Search results for: coating adhesion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1151

Search results for: coating adhesion

821 Method for Identification of Through Defects of Polymer Films Applied onto Metal Parts

Authors: Yu A. Pluttsova , O. V. Vakhnina , K. B. Zhogova

Abstract:

Nowadays, many devices operate under conditions of enhanced humidity, temperature drops, fog, and vibration. To ensure long-term and uninterruptable equipment operation under adverse conditions, one applies moisture-proof films on products and electronics components, which helps to prevent corrosion, short circuit, allowing a significant increase in device lifecycle. The reliability of such moisture-proof films is mainly determined by their coating uniformity without gaps and cracks. Unprotected product edges, as well as pores in films, can cause device failure during operation. The work objective was to develop an effective, affordable, and profit-proved method for determining the presence of through defects of protective polymer films on the surface of parts made of iron and its alloys. As a diagnostic reagent, one proposed water solution of potassium ferricyanide (III) in hydrochloric acid, this changes the color from yellow to blue according to the reactions; Feº → Fe²⁺ and 4Fe²⁺ + 3[Fe³⁺(CN)₆]³⁻ → Fe ³⁺4[Fe²⁺(CN)₆]₃. There was developed the principle scheme of technological process for determining the presence of polymer films through defects on the surface of parts made of iron and its alloys. There were studied solutions with different diagnostic reagent compositions in water: from 0,1 to 25 mass fractions, %, of potassium ferricyanide (III), and from 5 to 25 mass fractions, %, of hydrochloride acid. The optimal component ratio was chosen. The developed method consists in submerging a part covered with a film into a vessel with a diagnostic reagent. In the polymer film through defect zone, the part material (ferrum) interacts with potassium ferricyanide (III), the color changes to blue. Pilot samples were tested by the developed method for the presence of through defects in the moisture-proof coating. It was revealed that all the studied parts had through defects of the polymer film coating. Thus, the claimed method efficiently reveals polymer film coating through defects on parts made of iron or its alloys, being affordable and profit-proved.

Keywords: diagnostic reagent, metal parts, polimer films, through defects

Procedia PDF Downloads 127
820 A Comparative Analysis of Traditional and Advanced Methods in Evaluating Anti-corrosion Performance of Sacrificial and Barrier Coatings

Authors: Kazem Sabet-Bokati, Ilia Rodionov, Marciel Gaier, Kevin Plucknett

Abstract:

Protective coatings play a pivotal role in mitigating corrosion and preserving the integrity of metallic structures exposed to harsh environmental conditions. The diversity of corrosive environments necessitates the development of protective coatings suitable for various conditions. Accurately selecting and interpreting analysis methods is crucial in identifying the most suitable protective coatings for the various corrosive environments. This study conducted a comprehensive comparative analysis of traditional and advanced methods to assess the anti-corrosion performance of sacrificial and barrier coatings. The protective performance of pure epoxy, zinc-rich epoxy, and cold galvanizing coatings was evaluated using salt spray tests, together with electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods. The performance of each coating was thoroughly differentiated under both atmospheric and immersion conditions. The distinct protective performance of each coating against atmospheric corrosion was assessed using traditional standard methods. Additionally, the electrochemical responses of these coatings in immersion conditions were systematically studied, and a detailed discussion on interpreting the electrochemical responses is provided. Zinc-rich epoxy and cold galvanizing coatings offer superior anti-corrosion performance against atmospheric corrosion, while the pure epoxy coating excels in immersion conditions.

Keywords: corrosion, barrier coatings, sacrificial coatings, salt-spray, EIS, polarization

Procedia PDF Downloads 34
819 Angiomotin Regulates Integrin Beta 1-Mediated Endothelial Cell Migration and Angiogenesis

Authors: Yuanyuan Zhang, Yujuan Zheng, Giuseppina Barutello, Sumako Kameishi, Kungchun Chiu, Katharina Hennig, Martial Balland, Federica Cavallo, Lars Holmgren

Abstract:

Angiogenesis describes that new blood vessels migrate from pre-existing ones to form 3D lumenized structure and remodeling. During directional migration toward the gradient of pro-angiogenic factors, the endothelial cells, especially the tip cells need filopodia to sense the environment and exert the pulling force. Of particular interest are the integrin proteins, which play an essential role in focal adhesion in the connection between migrating cells and extracellular matrix (ECM). Understanding how these biomechanical complexes orchestrate intrinsic and extrinsic forces is important for our understanding of the underlying mechanisms driving angiogenesis. We have previously identified Angiomotin (Amot), a member of Amot scaffold protein family, as a promoter for endothelial cell migration in vitro and zebrafish models. Hence, we established inducible endothelial-specific Amot knock-out mice to study normal retinal angiogenesis as well as tumor angiogenesis. We found that the migration ratio of the blood vessel network to the edge was significantly decreased in Amotec- retinas at postnatal day 6 (P6). While almost all the Amot defect tip cells lost migration advantages at P7. In consistence with the dramatic morphology defect of tip cells, there was a non-autonomous defect in astrocytes, as well as the disorganized fibronectin expression pattern correspondingly in migration front. Furthermore, the growth of transplanted LLC tumor was inhibited in Amot knockout mice due to fewer vasculature involved. By using MMTV-PyMT transgenic mouse model, there was a significantly longer period before tumors arised when Amot was specifically knocked out in blood vessels. In vitro evidence showed that Amot binded to beta-actin, Integrin beta 1 (ITGB1), Fibronectin, FAK, Vinculin, major focal adhesion molecules, and ITGB1 and stress fibers were distinctly induced by Amot transfection. Via traction force microscopy, the total energy (force indicater) was found significantly decreased in Amot knockdown cells. Taken together, we propose that Amot is a novel partner of the ITGB1/Fibronectin protein complex at focal adhesion and required for exerting force transition between endothelial cell and extracellular matrix.

