Search results for: anomalous quantum hall effect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15484

Search results for: anomalous quantum hall effect

15154 Studies on Influence of Rub on Vibration Signature of Rotating Machines

Authors: K. N. Umesh, K. S. Srinivasan

Abstract:

The influence of rotor rub was studied with respect to light rub and heavy rub conditions. The investigations were carried out for both below and above critical speeds. The time domain waveform has revealed truncation of the waveform during rubbing conditions. The quantum of rubbing has been indicated by the quantum of truncation. The orbits for light rub have indicated a single loop whereas for heavy rub multi looped orbits have been observed. In the heavy rub condition above critical speed both sub harmonics and super harmonics are exhibited. The orbit precess in a direction opposite to the direction of the rotation of the rotor. When the rubbing was created above the critical speed the orbit shape was of '8' shape indicating the rotor instability. Super-harmonics and sub-harmonics of vibration signals have been observed for light rub and heavy rub conditions and for speeds above critical.

Keywords: rotor rub, orbital analysis, frequency analysis, vibration signatures

Procedia PDF Downloads 319
15153 A Hardware-in-the-loop Simulation for the Development of Advanced Control System Design for a Spinal Joint Wear Simulator

Authors: Kaushikk Iyer, Richard M Hall, David Keeling

Abstract:

Hardware-in-the-loop (HIL) simulation is an advanced technique for developing and testing complex real-time control systems. This paper presents the benefits of HIL simulation and how it can be implemented and used effectively to develop, test, and validate advanced control algorithms used in a spinal joint Wear simulator for the Tribological testing of spinal disc prostheses. spinal wear simulator is technologically the most advanced machine currently employed For the in-vitro testing of newly developed spinal Discimplants. However, the existing control techniques, such as a simple position control Does not allow the simulator to test non-sinusoidal waveforms. Thus, there is a need for better and advanced control methods that can be developed and tested Rigorouslybut safely before deploying it into the real simulator. A benchtop HILsetupis was created for experimentation, controller verification, and validation purposes, allowing different control strategies to be tested rapidly in a safe environment. The HIL simulation aspect in this setup attempts to replicate similar spinal motion and loading conditions. The spinal joint wear simulator containsa four-Barlinkpowered by electromechanical actuators. LabVIEW software is used to design a kinematic model of the spinal wear Simulator to Validatehow each link contributes towards the final motion of the implant under test. As a result, the implant articulates with an angular motion specified in the international standards, ISO-18192-1, that define fixed, simplified, and sinusoid motion and load profiles for wear testing of cervical disc implants. Using a PID controller, a velocity-based position control algorithm was developed to interface with the benchtop setup that performs HIL simulation. In addition to PID, a fuzzy logic controller (FLC) was also developed that acts as a supervisory controller. FLC provides intelligence to the PID controller by By automatically tuning the controller for profiles that vary in amplitude, shape, and frequency. This combination of the fuzzy-PID controller is novel to the wear testing application for spinal simulators and demonstrated superior performance against PIDwhen tested for a spectrum of frequency. Kaushikk Iyer is a Ph.D. Student at the University of Leeds and an employee at Key Engineering Solutions, Leeds, United Kingdom, (e-mail: [email protected], phone: +44 740 541 5502). Richard M Hall is with the University of Leeds, the United Kingdom as a professor in the Mechanical Engineering Department (e-mail: [email protected]). David Keeling is the managing director of Key Engineering Solutions, Leeds, United Kingdom (e-mail: [email protected]). Results obtained are successfully validated against the load and motion tolerances specified by the ISO18192-1 standard and fall within limits, that is, ±0.5° at the maxima and minima of the motion and ±2 % of the complete cycle for phasing. The simulation results prove the efficacy of the test setup using HIL simulation to verify and validate the accuracy and robustness of the prospective controller before its deployment into the spinal wear simulator. This method of testing controllers enables a wide range of possibilities to test advanced control algorithms that can potentially test even profiles of patients performing various dailyliving activities.

Keywords: Fuzzy-PID controller, hardware-in-the-loop (HIL), real-time simulation, spinal wear simulator

Procedia PDF Downloads 175
15152 Some Integral Inequalities of Hermite-Hadamard Type on Time Scale and Their Applications

Authors: Artion Kashuri, Rozana Liko

Abstract:

In this paper, the authors establish an integral identity using delta differentiable functions. By applying this identity, some new results via a general class of convex functions with respect to two nonnegative functions on a time scale are given. Also, for suitable choices of nonnegative functions, some special cases are deduced. Finally, in order to illustrate the efficiency of our main results, some applications to special means are obtained as well. We hope that current work using our idea and technique will attract the attention of researchers working in mathematical analysis, mathematical inequalities, numerical analysis, special functions, fractional calculus, quantum mechanics, quantum calculus, physics, probability and statistics, differential and difference equations, optimization theory, and other related fields in pure and applied sciences.

