cu-Cl) cycle is considered as a sustainable and efficient technology for a hydrogen production, when linked with clean-energy systems such as nuclear reactors or solar thermal plants. In the Cu-Cl cycle, water is decomposed thermally into hydrogen and oxygen through a series of intermediate reactions. This paper investigates the thermal scale up analysis of the three phase oxygen production reactor in the Cu-Cl cycle, where the reaction is endothermic and the temperature is about 530 oC. The paper focuses on examining the size and number of oxygen reactors required to provide enough heat input for different rates of hydrogen production. The type of the multiphase reactor used in this paper is the continuous stirred tank reactor (CSTR) that is heated by a half pipe jacket. The thermal resistance of each section in the jacketed reactor system is studied to examine its effect on the heat balance of the reactor. It is found that the dominant contribution to the system thermal resistance is from the reactor wall. In the analysis, the Cu-Cl cycle is assumed to be driven by a nuclear reactor where two types of nuclear reactors are examined as the heat source to the oxygen reactor. These types are the CANDU Super Critical Water Reactor (CANDU-SCWR) and High Temperature Gas Reactor (HTGR). It is concluded that a better heat transfer rate has to be provided for CANDU-SCWR by 3-4 times than HTGR. The effect of the reactor aspect ratio is also examined in this paper and is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Finally, a comparison between the results of heat balance and existing results of mass balance is performed and is found that the size of the oxygen reactor is dominated by the heat balance rather than the material balance.

Keywords: sustainable energy, clean energy, Cu-Cl cycle, heat transfer, hydrogen, oxygen

Procedia PDF Downloads 296
3253 Graphical User Interface Testing by Using Deep Learning

Authors: Akshat Mathur, Sunil Kumar Khatri

Abstract:

This paper presents brief about how the use of Artificial intelligence in respect to GUI testing can reduce workload by using DL-fueled method. This paper also discusses about how graphical user interface and event driven software testing can derive benefits from the use of AI techniques. The use of AI techniques not only reduces the task and work load but also helps in getting better output than manual testing. Although results are same, but the use of Artifical intelligence techniques for GUI testing has proven to provide ideal results. DL-fueled framework helped us to find imperfections of the entire webpage and provides test failure result in a score format between 0 and 1which signifies that are test meets it quality criteria or not. This paper proposes DL-fueled method which helps us to find the genuine GUI bugs and defects and also helped us to scale the existing labour-intensive and skill-intensive methodologies.

Keywords: graphical user interface, GUI, artificial intelligence, deep learning, ML technology

Procedia PDF Downloads 177
3252 Improving the Performance of Gas Turbine Power Plant by Modified Axial Turbine

Authors: Hakim T. Kadhim, Faris A. Jabbar, Aldo Rona, Audrius Bagdanaviciu

Abstract:

Computer-based optimization techniques can be employed to improve the efficiency of energy conversions processes, including reducing the aerodynamic loss in a thermal power plant turbomachine. In this paper, towards mitigating secondary flow losses, a design optimization workflow is implemented for the casing geometry of a 1.5 stage axial flow turbine that improves the turbine isentropic efficiency. The improved turbine is used in an open thermodynamic gas cycle with regeneration and cogeneration. Performance estimates are obtained by the commercial software Cycle – Tempo. Design and off design conditions are considered as well as variations in inlet air temperature. Reductions in both the natural gas specific fuel consumption and in CO2 emissions are predicted by using the gas turbine cycle fitted with the new casing design. These gains are attractive towards enhancing the competitiveness and reducing the environmental impact of thermal power plant.

Keywords: axial flow turbine, computational fluid dynamics, gas turbine power plant, optimization

Procedia PDF Downloads 161
3251 On the Framework of Contemporary Intelligent Mathematics Underpinning Intelligent Science, Autonomous AI, and Cognitive Computers

Authors: Yingxu Wang, Jianhua Lu, Jun Peng, Jiawei Zhang

Abstract:

The fundamental demand in contemporary intelligent science towards Autonomous AI (AI*) is the creation of unprecedented formal means of Intelligent Mathematics (IM). It is discovered that natural intelligence is inductively created rather than exhaustively trained. Therefore, IM is a family of algebraic and denotational mathematics encompassing Inference Algebra, Real-Time Process Algebra, Concept Algebra, Semantic Algebra, Visual Frame Algebra, etc., developed in our labs. IM plays indispensable roles in training-free AI* theories and systems beyond traditional empirical data-driven technologies. A set of applications of IM-driven AI* systems will be demonstrated in contemporary intelligence science, AI*, and cognitive computers.