Keywords: angiogenesis, angiomotin, endothelial cell migration, focal adhesion, integrin beta 1

Procedia PDF Downloads 209
818 Magnetic SF (Silk Fibroin) E-Gel Scaffolds Containing bFGF-Conjugated Fe3O4 Nanoparticles

Authors: Z. Karahaliloğlu, E. Yalçın, M. Demirbilek, E.B. Denkbaş

Abstract:

Critical-sized bone defects caused by trauma, bone diseases, prosthetic implant revision or tumor excision cannot be repaired by physiological regenerative processes. Current orthopedic applications for critical-sized bone defects are to use autologous bone grafts, bone allografts, or synthetic graft materials. However, these strategies are unable to solve completely the problem, and motivate the development of novel effective biological scaffolds for tissue engineering applications and regenerative medicine applications. In particular, scaffolds combined with a variety of bio-agents as fundamental tools emerge to provide the regeneration of damaged bone tissues due to their ability to promote cell growth and function. In this study, a magnetic silk fibroin (SF) hydrogel scaffold was prepared by electrogelation process of the concentrated Bombxy mori silk fibroin (8 %wt) aqueous solution. For enhancement of osteoblast-like cells (SaOS-2) growth and adhesion, basal fibroblast growth factor (bFGF) were conjugated physically to the HSA-coated magnetic nanoparticles (Fe3O4) and magnetic SF e-gel scaffolds were prepared by incorporation of Fe3O4, HSA (human serum albumin)=Fe3O4 and HSA=Fe3O4-bFGF nanoparticles. HSA=Fe3O4, HSA=Fe3O4-bFGF loaded and bare SF e-gels scaffolds were characterized using scanning electron microscopy (SEM.) For cell studies, human osteoblast-like cell line (SaOS-2) was used and an MTT assay was used to assess the cytotoxicity of magnetic silk fibroin e-gel scaffolds and cell density on these surfaces. For the evaluation osteogenic activation, ALP (alkaline phosphatase), the amount of mineralized calcium, total protein and collagen were studied. Fe3O4 nanoparticles were successfully synthesized and bFGF was conjugated to HSA=Fe3O4 nanoparticles with %97.5 of binding yield which has a particle size of 71.52±2.3 nm. Electron microscopy images of the prepared HSA and bFGF incorporated SF e-gel scaffolds showed a 3D porous morphology. In terms of water uptake results, bFGF conjugated HSA=Fe3O4 nanoparticles has the best water absorbability behavior among all groups. In the in-vitro cell culture studies realized using SaOS-2 cell line, the coating of Fe3O4 nanoparticles surface with a protein enhance the cell viability and HSA coating and bFGF conjugation, the both have an inductive effect in the cell proliferation. One of the markers of bone formation and osteoblast differentiation, according to the ALP activity and total protein results, HSA=Fe3O4-bFGF loaded SF e-gels had significantly enhanced ALP activity. Osteoblast cultured HSA=Fe3O4-bFGF loaded SF e-gels deposited more calcium compared with SF e-gel. The proposed magnetic scaffolds seem to be promising for bone tissue regeneration and used in future work for various applications.

Keywords: basic fibroblast growth factor (bFGF), e-gel, iron oxide nanoparticles, silk fibroin

Procedia PDF Downloads 264
817 Acid Mine Drainage Remediation Using Silane and Phosphate Coatings

Authors: M. Chiliza, H. P. Mbukwane, P Masita, H. Rutto

Abstract:

Acid mine drainage (AMD) one of the main pollutants of water in many countries that have mining activities. AMD results from the oxidation of pyrite and other metal sulfides. When these metals gets exposed to moisture and oxygen, leaching takes place releasing sulphate and Iron. Acid drainage is often noted by 'yellow boy,' an orange-yellow substance that occurs when the pH of acidic mine-influenced water raises above pH 3, so that the previously dissolved iron precipitates out. The possibility of using environmentally friendly silane and phosphate based coatings on pyrite to remediate acid mine drainage and prevention at source was investigated. The results showed that both coatings reduced chemical oxidation of pyrite based on Fe and sulphate release. Furthermore, it was found that silane based coating performs better when coating synthesis take place in a basic hydrolysis than in an acidic state.

Keywords: acid mine drainage, pyrite, silane, phosphate

Procedia PDF Downloads 322
816 Effect of Post Hardening on PVD Coated Tools

Authors: Manjinder Bajwa, Mahipal Singh, Ashish Tulli

Abstract:

In the research, the effect of varying cutting parameters, design parameters and heat treatment processes were studied on the cutting performance (Tool life) of a PVD coated tool. Thus, in a quest for these phenomenon comparison, a single coated tool and a multicoated tool were analyzed after suitable heat treatment process. TNMG shaped insert with single coating of TiCN and multi-coating of TiAlN/TiN were developed on tungsten carbide substrate. These coated inserts were then successfully annealed and normalized for a temperature of 350°C for 30 minutes and their cutting performance was evaluated as per the flank wear obtained after turning of mild steel. The results showed that heat treatment had a suitable impact on the tool life of the coated insert and also led to increase in the micro-hardness of the tool coatings and decrease in the wear rate.

Keywords: PVD coatings, flank wear, micro-hardness, annealing, normalizing

Procedia PDF Downloads 324
815 Effect of Sodium Alginate Edible Coating with Natural Essential Oils and Modified Atmosphere Packaging on Quality of Fresh-Cut Pineapple

Authors: Muhammad Rafiullah Khan, Vanee Chonhenchob

Abstract:

The effect of sodium alginate (1%) based edible coating incorporated natural essential oils; thymol, carvone and carvacrol as antimicrobial agents at different concentrations (0.1, 0.5 and 1.0 %) on the quality changes of fresh-cut pineapple were investigated. Pineapple dipped in distilled water was served as control. After coating, fruit were sealed in a modified atmosphere package (MAP) using high permeable film; and stored at 5 °C. Gas composition in package headspace, color values (L*, a*, b*, C*), TSS, pH, ethanol, browning, and microbial decay were monitored during storage. Oxygen concentration continuously decreased while carbon dioxide concentration inside all packages continuously increased over time. Color parameters (L*, b*, c*) decreased and a* values increased during storage. All essential oils significantly (p ≤ 0.05) prevented microbial growth than control. A significantly higher (p ≤ 0.05) ethanol content was found in the control than in all other treatments. Visible microbial growth, high ethanol, and low color values limited the shelf life to 6 days in control as compared to 9 days in all other treatments. Among all essential oils, thymol at all concentrations maintained the overall quality of the pineapple and could potentially be used commercially in fresh fruit industries for longer storage.