Keywords: convex functions, Hermite-Hadamard inequality, special means, time scale

Procedia PDF Downloads 154
15151 Study of the Nanostructured Fe₅₀Cr₃₅Ni₁₅ Powder Alloy Developed by Mechanical Alloying

Authors: Salim Triaa, Fella Kali-Ali

Abstract:

Nanostructured Fe₅₀Cr3₃₅Ni₁₅ alloys were prepared from pure elemental powders using high energy mechanical alloying. The mixture powders obtained are characterized by several techniques. X-ray diffraction analysis revelated the formation of the Fe₁Cr₁ compound with BBC structure after one hour of milling. A second compound Fe₃Ni₂ with FCC structure was observed after 12 hours of milling. The size of crystallite determined by Williamson Hall method was about 5.1 nm after 48h of mill. SEM observations confirmed the growth of crushed particles as a function of milling time, while the homogenization of our powders into different constituent elements was verified by the EDX analysis.

Keywords: Fe-Cr-Ni alloy, mechanical alloying, nanostructure, SEM, XRD

Procedia PDF Downloads 180
15150 Predicting Halal Food Consumption for Muslim Turkish Immigrants Living in Germany

Authors: Elif Eroglu Hall, Nurdan Sevim

Abstract:

The purposes of this research are to clarify the determinants of Muslim immigrants in consuming halal food by using components of Theory of Planned Behavior. The study was done by surveying Turkish immigrants living in Cologne Germany. The results of this study show that the intentions of Muslim Turkish immigrants in consuming halal food is influenced by attitude, subjective norms and perceived behavioral control.

Keywords: halal food, immigrants, religion, theory of planned behavior

Procedia PDF Downloads 298
15149 Development of Monitoring Blood Bank Center Based PIC Microcontroller Using CAN Communication

Authors: Kaiwan S. Ismael, Ergun Ercelebi, Majeed Nader

Abstract:

This paper describes the design and implementation of a hardware setup for online monitoring of 24 refrigerators inside blood bank center using the microcontroller and CAN bus for communications between each node. Due to the security of locations in the blood bank hall and difficulty of monitoring of each refrigerator separately, this work proposes a solution to monitor all the blood bank refrigerators in one location. CAN-bus system is used because it has many applications and advantages, especially for this system due to easy in use, low cost, providing a reduction in wiring, fast to repair and easily expanding the project without a problem.

Keywords: control area network (CAN), monitoring blood bank center, PIC microcontroller, MPLAB IDE

Procedia PDF Downloads 488
15148 Single Crystal Growth in Floating-Zone Method and Properties of Spin Ladders: Quantum Magnets

Authors: Rabindranath Bag, Surjeet Singh

Abstract:

Materials in which the electrons are strongly correlated provide some of the most challenging and exciting problems in condensed matter physics today. After the discovery of high critical temperature superconductivity in layered or two-dimensional copper oxides, many physicists got attention in cuprates and it led to an upsurge of interest in the synthesis and physical properties of copper-oxide based material. The quest to understand superconducting mechanism in high-temperature cuprates, drew physicist’s attention to somewhat simpler compounds consisting of spin-chains or one-dimensional lattice of coupled spins. Low-dimensional quantum magnets are of huge contemporary interest in basic sciences as well emerging technologies such as quantum computing and quantum information theory, and heat management in microelectronic devices. Spin ladder is an example of quasi one-dimensional quantum magnets which provides a bridge between one and two dimensional materials. One of the examples of quasi one-dimensional spin-ladder compounds is Sr14Cu24O41, which exhibits a lot of interesting and exciting physical phenomena in low dimensional systems. Very recently, the ladder compound Sr14Cu24O41 was shown to exhibit long-distance quantum entanglement crucial to quantum information theory. Also, it is well known that hole-compensation in this material results in very high (metal-like) anisotropic thermal conductivity at room temperature. These observations suggest that Sr14Cu24O41 is a potential multifunctional material which invites further detailed investigations. To investigate these properties one must needs a large and high quality of single crystal. But these systems are showing incongruently melting behavior, which brings many difficulties to grow a large and quality of single crystals. Hence, we are using TSFZ (Travelling Solvent Floating Zone) method to grow the high quality of single crystals of the low dimensional magnets. Apart from this, it has unique crystal structure (alternating stacks of plane containing edge-sharing CuO2 chains, and the plane containing two-leg Cu2O3 ladder with intermediate Sr layers along the b- axis), which is also incommensurate in nature. It exhibits abundant physical phenomenon such as spin dimerization, crystallization of charge holes and charge density wave. The maximum focus of research so far involved in introducing defects on A-site (Sr). However, apart from the A-site (Sr) doping, there are only few studies in which the B-site (Cu) doping of polycrystalline Sr14Cu24O41 have been discussed and the reason behind this is the possibility of two doping sites for Cu (CuO2 chain and Cu2O3 ladder). Therefore, in our present work, the crystals (pristine and Cu-site doped) were grown by using TSFZ method by tuning the growth parameters. The Laue diffraction images, optical polarized microscopy and Scanning Electron Microscopy (SEM) images confirm the quality of the grown crystals. Here, we report the single crystal growth, magnetic and transport properties of Sr14Cu24O41 and its lightly doped variants (magnetic and non-magnetic) containing less than 1% of Co, Ni, Al and Zn impurities. Since, any real system will have some amount of weak disorder, our studies on these ladder compounds with controlled dilute disorder would be significant in the present context.