Keywords: intelligence mathematics, foundations of intelligent science, autonomous AI, cognitive computers, inference algebra, real-time process algebra, concept algebra, semantic algebra, applications

Procedia PDF Downloads 61
3250 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding

Authors: Emad A. Mohammed

Abstract:

Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.

Keywords: MMP, gas flooding, artificial intelligence, correlation

Procedia PDF Downloads 144
3249 Progress of Legislation in Post-Colonial, Post-Communist and Socialist Countries for the Intellectual Property Protection of the Autonomous Output of Artificial Intelligence

Authors: Ammar Younas

Abstract:

This paper is an attempt to explore the legal progression in procedural laws related to “intellectual property protection for the autonomous output of artificial intelligence” in Post-Colonial, Post-Communist and Socialist Countries. An in-depth study of legal progression in Pakistan (Common Law), Uzbekistan (Post-Soviet Civil Law) and China (Socialist Law) has been conducted. A holistic attempt has been made to explore that how the ideological context of the legal systems can impact, not only on substantive components but on the procedural components of the formal laws related to IP Protection of autonomous output of Artificial Intelligence. Moreover, we have tried to shed a light on the prospective IP laws and AI Policy in the countries, which are planning to incorporate the concept of “Digital Personality” in their legal systems. This paper will also address the question: “How far IP of autonomous output of AI can be protected with the introduction of “Non-Human Legal Personality” in legislation?” By using the examples of China, Pakistan and Uzbekistan, a case has been built to highlight the legal progression in General Provisions of Civil Law, Artificial Intelligence Policy of the country and Intellectual Property laws. We have used a range of multi-disciplinary concepts and examined them on the bases of three criteria: accuracy of legal/philosophical presumption, applying to the real time situations and testing on rational falsification tests. It has been observed that the procedural laws are designed in a way that they can be seen correlating with the ideological contexts of these countries.

Keywords: intellectual property, artificial intelligence, digital personality, legal progression

Procedia PDF Downloads 118
3248 Effect of Evaporator Temperature on the Performance of Water Desalination/Refrigeration Adsorption System Using AQSOA-ZO2

Authors: Peter G. Youssef, Saad M. Mahmoud, Raya K. AL-Dadah

Abstract:

Many water desalination technologies have been developed but in general they are energy intensive and have high cost and adverse environmental impact. Recently, adsorption technology for water desalination has been investigated showing the potential of using low temperature waste heat (50-85oC) thus reducing energy consumption and CO2 emissions. This work mathematically compares the performance of an adsorption cycle that produces two useful effects namely, fresh water and cooling using two different adsorbents, silica-gel and an advanced zeolite material AQSOA-ZO2, produced by Mitsubishi plastics. It was found that at low chilled water temperatures, typically below 20oC, the AQSOA-Z02 is more efficient than silica-gel as the cycle can produce 5.8 m3 of fresh water per day and 50.1 Rton of cooling per tonne of AQSOA-ZO2. Above 20oC silica-gel is still better as the cycle production reaches 8.4 m3 per day and 62.4 Rton per tonne of silica-gel. These results show the potential of using the AQSOA-Z02 at low chilled water temperature for water desalination and cooling applications.

Keywords: adsorption, desalination, refrigeration, seawater

Procedia PDF Downloads 495
3247 The Modeling of City Bus Fuel Economy during the JE05 Emission Test Cycle

Authors: Miroslaw Wendeker, Piotr Kacejko, Marcin Szlachetka, Mariusz Duk

Abstract:

This paper discusses a model of fuel economy in a city bus driving in a dynamic urban environment. Rapid changes in speed result in a constantly changing kinetic energy accumulated in a bus mass and an increased fuel consumption due to hardly recuperated kinetic energy. The model is based on the bench test results achieved from chassis dynamometer, airport and city street researches. The verified model was applied to simulate the behavior of a bus during the Japanese JE05 Emission Test Cycle. The fuel consumption was calculated for three separate research stages, i.e. urban, downtown and motorway. The simulations were performed for several values of vehicle mass and electrical load applied to on-board devices. The research results show fuel consumption is impacted by driving dynamics.