Keywords: essential oils, antibrowning agents, antimicrobial agents, modified atmosphere packaging, pineapple, microbial decay

Procedia PDF Downloads 33
814 Effect of Sodium Alginate Edible Coating with Natural Essential Oils and Modified Atmosphere Packaging on Quality of Fresh-Cut Pineapple

Authors: Muhammad Rafiullah Khan, Vanee Chonhenchob

Abstract:

The effect of sodium alginate (1%) based edible coating incorporated natural essential oils, thymol, carvone, and carvacrol as antimicrobial agents at different concentrations (0.1, 0.5, and 1.0%) on the quality changes of fresh-cut pineapple was investigated. Pineapple dipped in distilled water was served as control. After coating, the fruit was sealed in a modified atmosphere package (MAP) using high permeable film and stored at 5°C. Gas composition in package headspace, color values (L*, a*, b*, C*), TSS, pH, ethanol, browning, and microbial decay were monitored during storage. Oxygen concentration continuously decreased while carbon dioxide concentration inside all packages continuously increased over time. Color parameters (L*, b*, c*) decreased, and a* values increased during storage. All essential oils significantly (p ≤ 0.05) prevented microbial growth than control. A significantly higher (p ≤ 0.05) ethanol content was found in the control than in all other treatments. Visible microbial growth, high ethanol, and low color values limited the shelf life to 6 days in control as compared to 9 days in all other treatments. Among all essential oils, thymol at all concentrations maintained the overall quality of the pineapple and could potentially be used commercially in fresh fruit industries for longer storage.

Keywords: essential oils, antibrowning agents, antimicrobial agents, modified atmosphere packaging, microbial decay, pineapple

Procedia PDF Downloads 32
813 Relative Expression and Detection of MUB Adhesion Domains and Plantaricin-Like Bacteriocin among Probiotic Lactobacillus plantarum-Group Strains Isolated from Fermented Foods

Authors: Sundru Manjulata Devi, Prakash M. Halami

Abstract:

The immemorial use of fermented foods from vegetables, dairy and other biological sources are of great demand in India because of their health benefits. However, the diversity of Lactobacillus plantarum group (LPG) of vegetable origin has not been revealed yet, particularly with reference to their probiotic functionalities. In the present study, the different species of probiotic Lactobacillus plantarum group (LPG) i.e., L. plantarum subsp. plantarum MTCC 5422 (from fermented cereals), L. plantarum subsp. argentoratensis FG16 (from fermented bamboo shoot) and L. paraplantarum MTCC 9483 (from fermented gundruk) (as characterized by multiplex recA PCR assay) were considered to investigate their relative expression of MUB domains of mub gene (mucin binding protein) by Real time PCR. Initially, the allelic variation in the mub gene was assessed and found to encode three different variants (Type I, II and III). All the three types had 8, 9 and 10 MUB domains respectively (as analysed by Pfam database) and were found to be responsible for adhesion of bacteria to the host intestinal epithelial cells. These domains either get inserted or deleted during speciation or evolutionary events and lead to divergence. The reverse transcriptase qPCR analysis with mubLPF1+R1 primer pair supported variation in amplicon sizes with 300, 500 and 700 bp among different LPG strains. The relative expression of these MUB domains significantly unregulated in the presence of 1% mucin in overnight grown cultures. Simultaneously, the mub gene expressed efficiently by 7 fold in the culture L. paraplantarum MTCC 9483 with 10 MUB domains. An increase in the expression levels for L. plantarum subsp. plantarum MTCC 5422 and L. plantarum subsp. argentoratensis FG16 (MCC 2974) with 9 and 8 repetitive domains was around 4 and 2 fold, respectively. The detection and expression of an integrase (int) gene in the upstream region of mub gene reveals the excision and integration of these repetitive domains. Concurrently, an in vitro adhesion assay to mucin and exclusion of pathogens (such as Listeria monocytogenes and Micrococcus leuteus) was investigated and observed that the L. paraplantarum MTCC 9483 with more adhesion domains has more ability to adhere to mucin and inhibited the growth of pathogens. The production and expression of plantaricin-like bacteriocin (plnNC8 type) in MTCC 9483 suggests the pathogen inhibition. Hence, the expression of MUB domains can act as potential biomarkers in the screening of a novel probiotic LPG strain with adherence property. The present study provides a platform for an easy, rapid, less time consuming, low-cost methodology for the detection of potential probiotic bacteria. It was known that the traditional practices followed in the preparation of fermented bamboo shoots/gundruk/cereals of Indian foods contain different kinds of neutraceuticals for functional food and novel compounds with health promoting factors. In future, a detailed study of these food products can add more nutritive value, consumption and suitable for commercialization.

Keywords: adhesion gene, fermented foods, MUB domains, probiotics

Procedia PDF Downloads 243
812 Effects of Stokes Shift and Purcell Enhancement in Fluorescence Assisted Radiative Cooling

Authors: Xue Ma, Yang Fu, Dangyuan Lei

Abstract:

Passive daytime radiative cooling is an emerging technology which has attracted worldwide attention in recent years due to its huge potential in cooling buildings without the use of electricity. Various coating materials with different optical properties have been developed to improve the daytime radiative cooling performance. However, commercial cooling coatings comprising functional fillers with optical bandgaps within the solar spectral range suffers from severe intrinsic absorption, limiting their cooling performance. Fortunately, it has recently been demonstrated that introducing fluorescent materials into polymeric coatings can covert the absorbed sunlight to fluorescent emissions and hence increase the effective solar reflectance and cooling performance. In this paper, we experimentally investigate the key factors for fluorescence-assisted radiative cooling with TiO2-based white coatings. The surrounding TiO2 nanoparticles, which enable spatial and temporal light confinement through multiple Mie scattering, lead to Purcell enhancement of phosphors in the coating. Photoluminescence lifetimes of two phosphors (BaMgAl10O17:Eu2+ and (Sr, Ba)SiO4:Eu2+) exhibit significant reduction of ~61% and ~23%, indicating Purcell factors of 2.6 and 1.3, respectively. Moreover, smaller Stokes shifts of the phosphors are preferred to further diminish solar absorption. Field test of fluorescent cooling coatings demonstrate an improvement of ~4% solar reflectance for the BaMgAl10O17:Eu2+-based fluorescent cooling coating. However, to maximize solar reflectance, a white appearance is introduced based on multiple Mie scattering by the broad size distribution of fillers, which is visually pressurized and aesthetically bored. Besides, most colored pigments absorb visible light significantly and convert it to non-radiative thermal energy, offsetting the cooling effect. Therefore, current colored cooling coatings are facing the compromise between color saturation and cooling effect. To solve this problem, we introduced colored fluorescent materials into white coating based on SiO2 microspheres as a top layer, covering a white cooling coating based on TiO2. Compared with the colored pigments, fluorescent materials could re-emit the absorbed light, reducing the solar absorption introduced by coloration. Our work investigated the scattering properties of SiO2 dielectric spheres with different diameters and detailly discussed their impact on the PL properties of phosphors, paving the way for colored fluorescent-assisted cooling coting to application and industrialization.