Keywords: low-dimensional quantum magnets, single crystal, spin-ladder, TSFZ technique

Procedia PDF Downloads 280
15147 Normal Coordinate Analysis, Molecular Structure, Vibrational, Electronic Spectra, and NMR Investigation of 4-Amino-3-Phenyl-1H-1,2,4-Triazole-5(4H)-Thione by Ab Initio HF and DFT Method

Authors: Khaled Bahgat

Abstract:

In the present work, the characterization of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione (APTT) molecule was carried out by quantum chemical method and vibrational spectral techniques. The FT-IR (4000–400 cm_1) and FT-Raman (4000–100 cm_1) spectra of APTT were recorded in solid phase. The UV–Vis absorption spectrum of the APTT was recorded in the range of 200–400 nm. The molecular geometry, harmonic vibrational frequencies and bonding features of APTT in the ground state have been calculated by HF and DFT methods using 6-311++G(d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO) and natural localized molecular orbital (NLMO) analysis. The electronic properties, such as excitation energies, absorption wavelength, HOMO and LUMO energies were performed by time depended DFT (TD-DFT) approach. The 1H and 13C nuclear magnetic resonance chemical shift of the molecule were calculated using the gauge-including atomic orbital (GIAO) method and compared with experimental results. Finally, the calculation results were analyzed to simulate infrared, FT-Raman and UV spectra of the title compound which shows better agreement with observed spectra.

Keywords: 4-amino-3-phenyl-1H-1, 2, 4-triazole-5(4H)-thione, vibrational assignments, normal coordinate analysis, quantum mechanical calculations

Procedia PDF Downloads 473
15146 Estimation of the Acute Toxicity of Halogenated Phenols Using Quantum Chemistry Descriptors

Authors: Khadidja Bellifa, Sidi Mohamed Mekelleche

Abstract:

Phenols and especially halogenated phenols represent a substantial part of the chemicals produced worldwide and are known as aquatic pollutants. Quantitative structure–toxicity relationship (QSTR) models are useful for understanding how chemical structure relates to the toxicity of chemicals. In the present study, the acute toxicities of 45 halogenated phenols to Tetrahymena Pyriformis are estimated using no cost semi-empirical quantum chemistry methods. QSTR models were established using the multiple linear regression technique and the predictive ability of the models was evaluated by the internal cross-validation, the Y-randomization and the external validation. Their structural chemical domain has been defined by the leverage approach. The results show that the best model is obtained with the AM1 method (R²= 0.91, R²CV= 0.90, SD= 0.20 for the training set and R²= 0.96, SD= 0.11 for the test set). Moreover, all the Tropsha’ criteria for a predictive QSTR model are verified.