Keywords: city bus, heavy duty vehicle, Japanese JE05 test cycle, kinetic energy

Procedia PDF Downloads 316
3246 Technology, Organizational and Environmental Determinants of Business Intelligence Systems Adoption in Croatian SME: A Case Study of Medium-Sized Enterprise

Authors: Ana-Marija Stjepić, Luka Sušac, Dalia Suša Vugec

Abstract:

In the last few years, examples from scientific literature and business practices show that the adoption of technological innovations increases enterprises' performance. Recently, when it comes to the field of information technology innovation, business intelligence systems (BISs) have drawn a significant amount of attention of the scientific circles. BISs can be understood as a form of technological innovation which can bring certain benefits to the organizations that are adopting it. Therefore, the aim of this paper is twofold: (1) to define determinants of successful BISs adoption in small and medium enterprises and thus contribute to this neglected research area and (2) to present the current state of BISs adoption in small and medium-sized companies. In order to do so, determinants are defined and classified into three dimensions, according to the Technology – Organization – Environment (TOE) theoretical framework that describes the impact of each dimension on technological innovations adoption. Moreover, paper brings a case study presenting the adoption of BISs in practice within an organization from tertiary (service) industry sector. Based on the results of the study, guidelines for more efficient, faster and easier BISs adoption are presented.

Keywords: adoption, business intelligence, business intelligence systems, case study, TOE framework

Procedia PDF Downloads 149
3245 Developing Medium Term Maintenance Plan For Road Networks

Authors: Helen S. Ghali, Haidy S. Ghali, Salma Ibrahim, Ossama Hosny, Hatem S. Elbehairy

Abstract:

Infrastructure systems are essential assets in any community; accordingly, authorities aim to maximize its life span while minimizing the life cycle cost. This requires studying the asset conditions throughout its operation and forming a cost-efficient maintenance strategy plan. The objective of this study is to develop a highway management system that provides medium-term maintenance plans with the minimum life cycle cost subject to budget constraints. The model is applied to data collected for the highway network in India with the aim to output a 5-year maintenance plan strategy from 2019 till 2023. The main element considered is the surface coarse, either rigid or flexible pavement. The model outputs a 5-year maintenance plan for each segment given the budget constraint while maximizing the new pavement condition rating and minimizing its life cycle cost.

Keywords: infrastructure, asset management, optimization, maintenance plan

Procedia PDF Downloads 218
3244 Comparative Life Cycle Analysis of Selected Modular Timber Construction and Assembly Typologies

Authors: Benjamin Goldsmith, Felix Heisel

Abstract:

The building industry must reduce its emissions in order to meet 2030 neutrality targets, and modular and/or offsite construction is seen as an alternative to conventional construction methods which could help achieve this goal. Modular construction has previously been shown to be less wasteful and has a lower global warming potential (GWP). While many studies have been conducted investigating the life cycle impacts of modular and conventional construction, few studies have compared different types of modular assembly and construction in order to determine which offer the greatest environmental benefits over their whole life cycle. This study seeks to investigate three different modular construction types -infill frame, core, and podium- in order to determine environmental impacts such as GWP as well as circularity indicators. The study will focus on the emissions of the production, construction, and end-of-life phases. The circularity of the various approaches will be taken into consideration in order to acknowledge the potential benefits of the ability to reuse and/or reclaim materials, products, and assemblies. The study will conduct hypothetical case studies for the three different modular construction types, and in doing so, control the parameters of location, climate, program, and client. By looking in-depth at the GWP of the beginning and end phases of various simulated modular buildings, it will be possible to make suggestions on which type of construction has the lowest global warming potential.

Keywords: modular construction, offsite construction, life cycle analysis, global warming potential, environmental impact, circular economy

Procedia PDF Downloads 166
3243 Neural Network Based Compressor Flow Estimator in an Aircraft Vapor Cycle System

Authors: Justin Reverdi, Sixin Zhang, Serge Gratton, Said Aoues, Thomas Pellegrini

Abstract:

In Vapor Cycle Systems, the flow sensor plays a key role in different monitoring and control purposes. However, physical sensors can be expensive, inaccurate, heavy, cumbersome, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor based on other standard sensors is a good alternative. In this paper, a data-driven model using a Convolutional Neural Network is proposed to estimate the flow of the compressor. To fit the model to our dataset, we tested different loss functions. We show in our application that a Dynamic Time Warping based loss function called DILATE leads to better dynamical performance than the vanilla mean squared error (MSE) loss function. DILATE allows choosing a trade-off between static and dynamic performance.