Keywords: solar reflection, infrared emissivity, mie scattering, photoluminescent emission, radiative cooling

Procedia PDF Downloads 60
811 Deposition and Properties of PEO Coatings on Zinc-Aluminum Alloys

Authors: Linlin Wang, Guangdong Bian, Jifeng Shen, Jingzhu Zeng

Abstract:

Zinc-aluminum alloys have been applied as alternatives to bronze, aluminum alloys, and cast iron due to their distinguishing features such as high as-cast strength, excellent bearing properties, as well as low energy requirements for melting. In this study, oxide coatings were produced on ZA27 zinc-aluminum alloy by a plasma electrolytic oxidation (PEO) method. Three coatings were deposited by using three various electrolytes, i.e. silicate, aluminate and aluminate/borate composite solutions. The current density is set at 0.1A/cm2, deposition time is 40 mins for all the deposition processes. The surface morphology and phase structure of the three coatings were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Pin-on-disc sliding wear tests were conducted to test the tribological properties of coatings. The results indicated that the coating produced using the aluminate/borate composite electrolyte had the highest deposition rate and best wear resistance among the three coatings.

Keywords: oxide coating, PEO, tribological properties, ZA27

Procedia PDF Downloads 465
810 Influence of Microparticles in the Contact Region of Quartz Sand Grains: A Micro-Mechanical Experimental Study

Authors: Sathwik Sarvadevabhatla Kasyap, Kostas Senetakis

Abstract:

The mechanical behavior of geological materials is very complex, and this complexity is related to the discrete nature of soils and rocks. Characteristics of a material at the grain scale such as particle size and shape, surface roughness and morphology, and particle contact interface are critical to evaluate and better understand the behavior of discrete materials. This study investigates experimentally the micro-mechanical behavior of quartz sand grains with emphasis on the influence of the presence of microparticles in their contact region. The outputs of the study provide some fundamental insights on the contact mechanics behavior of artificially coated grains and can provide useful input parameters in the discrete element modeling (DEM) of soils. In nature, the contact interfaces between real soil grains are commonly observed with microparticles. This is usually the case of sand-silt and sand-clay mixtures, where the finer particles may create a coating on the surface of the coarser grains, altering in this way the micro-, and thus the macro-scale response of geological materials. In this study, the micro-mechanical behavior of Leighton Buzzard Sand (LBS) quartz grains, with interference of different microparticles at their contact interfaces is studied in the laboratory using an advanced custom-built inter-particle loading apparatus. Special techniques were adopted to develop the coating on the surfaces of the quartz sand grains so that to establish repeatability of the coating technique. The characterization of the microstructure of coated particles on their surfaces was based on element composition analyses, microscopic images, surface roughness measurements, and single particle crushing strength tests. The mechanical responses such as normal and tangential load – displacement behavior, tangential stiffness behavior, and normal contact behavior under cyclic loading were studied. The behavior of coated LBS particles is compared among different classes of them and with pure LBS (i.e. surface cleaned to remove any microparticles). The damage on the surface of the particles was analyzed using microscopic images. Extended displacements in both normal and tangential directions were observed for coated LBS particles due to the plastic nature of the coating material and this varied with the variation of the amount of coating. The tangential displacement required to reach steady state was delayed due to the presence of microparticles in the contact region of grains under shearing. Increased tangential loads and coefficient of friction were observed for the coated grains in comparison to the uncoated quartz grains.

Keywords: contact interface, microparticles, micro-mechanical behavior, quartz sand

Procedia PDF Downloads 173
809 Fabrication of Profile-Coated Rhodium X-Ray Focusing Mirror

Authors: Bing Shi, Raymond A. Conley, Jun Qian, Xianbo Shi, Steve Heald, Lahsen Assoufid

Abstract:

A pair of Kirkpatrick-Baez (KB) mirrors were designed and fabricated for experiments within a hard x-ray energy range lower than 20 kev at beamline 20-ID in a synchrotron radiation facility, Advanced Photon Source (APS). The KB mirrors were deposited with Rhodium thin films using a customized designed and self-built magnetron sputtering system. The purpose of these mirrors is to focus the x-ray beam down to 1 micron. This is the first pair of Rhodium-coated KB mirrors with elliptical shape that was fabricated using the profile coating technique. The profile coating technique is to coat the substrate with designed shape using masks during the deposition. The mirrors were equipped at the beamline and achieved the designed focusing requirement. The details of the mirror design, the fabrication process, and the customized magnetron sputtering deposition system will be discussed.

Keywords: magnetron-sputtering deposition, focusing optics, x-ray, rhodium thin film

Procedia PDF Downloads 345
808 Development and Optimization of Colon Targeted Drug Delivery System of Ayurvedic Churna Formulation Using Eudragit L100 and Ethyl Cellulose as Coating Material

Authors: Anil Bhandari, Imran Khan Pathan, Peeyush K. Sharma, Rakesh K. Patel, Suresh Purohit

Abstract:

The purpose of this study was to prepare time and pH dependent release tablets of Ayurvedic Churna formulation and evaluate their advantages as colon targeted drug delivery system. The Vidangadi Churna was selected for this study which contains Embelin and Gallic acid. Embelin is used in Helminthiasis as therapeutic agent. Embelin is insoluble in water and unstable in gastric environment so it was formulated in time and pH dependent tablets coated with combination of two polymers Eudragit L100 and ethyl cellulose. The 150mg of core tablet of dried extract and lactose were prepared by wet granulation method. The compression coating was used in the polymer concentration of 150mg for both the layer as upper and lower coating tablet was investigated. The results showed that no release was found in 0.1 N HCl and pH 6.8 phosphate buffers for initial 5 hours and about 98.97% of the drug was released in pH 7.4 phosphate buffer in total 17 hours. The in vitro release profiles of drug from the formulation could be best expressed first order kinetics as highest linearity (r2= 0.9943). The results of the present study have demonstrated that the time and pH dependent tablets system is a promising vehicle for preventing rapid hydrolysis in gastric environment and improving oral bioavailability of Embelin and Gallic acid for treatment of Helminthiasis.