Keywords: halogenated phenols, toxicity mechanism, hydrophobicity, electrophilicity index, quantitative stucture-toxicity relationships

Procedia PDF Downloads 304
15145 Surface Modified Quantum Dots for Nanophotonics, Stereolithography and Hybrid Systems for Biomedical Studies

Authors: Redouane Krini, Lutz Nuhn, Hicham El Mard Cheol Woo Ha, Yoondeok Han, Kwang-Sup Lee, Dong-Yol Yang, Jinsoo Joo, Rudolf Zentel

Abstract:

To use Quantum Dots (QDs) in the two photon initiated polymerization technique (TPIP) for 3D patternings, QDs were modified on the surface with photosensitive end groups which are able to undergo a photopolymerization. We were able to fabricate fluorescent 3D lattice structures using photopatternable QDs by TPIP for photonic devices such as photonic crystals and metamaterials. The QDs in different diameter have different emission colors and through mixing of RGB QDs white light fluorescent from the polymeric structures has been created. Metamaterials are capable for unique interaction with the electrical and magnetic components of the electromagnetic radiation and for manipulating light it is crucial to have a negative refractive index. In combination with QDs via TPIP technique polymeric structures can be designed with properties which cannot be found in nature. This makes these artificial materials gaining a huge importance for real-life applications in photonic and optoelectronic. Understanding of interactions between nanoparticles and biological systems is of a huge interest in the biomedical research field. We developed a synthetic strategy of polymer functionalized nanoparticles for biomedical studies to obtain hybrid systems of QDs and copolymers with a strong binding network in an inner shell and which can be modified in the end through their poly(ethylene glycol) functionalized outer shell. These hybrid systems can be used as models for investigation of cell penetration and drug delivery by using measurements combination between CryoTEM and fluorescence studies.

Keywords: biomedical study models, lithography, photo induced polymerization, quantum dots

Procedia PDF Downloads 531
15144 Investigation of Thickness Dependent Optical Properties of Bi₂Sb(₃-ₓ):Te ₓ (where x = 0.1, 0.2, 0.3) Thin Films

Authors: Reena Panchal, Maunik Jani, S. M. Vyas, G. R. Pandya

Abstract:

Group V-VI compounds have a narrow bandgap, which makes them useful in many electronic devices. In bulk form, BiSbTe alloys are semi-metals or semi-conductors. They are used in thermoelectric and thermomagnetic devices, fabrication of ionizing, radiation detectors, LEDs, solid-state electrodes, photosensitive heterostructures, solar cells, ionic batteries, etc. Thin films of Bi₂Sb(₃-ₓ):Tex (where x = 0.1, 0.2, 0.3) of various thicknesses were grown by the thermal evaporation technique on a glass substrate at room temperature under a pressure of 10-₄ mbar for different time periods such as 10s, 15s, and 20s. The thickness of these thin films was also obtained by using the swaneopeol envelop method and compared those values with instrumental values. The optical absorption (%) data of thin films was measured in the wave number range of 650 cm-¹ to 4000 cm-¹. The band gap has been evaluated from these optical absorption data, and the results indicate that absorption occurred by a direct interband transition. It was discovered that when thickness decreased, the band gap increased; this dependency was inversely related to the square of thickness, which is explained by the quantum size effect. Using the values of bandgap, found the values of optical electronegativity (∆χ) and optical refractive index (η) using various relations.

Keywords: thin films, band gap, film thickness, optical study, size effect

Procedia PDF Downloads 24
15143 Low-Cost Reversible Logic Serial Multipliers with Error Detection Capability

Authors: Mojtaba Valinataj

Abstract:

Nowadays reversible logic has received many attentions as one of the new fields for reducing the power consumption. On the other hand, the processing systems have weaknesses against different external effects. In this paper, some error detecting reversible logic serial multipliers are proposed by incorporating the parity-preserving gates. This way, the new designs are presented for signed parity-preserving serial multipliers based on the Booth's algorithm by exploiting the new arrangements of existing gates. The experimental results show that the proposed 4×4 multipliers in this paper reach up to 20%, 35%, and 41% enhancements in the number of constant inputs, quantum cost, and gate count, respectively, as the reversible logic criteria, compared to previous designs. Furthermore, all the proposed designs have been generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.

Keywords: Booth’s algorithm, error detection, multiplication, parity-preserving gates, quantum computers, reversible logic

Procedia PDF Downloads 231
15142 Children's Literature As Pedagogy: Lessons For Literacy Practice

Authors: Alicia Curtin, Kathy Hall

Abstract:

This paper explores research and practice shared on a masters University module entitled Children's Literature as Pedagogy. Issues explored include the meaning of childhood and literature; the definition of what counts as text, textual and literacy practice for children and adolescents. A sociocultural framework is used to define literacy practice from this perspective and student voice and experience remains central. Lessons from classroom experience and the use of innovative, multi modal and non traditional texts and pedagogical approaches are offered as examples of innovative and inclusive pedagogy in the field of literacy practice.