Keywords: deep learning, dynamic time warping, vapor cycle system, virtual sensor

Procedia PDF Downloads 146
3242 The Effects of Religiosity and Spiritual Intelligence on the Performance of Accountants in Ghana

Authors: Wisdom Dordudnu, George M. Y. Owusu, Samuel N. Y. Simpson

Abstract:

The recent failures of many corporate giants have generated intense research interest in the factors that influence accountants’ job performance. Against the backdrop that these factors also create an enabling environment for success at the work place, this study contributes to literature on job performance of accountants by exploring the impact of two psycho-spiritual factors: religiosity and spiritual intelligence on job performance of accountants in Ghana. The study employs a survey approach using questionnaires as the principal means of data collection to elicit responses from accountants working in the 222 certified firms of Institute of Chartered Accountants Ghana (ICAG). A structural equation modeling-based approach is employed to examine the relationship among the study constructs. Results of this study indicate that there is a positive relationship between these factors and accountants’ performance. It is expected that this study provides strong evidence and highlight the need for specific action from managers to look critically at the non-material aspect of accountants in accounting firms.

Keywords: job performance, psycho-spiritual, religiosity, spiritual intelligence

Procedia PDF Downloads 300
3241 Intelligent Building as a Pragmatic Approach towards Achieving a Sustainable Environment

Authors: Zahra Hamedani

Abstract:

Many wonderful technological developments in recent years has opened up the possibility of using intelligent buildings for a number of important applications, ranging from minimizing resource usage as well as increasing building efficiency to maximizing comfort, adaption to inhabitants and responsiveness to environmental changes. The concept of an intelligent building refers to the highly embedded, interactive environment within which by exploiting the use of artificial intelligence provides the ability to know its configuration, anticipate the optimum dynamic response to prevailing environmental stimuli, and actuate the appropriate physical reaction to provide comfort and efficiency. This paper contains a general identification of the intelligence paradigm and its impacts on the architecture arena, that with examining the performance of artificial intelligence, a mechanism to analyze and finally for decision-making to control the environment will be described. This mechanism would be a hierarchy of the rational agents which includes decision-making, information, communication and physical layers. This multi-agent system relies upon machine learning techniques for automated discovery, prediction and decision-making. Then, the application of this mechanism regarding adaptation and responsiveness of intelligent building will be provided in two scales of environmental and user. Finally, we review the identifications of sustainability and evaluate the potentials of intelligent building systems in the creation of sustainable architecture and environment.

Keywords: artificial intelligence, intelligent building, responsiveness, adaption, sustainability

Procedia PDF Downloads 410
3240 Association of Caffeine Consumption in Coffee, Tea and Soft Drinks with Age of Menopause

Authors: Julita D. L. Nainggolan, Cindy Novita Ongkowijoyo, Veli Sungono, Dyana Safitri Velies, Ernestine Vivie Sadeli, Jimmy

Abstract:

Introduction: Normal menstrual cycle in women ranges from 21-34 days. Menopause is defined as the time when there have been no menstrual periods for 12 consecutive months and no other biological or physiological cause can be identified. Caffeine might increase the estradiol in the early of follicular phase and possibly increase the progesterone and shorten menstruation cycle. Women with shorter menstrual cycle, (below 26 days) would likely get to menopause 1.4 years earlier than those who are normal, and 2.2 years earlier than women with longer menstrual cycle. Purpose: To study the association of caffeine consumption in coffee, tea, and soft drinks with the age of menopause. Design Study: A cross-sectional study using purposive sampling of 132 menopause women from elderly nursing, hospitals and students’ relatives from August 2015-December 2015. The mean difference of age of menopause among the caffeine intake was analyzed by using the unpaired t-test and logistic regression. Results: Mean current age of the respondents are 61.4 years ± SD 9.8; and age of menopause was 47.7 years ± SD 4.2. There are 49.6% who drink coffee, 62.6% of tea and 7.6% of soft drinks. The analysis of t-test showed no significant mean difference in age of menopause among women who drink coffee, tea and soft drinks, mean age of 47.63 ± 4.3 in coffee with p=0.392, mean age of 47.8 ± 4 in tea with p=0.373; and mean age of 46 ± 5.5 with p=0.083 after adjustment of smoking history. Conclusion: Consumption of caffeine among women who drink coffee, tea, and soft drinks did not show significant mean difference in age of menopause.