Keywords: embelin, gallic acid, Vidangadi Churna, colon targeted drug delivery

Procedia PDF Downloads 335
807 Thermodynamics of Water Condensation on an Aqueous Organic-Coated Aerosol Aging via Chemical Mechanism

Authors: Yuri S. Djikaev

Abstract:

A large subset of aqueous aerosols can be initially (immediately upon formation) coated with various organic amphiphilic compounds whereof the hydrophilic moieties are attached to the aqueous aerosol core while the hydrophobic moieties are exposed to the air thus forming a hydrophobic coating thereupon. We study the thermodynamics of water condensation on such an aerosol whereof the hydrophobic organic coating is being concomitantly processed by chemical reactions with atmospheric reactive species. Such processing (chemical aging) enables the initially inert aerosol to serve as a nucleating center for water condensation. The most probable pathway of such aging involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic moieties of surface organics (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). Taking these two reactions into account, we derive an expression for the free energy of formation of an aqueous droplet on an organic-coated aerosol. The model is illustrated by numerical calculations. The results suggest that the formation of aqueous cloud droplets on such aerosols is most likely to occur via Kohler activation rather than via nucleation. The model allows one to determine the threshold parameters necessary for their Kohler activation. Numerical results also corroborate previous suggestions that one can neglect some details of aerosol chemical composition in investigating aerosol effects on climate.

Keywords: aqueous aerosols, organic coating, chemical aging, cloud condensation nuclei, Kohler activation, cloud droplets

Procedia PDF Downloads 367
806 Enhancing of Flame Retardancy and Hydrophobicity of Cotton by Coating a Phosphorous, Silica, Nitrogen Containing Bio-Flame Retardant Liquid for Upholstery Application

Authors: Li Maksym, Prabhakar M. N., Jung-Il Song

Abstract:

In this study, a flame retardant and hydrophobic cotton textile were prepared by utilizing a renewable halogen-free bio-based solution based on chitosan, urea, and phytic acid, named bio-flame retardant liquid (BFL), through facile dip-coating technology. Deposition of BFL on the surface of the cotton was confirmed by Fourier-transform infrared spectroscopy and scanning electron microscope coupled with energy-dispersive X-ray spectrometer. Thermal and flame retardant properties of the cottons were studied with thermogravimetric analysis, differential scanning calorimetry, vertical flame test, cone calorimeter test. Only with 8.8% of dry weight gain treaded cotton showed self-extinguish properties during fire test. Cone calorimeter test revealed a reduction of peak heat release rate from 203.2 to 21 kW/m2 and total heat release from 20.1 to 2.8 MJ/m2. Incidentally, BFL remarkably improved the thermal stability of flame retardant cotton from expressed in an enhanced amount of char at 700 °C (6.7 vs. 33.5%). BFL initiates the formation of phosphorous and silica contain char layer whichrestrains the propagation of heat and oxygen to unburned materialstrengthen by the liberation of non-combustible gases, which reduce the concentration of flammable volatiles and oxygen hence reducing the flammability of cotton. In addition, hydrophobicity and specific ignition test for upholstery application were performed. In conjunction, the proposed flame retardant cotton is potentially translatable to be utilized as upholstery materials in public transport.

Keywords: cotton farbic, flame retardancy, surface coating, intumescent mechanism

Procedia PDF Downloads 66
805 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate

Authors: Shingo Murakami, Shinichi Enoki

Abstract:

In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield stress of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigate that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.

Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis

Procedia PDF Downloads 243
804 Antireflection Performance of Graphene Directly Deposited on Silicon Substrate by the Atmospheric Pressure Chemical Vapor Deposition Method

Authors: Samira Naghdi, Kyong Yop Rhee

Abstract:

Transfer-free synthesis of graphene on dielectric substrates is highly desirable but remains challenging. Here, by using a thin sacrificial platinum layer as a catalyst, graphene was deposited on a silicon substrate through a simple and transfer-free synthesis method. During graphene growth, the platinum layer evaporated, resulting in direct deposition of graphene on the silicon substrate. In this work, different growth conditions of graphene were optimized. Raman spectra of the produced graphene indicated that the obtained graphene was bilayer. The sheet resistance obtained from four-point probe measurements demonstrated that the deposited graphene had high conductivity. Reflectance spectroscopy of graphene-coated silicon showed a decrease in reflectance across the wavelength range of 200-800 nm, indicating that the graphene coating on the silicon surface had antireflection capabilities.

Keywords: antireflection coating, chemical vapor deposition, graphene, the sheet resistance

Procedia PDF Downloads 161
803 The Temperature Effects on the Microstructure and Profile in Laser Cladding

Authors: P. C. Chiu, Jehnming Lin

Abstract:

In this study, a 50-W CO2 laser was used for the clad of 304L powders on the stainless steel substrate with a temperature sensor and image monitoring system. The laser power and cladding speed and focal position were modified to achieve the requirement of the workpiece flatness and mechanical properties. The numerical calculation is based on ANSYS to analyze the temperature change of the moving heat source at different surface positions when coating the workpiece, and the effect of the process parameters on the bath size was discussed. The temperature of stainless steel powder in the nozzle outlet reacting with the laser was simulated as a process parameter. In the experiment, the difference of the thermal conductivity in three-dimensional space is compared with single-layer cladding and multi-layer cladding. The heat dissipation pattern of the single-layer cladding is the steel plate and the multi-layer coating is the workpiece itself. The relationship between the multi-clad temperature and the profile was analyzed by the temperature signal from an IR pyrometer.