Keywords: non traditional, pedagogy, practice, sociocultural

Procedia PDF Downloads 588
15141 Design of Organic Inhibitors from Quantum Chemistry

Authors: Rahma Tibigui, Ikram Hadj Said, Rachid Belkada, Dalila Hammoutene

Abstract:

The vulnerability of industrial facilities is highly concerned with multiple risks from corrosion. The commonly adopted solution is based on the use of organic inhibitors, which are gradually being replaced by environmentally friendly organic inhibitors. In our work, we carried out a quantum chemical study based on the Density Functional Theory (DFT) method at the B3LYP/6-311G (d,p) level of theory. The inhibitory performance of a derivative of the tetrazole molecule has been investigated and reported as a carbon steel-friendly corrosion inhibitor in hydrochloric acid (HCl) medium. The relationship is likely to exist between the molecular structure of this compound as well as its various global reactivity descriptors, and its corrosion inhibition efficiency, which was examined and then discussed. The results show low values of ΔE, which represent strong adsorption of the inhibitor on the steel surface. Moreover, the flat adsorption orientation confirmed the great ability to donate (accept) electrons to (from) steel, fabricating an anchored barrier to prevent steel from corrosion.

Keywords: eco-friendly, corrosion inhibitors, tetrazole, DFT

Procedia PDF Downloads 239
15140 The Theory of the Mystery: Unifying the Quantum and Cosmic Worlds

Authors: Md. Najiur Rahman

Abstract:

This hypothesis reveals a profound and symmetrical connection that goes beyond the boundaries of quantum physics and cosmology, revolutionizing our understanding of the fundamental building blocks of the cosmos, given its name ‘The Theory of the Mystery’. This theory has an elegantly simple equation, “R = ∆r / √∆m” which establishes a beautiful and well-crafted relationship between the radius (R) of an elementary particle or galaxy, the relative change in radius (∆r), and the mass difference (∆m) between related entities. It is fascinating to note that this formula presents a super synchronization, one which involves the convergence of every basic particle and any single celestial entity into perfect alignment with its respective mass and radius. In addition, we have a Supporting equation that defines the mass-radius connection of an entity by the equation: R=√m/N, where N is an empirically established constant, determined to be approximately 42.86 kg/m, representing the proportionality between mass and radius. It provides precise predictions, collects empirical evidence, and explores the far-reaching consequences of theories such as General Relativity. This elegant symmetry reveals a fundamental principle that underpins the cosmos: each component, whether small or large, follows a precise mass-radius relationship to exert gravity by a universal law. This hypothesis represents a transformative process towards a unified theory of physics, and the pursuit of experimental verification will show that each particle and galaxy is bound by gravity and plays a unique but harmonious role in shaping the universe. It promises to reveal the great symphony of the mighty cosmos. The predictive power of our hypothesis invites the exploration of entities at the farthest reaches of the cosmos, providing a bridge between the known and the unknown.

Keywords: unified theory, quantum gravity, mass-radius relationship, dark matter, uniform gravity

Procedia PDF Downloads 113
15139 Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation

Authors: Constantin Z. Leshan

Abstract:

Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume.

Keywords: border of the Universe, causality violation, perfect isolation, quantum jumps

Procedia PDF Downloads 430
15138 Wave State of Self: Findings of Synchronistic Patterns in the Collective Unconscious

Authors: R. Dimitri Halley

Abstract:

The research within Jungian Psychology presented here is on the wave state of Self. What has been discovered via shared dreaming, independently correlating dreams across dreamers, is beyond the Self stage into the deepest layer or the wave state Self: the very quantum ocean, the Self archetype is embedded in. A quantum wave or rhyming of meaning constituting synergy across several dreamers was discovered in dreams and in extensively shared dream work with small groups at a post therapy stage. Within the format of shared dreaming, we find synergy patterns beyond what Jung called the Self archetype. Jung led us up to the phase of Individuation and delivered the baton to Von Franz to work out the next synchronistic stage, here proposed as the finding of the quantum patterns making up the wave state of Self. These enfolded synchronistic patterns have been found in group format of shared dreaming of individuals approximating individuation, and the unfolding of it is carried by belief and faith. The reason for this format and operating system is because beyond therapy and of living reality, we find no science – no thinking or even awareness in the therapeutic sense – but rather a state of mental processing resembling more like that of spiritual attitude. Thinking as such is linear and cannot contain the deepest layer of Self, the quantum core of the human being. It is self reflection which is the container for the process at the wave state of Self. Observation locks us in an outside-in reactive flow from a first-person perspective and hence toward the surface we see to believe, whereas here, the direction of focus shifts to inside out/intrinsic. The operating system or language at the wave level of Self is thus belief and synchronicity. Belief has up to now been almost the sole province of organized religions but was viewed by Jung as an inherent property in the process of Individuation. The shared dreaming stage of the synchronistic patterns forms a larger story constituting a deep connectivity unfolding around individual Selves. Dreams of independent dreamers form larger patterns that come together as puzzles forming a larger story, and in this sense, this group work level builds on Jung as a post individuation collective stage. Shared dream correlations will be presented, illustrating a larger story in terms of trails of shared synchronicity.