Keywords: caffeine, menopause, coffee, tea, soda, soft drinks

Procedia PDF Downloads 239
3239 Preparation of Papers – Inventorship Status For AI - A South African Perspective

Authors: Meshandren Naidoo

Abstract:

An artificial intelligence (AI) system named DABUS 2021 made headlines when it became the very first AI system to be listed in a patent which was then granted by the South African patent office. This grant raised much criticism. The question that this research intends to answer is (1) whether, in South African patent law, an AI can be an inventor. This research finds that despite South African law not recognising an AI as a legal person and despite the legislation not explicitly allowing AI to be inventors, a legal interpretative exercise would allow AI inventorship.

Keywords: artificial intelligence, intellectual property, inventorship, patents

Procedia PDF Downloads 105
3238 Neural Reshaping: The Plasticity of Human Brain and Artificial Intelligence in the Learning Process

Authors: Seyed-Ali Sadegh-Zadeh, Mahboobe Bahrami, Sahar Ahmadi, Seyed-Yaser Mousavi, Hamed Atashbar, Amir M. Hajiyavand

Abstract:

This paper presents an investigation into the concept of neural reshaping, which is crucial for achieving strong artificial intelligence through the development of AI algorithms with very high plasticity. By examining the plasticity of both human and artificial neural networks, the study uncovers groundbreaking insights into how these systems adapt to new experiences and situations, ultimately highlighting the potential for creating advanced AI systems that closely mimic human intelligence. The uniqueness of this paper lies in its comprehensive analysis of the neural reshaping process in both human and artificial intelligence systems. This comparative approach enables a deeper understanding of the fundamental principles of neural plasticity, thus shedding light on the limitations and untapped potential of both human and AI learning capabilities. By emphasizing the importance of neural reshaping in the quest for strong AI, the study underscores the need for developing AI algorithms with exceptional adaptability and plasticity. The paper's findings have significant implications for the future of AI research and development. By identifying the core principles of neural reshaping, this research can guide the design of next-generation AI technologies that can enhance human and artificial intelligence alike. These advancements will be instrumental in creating a new era of AI systems with unparalleled capabilities, paving the way for improved decision-making, problem-solving, and overall cognitive performance. In conclusion, this paper makes a substantial contribution by investigating the concept of neural reshaping and its importance for achieving strong AI. Through its in-depth exploration of neural plasticity in both human and artificial neural networks, the study unveils vital insights that can inform the development of innovative AI technologies with high adaptability and potential for enhancing human and AI capabilities alike.

Keywords: neural plasticity, brain adaptation, artificial intelligence, learning, cognitive reshaping

Procedia PDF Downloads 52
3237 Sustainability Model for Rural Telecenter Using Business Intelligence Technique

Authors: Razak Rahmat, Azizah Ahmad, Rafidah Razak, Roshidi Din, Azizi Abas

Abstract:

Telecenter is a place where communities can access computers, the Internet, and other digital technologies to enable them to gather information, create, learn, and communicate with others. However, previous studies found that sustainability issues related to economic, political and institutional, social and technology is one of the major problem faced by the telecenter. Based on that problem, this research is planning to design a possible solution on rural telecenters sustainability with the support of business intelligence (BI). The empirical study will be conducted through the qualitative and quantitative method including interviews and observations with a range of stakeholders including ministry officers, telecenters managers and operators. Result from the data collection will be analyze using the causal modeling approach of SEM SmartPLS for the validity. The expected finding from this research is the Business Intelligent Requirement Model as a guild for sustainability of the rural telecenters.