Keywords: laser cladding, temperature, profile, microstructure

Procedia PDF Downloads 203
802 Study of the Behavior of an Organic Coating Applied on Algerian Oil Tanker in Seawater

Authors: N. Hammouda, K. Belmokre

Abstract:

The paints are used extensively today in the industry to protect the metallic structures of the aggressive environments. This work is devoted to the study of corrosion resistance and aging behavior of a paint coating providing external protection for oil tankers. To avoid problems related to corrosion of these vessels, two protection modes are provided: An electro chemical active protection (cathodic protection of the hull). A passive protection by external painting. Investigations are conducted using stationary and non-stationary electro chemical tools such as electro chemical impedance spectroscopy has allowed us to characterize the protective qualities of these films. The application of the EIS on our damaged in-situ painting shows the existence of several capacitive loops which is an indicator of the failure of our tested paint. Microscopic analysis (micrograph) helped bring essential elements in understanding the degradation of our paint condition and immersion training corrosion products.

Keywords: epoxy paints, electrochemical impedance spectroscopy, corrosion mechanisms, seawater

Procedia PDF Downloads 366
801 Effect of Sodium Alginate-based Edible Coating with Natural Essential Oils and Modified Atmosphere Packaging on Quality of Fresh-cut Pineapple

Authors: Muhammad Rafi Ullah Khan, Yaodong Guo, Vanee Chonhenchob, Jinjin Pei, Chongxing Huang

Abstract:

The effect of sodium alginate (1%) based edible coating incorporated natural essential oils; thymol, carvone and carvacrol as antimicrobial agents at different concentrations (0.1, 0.5 and 1.0 %) on the quality changes of fresh-cut pineapple were investigated. Pineapple dipped in distilled water was served as control. After coating, fruit were sealed in a modified atmosphere package (MAP) using high permeable film; and stored at 5 °C. Gas composition in package headspace, color values (L*, a*, b*, C*), TSS, pH, ethanol, browning, and microbial decay were monitored during storage. Oxygen concentration continuously decreased while carbon dioxide concentration inside all packages continuously increased over time. Color parameters (L*, b*, c*) decreased and a* values increased during storage. All essential oils significantly (p ≤ 0.05) prevented microbial growth than control. A significantly higher (p ≤ 0.05) ethanol content was found in the control than in all other treatments. Visible microbial growth, high ethanol, and low color values limited the shelf life to 6 days in control as compared to 9 days in all other treatments. Among all essential oils, thymol at all concentrations maintained the overall quality of the pineapple and could potentially be used commercially in fresh fruit industries for longer storage.

Keywords: essential oils, antibrowning agents, antimicrobial agents, modified atmosphere packaging, microbial decay, pineapple

Procedia PDF Downloads 25
800 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate with a Circular Hole

Authors: Shingo Murakami, Shinichi Enoki

Abstract:

In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield load of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigated that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.

Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis

Procedia PDF Downloads 278
799 ICAM1 Expression is Enhanced by TNFa through Histone Methylation in Human Brain Microvessel Cells

Authors: Ji-Young Choi, Jungjin Kim, Sang-Sun Yun, Sangmee Ahn Jo

Abstract:

Intracellular adhesion molecule1 (ICAM1) is a mediator of inflammation and involved in adhesion and transmigration of leukocytes to endothelial cells, resulting in enhancement of brain inflammation. We hypothesized that increase of ICAM1 expression in endothelial cells is an early step in the pathogenesis of brain diseases such as Alzheimer’s disease. Here, we report that ICAM1 expression is regulated by pro-inflammatory cytokine TNFa in human microvascular endothelial cell (HBMVEC). TNFa significantly increased ICAM1 mRNA and protein levels at the concentrations showing no cell toxicity. This increase was also shown in micro vessels of mouse brain 24 hours after treatment with TNFa (8 mg/kg, i.v). We then investigated the epigenetic mechanism involved in the induction of ICAM1 expression. Chromatin immunoprecipitation assay revealed that TNFa reduced methylation of histone3K9 (H3K9-2me) and histone3K27 (H3K27-3me), well-known modification as gene suppression, with in the ICAM1 promoter region. However, acetylation of H3K9 and H3K14, well-known modification as gene activation, was not changed by TNFa. Treatment of BIX01294, a specific inhibitor of histone methyltransferase G9a responsible for H3K9-2me, dramatically increased in ICAM1 mRNA and protein levels and overexpression of G9a gene suppressed TNFa-induced ICAM1 expression. In contrast, GSK126, an inhibitor of histone methyltransferase EZH2 responsible for H3K27-3me and valproic acid, an inhibitor of histone deacetylase (HDAC) did not affect ICAM1 expression. These results suggested that histone3 methylation is involved in ICAM1 repression. Moreover, TNFa or BIX01294-induced ICAM induction resulted in both enhancements in adhesion and transmigration of leukocyte on endothelial cell. This study demonstrates that TNFa upregulates ICAM1 expression through H3K9-2me and H3K27-3me within the ICAM1 promoter region, in which G9a is likely to play a pivotal role in ICAM1 transcription. Our study provides a novel mechanism for ICAM1 transcription regulation in HBMVEC.

Keywords: ICAM1, TNFa, HBMVEC, H3K9-2me

Procedia PDF Downloads 309
798 Anti-Reflective Nanostructured TiO2/SiO2 Multilayer Coatings

Authors: Najme lari, Shahrokh Ahangarani, Ali Shanaghi

Abstract:

Multilayer structure of thin films by the sol–gel process attracts great attention for antireflection applications. In this paper, antireflective nanometric multilayer SiO2-TiO2 films are formed on both sides of the glass substrates by combining the sol–gel method and the dip-coating technique. SiO2 and TiO2 sols were prepared using tetraethylorthosilicate (TEOS) and tetrabutylorthotitanate (TBOT) as precursors and also nitric acid as catalyst. Prepared coatings were investigated by Field-emission scanning electron microscope (FE-SEM), Fourier-transformed infrared spectrophotometer (FT-IR) and UV–visible spectrophotometer. After evaluation, all of SiO2 top layer coatings showed excellent antireflection in the wavelength range of 400-800 nm where the transmittance of glass substrate is significantly lower. By increasing the number of double TiO2-SiO2 layers, the transmission of the coated glass increases due to applied multilayer coating properties. 6-layer sol–gel TiO2-SiO2 shows the highest visible transmittance about 99.25% at the band of 550-650 nm.