Keywords: belief, shared dreaming, synchronistic patterns, wave state of self

Procedia PDF Downloads 203
15137 Energy Related Carbon Dioxide Emissions in Pakistan: A Decomposition Analysis Using LMDI

Authors: Arsalan Khan, Faisal Jamil

Abstract:

The unprecedented increase in anthropogenic gases in recent decades has led to climatic changes worldwide. CO2 emissions are the most important factors responsible for greenhouse gases concentrations. This study decomposes the changes in overall CO2 emissions in Pakistan for the period 1990-2012 using Log Mean Divisia Index (LMDI). LMDI enables to decompose the changes in CO2 emissions into five factors namely; activity effect, structural effect, intensity effect, fuel-mix effect, and emissions factor effect. This paper confirms an upward trend of overall emissions level of the country during the period. The study finds that activity effect, structural effect and intensity effect are the three major factors responsible for the changes in overall CO2 emissions in Pakistan with activity effect as the largest contributor to overall changes in the emissions level. The structural effect is also adding to CO2 emissions, which indicates that the economic activity is shifting towards more energy-intensive sectors. However, intensity effect has negative sign representing energy efficiency gains, which indicate a good relationship between the economy and environment. The findings suggest that policy makers should encourage the diversification of the output level towards more energy efficient sub-sectors of the economy.

Keywords: energy consumption, CO2 emissions, decomposition analysis, LMDI, intensity effect

Procedia PDF Downloads 403
15136 The Rebound Effect of Energy Efficiency in Residential Energy Demand: Case of Saudi Arabia

Authors: Mohammad Aldubyan, Fateh Belaid, Anwar Gasim

Abstract:

This paper aims at linking to link residential energy efficiency to the rebound effect concept, a well-known behavioral phenomenon in which service consumption increases when consumers notice a reduction in monetary spending on energy due to improvements in energy efficiency. It provides insights on into how and why the rebound effect happens when energy efficiency improves and whether this phenomenon is positive or negative. It also shows one technique to estimate the rebound effect on the national residential level. The paper starts with a bird’s eye view of the rebound effect and then dives in in-depth into measuring the rebound effect and evaluating its impact. Finally, the paper estimates the rebound effect in the Saudi residential sector through by linking pre-estimated price elasticities of demand to the Saudi residential building stock.

Keywords: energy efficiency, rebound effect, energy consumption, residential electricity demand

Procedia PDF Downloads 114
15135 Etude 3D Quantum Numerical Simulation of Performance in the HEMT

Authors: A. Boursali, A. Guen-Bouazza

Abstract:

We present a simulation of a HEMT (high electron mobility transistor) structure with and without a field plate. We extract the device characteristics through the analysis of DC, AC and high frequency regimes, as shown in this paper. This work demonstrates the optimal device with a gate length of 15 nm, InAlN/GaN heterostructure and field plate structure, making it superior to modern HEMTs when compared with otherwise equivalent devices. This improves the ability to bear the burden of the current density passes in the channel. We have demonstrated an excellent current density, as high as 2.05 A/m, a peak extrinsic transconductance of 0.59S/m at VDS=2 V, and cutting frequency cutoffs of 638 GHz in the first HEMT and 463 GHz for Field plate HEMT., maximum frequency of 1.7 THz, maximum efficiency of 73%, maximum breakdown voltage of 400 V, leakage current density IFuite=1 x 10-26 A, DIBL=33.52 mV/V and an ON/OFF current density ratio higher than 1 x 1010. These values were determined through the simulation by deriving genetic and Monte Carlo algorithms that optimize the design and the future of this technology.

Keywords: HEMT, silvaco, field plate, genetic algorithm, quantum

Procedia PDF Downloads 352
15134 Quantum Localization of Vibrational Mirror in Cavity Optomechanics

Authors: Madiha Tariq, Hena Rabbani

Abstract:

Recently, cavity-optomechanics becomes an extensive research field that has manipulated the mechanical effects of light for coupling of the optical field with other physical objects specifically with regards to dynamical localization. We investigate the dynamical localization (both in momentum and position space) for a vibrational mirror in a Fabry-Pérot cavity driven by a single mode optical field and a transverse probe field. The weak probe field phenomenon results in classical chaos in phase space and spatio temporal dynamics in position |ψ(x)²| and momentum space |ψ(p)²| versus time show quantum localization in both momentum and position space. Also, we discuss the parametric dependencies of dynamical localization for a designated set of parameters to be experimentally feasible. Our work opens an avenue to manipulate the other optical phenomena and applicability of proposed work can be prolonged to turn-able laser sources in the future.