Keywords: Rural ICT Telecenter(RICTT), business intelligence, sustainability, requirement analysis modal

Procedia PDF Downloads 483
3236 Exploring Artificial Intelligence as a Transformative Tool for Urban Management

Authors: R. R. Govind

Abstract:

In the digital age, artificial intelligence (AI) is having a significant impact on the rapid changes that cities are experiencing. This study explores the profound impact of AI on urban morphology, especially with regard to promoting friendly design choices. It addresses a significant research gap by examining the real-world effects of integrating AI into urban design and management. The main objective is to outline a framework for integrating AI to transform urban settings. The study employs an urban design framework to effectively navigate complicated urban environments, emphasize the need for urban management, and provide efficient planning and design strategies. Taking Gangtok's informal settlements as a focal point, the study employs AI methodologies such as machine learning, predictive analytics, and generative AI to tackle issues of 'urban informality'. The insights garnered not only offer valuable perspectives but also unveil AI's transformative potential in addressing contemporary urban challenges.

Keywords: urban design, artificial intelligence, urban challenges, machine learning, urban informality

Procedia PDF Downloads 61
3235 Analysing the Applicability of a Participatory Approach to Life Cycle Sustainability Assessment: Case Study of a Housing Estate Regeneration in London

Authors: Sahar Navabakhsh, Rokia Raslan, Yair Schwartz

Abstract:

Decision-making on regeneration of housing estates, whether to refurbish or re-build, has been mostly triggered by economic factors. To enable sustainable growth, it is vital that environmental and social impacts of different scenarios are also taken into account. The methodology used to include all the three sustainable development pillars is called Life Cycle Sustainability Assessment (LCSA), which comprises of Life Cycle Assessment (LCA) for the assessment of environmental impacts of buildings. Current practice of LCA is regularly conducted post design stage and by sustainability experts. Not only is undertaking an LCA at this stage less effective, but issues such as the limited scope for the definition and assessment of environmental impacts, the implication of changes in the system boundary and the alteration of each of the variable metrics, employment of different Life Cycle Impact Assessment Methods and use of various inventory data for Life Cycle Inventory Analysis can result in considerably contrasting results. Given the niche nature and scarce specialist domain of LCA of buildings, the majority of the stakeholders do not contribute to the generation or interpretation of the impact assessment, and the results can be generated and interpreted subjectively due to the mentioned uncertainties. For an effective and democratic assessment of environmental impacts, different stakeholders, and in particular the community and design team should collaborate in the process of data collection, assessment and analysis. This paper examines and evaluates a participatory approach to LCSA through the analysis of a case study of a housing estate in South West London. The study has been conducted throughout tier-based collaborative methods to collect and share data through surveys and co-design workshops with the community members and the design team as the main stakeholders. The assessment of lifecycle impacts is conducted throughout the process and has influenced the decision-making on the design of the Community Plan. The evaluation concludes better assessment transparency and outcome, alongside other socio-economic benefits of identifying and engaging the most contributive stakeholders in the process of conducting LCSA.

Keywords: life cycle assessment, participatory LCA, life cycle sustainability assessment, participatory processes, decision-making, housing estate regeneration

Procedia PDF Downloads 147
3234 Nuclear Characteristics of a Heterogeneous Thorium-Based Fuel Design Aimed at Increasing Fuel Cycle Length of a Typical PWR

Authors: Hendrik Bernard Van Der Walt, Frik Van Niekerk

Abstract:

Heterogeneous thorium-based fuels have been proposed as an alternative for conventional reactor fuels and many studies have shown promising results. Fuel cycle characteristics still have to be explored in detail. This study investigates the use of a novel thorium-based fuel design aimed at increasing fuel cycle length of a typical PWR with an explicit focus on thorium- uranium content, neutron spectrum, flux considerations and neutron economy.As nuclear reactions are highly dependent on reactor flux and material matrix, analytical and numerical calculations have been completed to predict the behaviour of the proposed nuclear fuel. The proposed design utilizes various ratios of thorium oxide and uranium oxide pellets within fuel pins, divided into heterogeneous sections of specified length. This design renders multiple regions with unique characteristics. The goal of this study is to determine and optimally utilize these characteristics. Proliferation considerations result in the need for denaturing of heterogeneous regions, which renders more unique characteristics, these aspects were examined in this study. Finally, the use of fertile thorium to emulate a burnable poison for managing excess BOL reactivity has been investigated, as well as an option for flux shaping in a typical PWR.

Keywords: nuclear fuel, nuclear characteristics, nuclear fuel cycle, thorium-based fuel, heterogeneous design

Procedia PDF Downloads 135