Keywords: thin films, optical properties, sol-gel, multilayer

Procedia PDF Downloads 395
797 Sol-Gel SiO2-TiO2 Multilayer Coatings for Anti-Reflective Applications

Authors: Najme Lari, Shahrokh Ahangarani, Ali Shanaghi

Abstract:

Multilayer structure of thin films by the sol–gel process attracts great attention for antireflection applications. In this paper, antireflective nanometric multilayer SiO2-TiO2 films are formed on both sides of the glass substrates by combining the sol–gel method and the dip-coating technique. SiO2 and TiO2 sols were prepared using tetraethylorthosilicate (TEOS) and tetrabutylorthotitanate (TBOT) as precursors and nitric acid as catalyst. Prepared coatings were investigated by Field-emission scanning electron microscope (FE-SEM), Fourier-transformed infrared spectrophotometer (FT-IR) and UV–visible spectrophotometer. After evaluation, all of SiO2 top layer coatings showed excellent antireflection in the wavelength range of 400-800 nm where the transmittance of glass substrate is significantly lower. By increasing the number of double TiO2-SiO2 layers, the transmission of the coated glass increases due to applied multilayer coating properties. 6-layer sol–gel TiO2-SiO2 shows the highest visible transmittance about 99.25% at the band of 550-650 nm.

Keywords: thin films, optical properties, sol-gel, multilayer

Procedia PDF Downloads 382
796 The Effect of Stent Coating on the Stent Flexibility: Comparison of Covered Stent and Bare Metal Stent

Authors: Keping Zuo, Foad Kabinejadian, Gideon Praveen Kumar Vijayakumar, Fangsen Cui, Pei Ho, Hwa Liang Leo

Abstract:

Carotid artery stenting (CAS) is the standard procedure for patients with severe carotid stenosis at high risk for carotid endarterectomy (CAE). A major drawback of CAS is the higher incidence of procedure-related stroke compared with traditional open surgical treatment for carotid stenosis - CEA, even with the use of the embolic protection devices (EPD). As the currently available bare metal stents cannot address this problem, our research group developed a novel preferential covered-stent for carotid artery aims to prevent friable fragments of atherosclerotic plaques from flowing into the cerebral circulation, and yet maintaining the flow of the external carotid artery. The preliminary animal studies have demonstrated the potential of this novel covered-stent design for the treatment of carotid atherosclerotic stenosis. The purpose of this study is to evaluate the effect of membrane coating on the stent flexibility in order to improve the clinical performance of our novel covered stents. A total of 21 stents were evaluated in this study: 15 self expanding bare nitinol stents and 6 PTFE-covered stents. 10 of the bare stents were coated with 11%, 16% and 22% Polyurethane(PU), 4%, 6.25% and 11% EE, as well as 22% PU plus 5 μm Parylene. Different laser cutting designs were performed on 4 of the PTFE covert stents. All the stents, with or without the covered membrane, were subjected to a three-point flexural test. The stents were placed on two supports that are 30 mm apart, and the actuator is applying a force in the exact middle of the two supports with a loading pin with radius 2.5 mm. The loading pin displacement change, the force and the variation in stent shape were recorded for analysis. The flexibility of the stents was evaluated by the lumen area preservation at three displacement bending levels: 5mm, 7mm, and 10mm. All the lumen areas in all stents decreased with the increase of the displacement from 0 to 10 mm. The bare stents were able to maintain 0.864 ± 0.015, 0.740 ± 0.025 and 0.597 ± 0.031of original lumen area at 5 mm, 7 mm and 10mm displacement respectively. For covered stents, the stents with EE coating membrane showed the best lumen area preservation (0.839 ± 0.005, 0.7334 ± 0.043 and 0.559 ± 0.014), whereas, the stents with PU and Parylene coating were only 0.662, 0.439 and 0.305. Bending stiffness was also calculated and compared. These results provided optimal material information and it was crucial for enhancing clinical performance of our novel covered stents.

Keywords: carotid artery, covered stent, nonlinear, hyperelastic, stress, strain

Procedia PDF Downloads 278
795 Investigation of Alumina Membrane Coated Titanium Implants on Osseointegration

Authors: Pinar Erturk, Sevde Altuntas, Fatih Buyukserin

Abstract:

In order to obtain an effective integration between an implant and a bone, implant surfaces should have similar properties to bone tissue surfaces. Especially mimicry of the chemical, mechanical and topographic properties of the implant to the bone is crucial for fast and effective osseointegration. Titanium-based biomaterials are more preferred in clinical use, and there are studies of coating these implants with oxide layers that have chemical/nanotopographic properties stimulating cell interactions for enhanced osseointegration. There are low success rates of current implantations, especially in craniofacial implant applications, which are large and vital zones, and the oxide layer coating increases bone-implant integration providing long-lasting implants without requiring revision surgery. Our aim in this study is to examine bone-cell behavior on titanium implants with an aluminum oxide layer (AAO) on effective osseointegration potential in the deformation of large zones with difficult spontaneous healing. In our study, aluminum layer coated titanium surfaces were anodized in sulfuric, phosphoric, and oxalic acid, which are the most common used AAO anodization electrolytes. After morphologic, chemical, and mechanical tests on AAO coated Ti substrates, viability, adhesion, and mineralization of adult bone cells on these substrates were analyzed. Besides with atomic layer deposition (ALD) as a sensitive and conformal technique, these surfaces were coated with pure alumina (5 nm); thus, cell studies were performed on ALD-coated nanoporous oxide layers with suppressed ionic content too. Lastly, in order to investigate the effect of the topography on the cell behavior, flat non-porous alumina layers on silicon wafers formed by ALD were compared with the porous ones. Cell viability ratio was similar between anodized surfaces, but pure alumina coated titanium and anodized surfaces showed a higher viability ratio compared to bare titanium and bare anodized ones. Alumina coated titanium surfaces, which anodized in phosphoric acid, showed significantly different mineralization ratios after 21 days over other bare titanium and titanium surfaces which anodized in other electrolytes. Bare titanium was the second surface that had the highest mineralization ratio. Otherwise, titanium, which is anodized in oxalic acid electrolyte, demonstrated the lowest mineralization. No significant difference was shown between bare titanium and anodized surfaces except AAO titanium surface anodized in phosphoric acid. Currently, osteogenic activities of these cells on the genetic level are investigated by quantitative real-time polymerase chain reaction (qRT-PCR) analysis results of RUNX-2, VEGF, OPG, and osteopontin genes. Also, as a result of the activities of the genes mentioned before, Western Blot will be used for protein detection. Acknowledgment: The project is supported by The Scientific and Technological Research Council of Turkey.