Keywords: dynamical localization, cavity optomechanics, Hamiltonian chaos, probe field

Procedia PDF Downloads 153
15133 A Density Functional Theory Computational Study on the Inhibiting Action of Some Derivatives of 1,8-Bis(Benzylideneamino)Naphthalene against Aluminum Corrosion

Authors: Taher S. Ababneh, Taghreed M. A. Jazzazi, Tareq M. A. Alshboul

Abstract:

The inhibiting action against aluminum corrosion by three derivatives of 1,8-bis (benzylideneamino) naphthalene (BN) Schiff base has been investigated by means of DFT quantum chemical calculations at the B3LYP/6-31G(d) level of theory. The derivatives (CBN, NBN and MBN) were prepared from the condensation reaction of 1,8-diaminonaphthalene with substituted benzaldehyde (4-CN, 3-NO₂ and 3,4-(OMe)₂, respectively). Calculations were conducted to study the adsorption of each Schiff base on aluminum surface to evaluate its potential as a corrosion inhibitor. The computational structural features and electronic properties of each derivative such as relative energies and energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) have been reported. Thermodynamic functions and quantum chemical parameters such as the hardness of the inhibitor, the softness and the electrophilicity index were calculated to determine the derivative of the highest inhibition efficiency.

Keywords: corrosion, aluminum, DFT calculation, 1, 8-diaminonaphthalene, benzaldehyde

Procedia PDF Downloads 350
15132 3D Quantum Simulation of a HEMT Device Performance

Authors: Z. Kourdi, B. Bouazza, M. Khaouani, A. Guen-Bouazza, Z. Djennati, A. Boursali

Abstract:

We present a simulation of a HEMT (high electron mobility transistor) structure with and without a field plate. We extract the device characteristics through the analysis of DC, AC and high frequency regimes, as shown in this paper. This work demonstrates the optimal device with a gate length of 15 nm, InAlN/GaN heterostructure and field plate structure, making it superior to modern HEMTs when compared with otherwise equivalent devices. This improves the ability to bear the burden of the current density passes in the channel. We have demonstrated an excellent current density, as high as 2.05 A/mm, a peak extrinsic transconductance of 590 mS/mm at VDS=2 V, and cutting frequency cutoffs of 638 GHz in the first HEMT and 463 GHz for Field plate HEMT., maximum frequency of 1.7 THz, maximum efficiency of 73%, maximum breakdown voltage of 400 V, DIBL=33.52 mV/V and an ON/OFF current density ratio higher than 1 x 1010. These values were determined through the simulation by deriving genetic and Monte Carlo algorithms that optimize the design and the future of this technology.

Keywords: HEMT, Silvaco, field plate, genetic algorithm, quantum

Procedia PDF Downloads 478
15131 Photoswitchable and Polar-Dependent Fluorescence of Diarylethenes

Authors: Sofia Lazareva, Artem Smolentsev

Abstract:

Fluorescent photochromic materials collect strong interest due to their possible application in organic photonics such as optical logic systems, optical memory, visualizing sensors, as well as characterization of polymers and biological systems. In photochromic fluorescence switching systems the emission of fluorophore is modulated between ‘on’ and ‘off’ via the photoisomerization of photochromic moieties resulting in effective resonance energy transfer (FRET). In current work, we have studied both photochromic and fluorescent properties of several diarylethenes. It was found that coloured forms of these compounds are not fluorescent because of the efficient intramolecular energy transfer. Spectral and photochromic parameters of investigated substances have been measured in five solvents having different polarity. Quantum yields of photochromic transformation A↔B ΦA→B and ΦB→A as well as B isomer extinction coefficients were determined by kinetic method. It was found that the photocyclization reaction quantum yield of all compounds decreases with the increase of solvent polarity. In addition, the solvent polarity is revealed to affect fluorescence significantly. Increasing of the solvent dielectric constant was found to result in a strong shift of emission band position from 450 nm (nhexane) to 550 nm (DMSO and ethanol) for all three compounds. Moreover, the emission intensive in polar solvents becomes weak and hardly detectable in n-hexane. The only one exception in the described dependence is abnormally low fluorescence quantum yield in ethanol presumably caused by the loss of electron-donating properties of nitrogen atom due to the protonation. An effect of the protonation was also confirmed by the addition of concentrated HCl in solution resulting in a complete disappearance of the fluorescent band. Excited state dynamics were investigated by ultrafast optical spectroscopy methods. Kinetic curves of excited states absorption and fluorescence decays were measured. Lifetimes of transient states were calculated from the data measured. The mechanism of ring opening reaction was found to be polarity dependent. Comparative analysis of kinetics measured in acetonitrile and hexane reveals differences in relaxation dynamics after the laser pulse. The most important fact is the presence of two decay processes in acetonitrile, whereas only one is present in hexane. This fact supports an assumption made on the basis of steady-state preliminary experiments that in polar solvents occur stabilization of TICT state. Thus, results achieved prove the hypothesis of two channel mechanism of energy relaxation of compounds studied.