Keywords: alumina, craniofacial implant, MG-63 cell line, osseointegration, oxalic acid, phosphoric acid, sulphuric acid, titanium

Procedia PDF Downloads 110
794 Flexural Properties of Carbon/Polypropylene Composites: Influence of Matrix Forming Polypropylene in Fiber, Powder, and Film States

Authors: Vijay Goud, Ramasamy Alagirusamy, Apurba Das, Dinesh Kalyanasundaram

Abstract:

Thermoplastic composites render new opportunities as effective processing technology while crafting newer complications into processing. One of the notable challenges is in achieving thorough wettability that is significantly deterred by the high viscosity of the long molecular chains of the thermoplastics. As a result of high viscosity, it is very difficult to impregnate the resin into a tightly interlaced textile structure to fill the voids present in the structure. One potential solution to the above problem, is to pre-deposit resin on the fiber, prior to consolidation. The current study compares DREF spinning, powder coating and film stacking methods of predeposition of resin onto fibers. An investigation into the flexural properties of unidirectional composites (UDC) produced from blending of carbon fiber and polypropylene (PP) matrix in varying forms of fiber, powder and film are reported. Dr. Ernst Fehrer (DREF) yarns or friction spun hybrid yarns were manufactured from PP fibers and carbon tows. The DREF yarns were consolidated to yield unidirectional composites (UDCs) referred to as UDC-D. PP in the form of powder was coated on carbon tows by electrostatic spray coating. The powder-coated towpregs were consolidated to form UDC-P. For the sake of comparison, a third UDC referred as UDC-F was manufactured by the consolidation of PP films stacked between carbon tows. The experiments were designed to yield a matching fiber volume fraction of about 50 % in all the three UDCs. A comparison of mechanical properties of the three composites was studied to understand the efficiency of matrix wetting and impregnation. Approximately 19% and 68% higher flexural strength were obtained for UDC-P than UDC-D and UDC-F respectively. Similarly, 25% and 81% higher modulus were observed in UDC-P than UDC-D and UDC-F respectively. Results from micro-computed tomography, scanning electron microscopy, and short beam tests indicate better impregnation of PP matrix in UDC-P obtained through electrostatic spray coating process and thereby higher flexural strength and modulus.

Keywords: DREF spinning, film stacking, flexural strength, powder coating, thermoplastic composite

Procedia PDF Downloads 206
793 Lightweight Sheet Molding Compound Composites by Coating Glass Fiber with Cellulose Nanocrystals

Authors: Amir Asadi, Karim Habib, Robert J. Moon, Kyriaki Kalaitzidou

Abstract:

There has been considerable interest in cellulose nanomaterials (CN) as polymer and polymer composites reinforcement due to their high specific modulus and strength, low density and toxicity, and accessible hydroxyl side groups that can be readily chemically modified. The focus of this study is making lightweight composites for better fuel efficiency and lower CO2 emission in auto industries with no compromise on mechanical performance using a scalable technique that can be easily integrated in sheet molding compound (SMC) manufacturing lines. Light weighting will be achieved by replacing part of the heavier components, i.e. glass fibers (GF), with a small amount of cellulose nanocrystals (CNC) in short GF/epoxy composites made using SMC. CNC will be introduced as coating of the GF rovings prior to their use in the SMC line. The employed coating method is similar to the fiber sizing technique commonly used and thus it can be easily scaled and integrated to industrial SMC lines. This will be an alternative route to the most techniques that involve dispersing CN in polymer matrix, in which the nanomaterials agglomeration limits the capability for scaling up in an industrial production. We have demonstrated that incorporating CNC as a coating on GF surface by immersing the GF in CNC aqueous suspensions, a simple and scalable technique, increases the interfacial shear strength (IFSS) by ~69% compared to the composites produced by uncoated GF, suggesting an enhancement of stress transfer across the GF/matrix interface. As a result of IFSS enhancement, incorporation of 0.17 wt% CNC in the composite results in increases of ~10% in both elastic modulus and tensile strength, and 40 % and 43 % in flexural modulus and strength respectively. We have also determined that dispersing 1.4 and 2 wt% CNC in the epoxy matrix of short GF/epoxy SMC composites by sonication allows removing 10 wt% GF with no penalty on tensile and flexural properties leading to 7.5% lighter composites. Although sonication is a scalable technique, it is not quite as simple and inexpensive as coating the GF by passing through an aqueous suspension of CNC. In this study, the above findings are integrated to 1) investigate the effect of CNC content on mechanical properties by passing the GF rovings through CNC aqueous suspension with various concentrations (0-5%) and 2) determine the optimum ratio of the added CNC to the removed GF to achieve the maximum possible weight reduction with no cost on mechanical performance of the SMC composites. The results of this study are of industrial relevance, providing a path toward producing high volume lightweight and mechanically enhanced SMC composites using cellulose nanomaterials.

Keywords: cellulose nanocrystals, light weight polymer-matrix composites, mechanical properties, sheet molding compound (SMC)

Procedia PDF Downloads 196
792 Wear Behavior of Intermetallic (Ni3Al) Coating at High Temperature

Authors: K. Mehmood, Muhammad Asif Rafiq, A. Nasir Khan, M. Mudassar Rauf

Abstract:

Air plasma spraying system was utilized to deposit Ni3Al coatings on AISI 321 steel samples. After thermal spraying, the nickel aluminide intermetallic coatings were isothermal heat treated at various temperatures. In this regard, temperatures from 500 °C to 800 °C with 100 °C increments were selected. The coatings were soaked for 10, 30, 60 and 100 hours at the mentioned temperatures. These coatings were then tested by a pin on disk method. It was observed that the coatings exposed at comparatively higher temperature experienced lower wear rate. The decrease in wear rate is due to the formation of NiO phase. Further, the as sprayed and heat treated coatings were characterized by other tools such as Microhardness testing, optical and scanning electron microscopy (SEM) and X-Ray diffraction analysis. After isothermal heat treatment, NiO was observed the main phase by X-Ray diffraction technique. Moreover, the surface hardness was also determined higher than cross sectional hardness.

Keywords: air plasma spraying, Ni -20Al, tribometer, intermetallic coating, nickel aluminide

Procedia PDF Downloads 305