Keywords: diarylethenes, fluorescence switching, FRET, photochromism, TICT state

Procedia PDF Downloads 681
15130 Yarkovsky Effect on the Orbital Dynamics of the Asteroid (101955) Bennu

Authors: Sanjay Narayan Deo, Badam Singh Kushvah

Abstract:

Bennu(101955) is a half kilometer potentially hazardous near-Earth asteroid. We analyze the influence of Yarkovsky effect and relativistic effect of the Sun on the motion of the asteroid Bennu. The transverse model is used to compute Yarkovsky force on asteroid Bennu. Our dynamical model includes Newtonian perturbations of eight planets, the Moon, the Sun and three massive asteroid (1Ceres, 2Palas and 4Vesta). We showed the variation in orbital elements of nominal orbit of the asteroid. In the presence of Yarkovsky effect, the Semi-major axis of the orbit of the asteroid is decreases by 350 m over one period of orbital motion. The magnitude of Yarkovsky force is computed. We find that maximum magnitude of Yarkovsky force is 0.09 N at the perihelion . We also found that the magnitude of the Sun relativity effect is greater than the Yarkovsky effect on the motion the asteroid Bennu.

Keywords: Bennu, orbital elements, relativistic effect, Yarkovsky effect

Procedia PDF Downloads 298
15129 Soil Moisture Regulation in Irrigated Agriculture

Authors: I. Kruashvili, I. Inashvili, K. Bziava, M. Lomishvili

Abstract:

Seepage capillary anomalies in the active layer of soil, related to the soil water movement, often cause variation of soil hydrophysical properties and become one of the main objectives of the hydroecology. It is necessary to mention that all existing equations for computing the seepage flow particularly from soil channels, through dams, bulkheads, and foundations of hydraulic engineering structures are preferable based on the linear seepage law. Regarding the existing beliefs, anomalous seepage is based on postulates according to which the fluid in free volume is characterized by resistance against shear deformation and is presented in the form of initial gradient. According to the above-mentioned information, we have determined: Equation to calculate seepage coefficient when the velocity of transition flow is equal to seepage flow velocity; by means of power function, equations for the calculation of average and maximum velocities of seepage flow have been derived; taking into consideration the fluid continuity condition, average velocity for calculation of average velocity in capillary tube has been received.

Keywords: seepage, soil, velocity, water

Procedia PDF Downloads 464
15128 Ultra Broad Emission from Fe Doped Carbon Quantum Dots

Authors: Asha Bhardwaj, Pushpendu Biswas

Abstract:

Carbon Dots (CDs) are known to be absorbing in the UV and emitting in the blue to visible region [1-2]. As CDs have high bio compatibility, high emission efficiency, are environment friendly and are nontoxic in nature, they are a material of great importance for various biomedical as well as optoelectronic applications [3-6]. For bioimaging and photothermal therapy in cancer treatment CDs should be highly photostable, show interaction with NIR band [3], show quick excretion from the body and have high Quantum yields. NIR I stands for emission in the 650-950 nm region and NIR II stands for emission in the 1000-1700 nm range [4]. Penetration depth of NIR II is larger than that of NIR-1 or visible light [5]. Also, it shows heating effect which is beneficial for selective ablation of cancer cells while not harming the healthy cells. Therefore, efforts are being made by the scientific community to synthesize CDs which emit in the NIR II region. Here we report CDs emitting in all the three regions (Visible, NIR I and NIR II) of electromagnetic spectra ranging from 300-1150 nm. Wide range emissive CDs and Fe doped CDs are prepared by a one-step hydrothermal method. Fe concentration has been increased in steps to assess the contribution from Fe incorporation in the CD lattice [6]. The CDs emit in three wavelength ranges, from 300-600 nm, 600-800 nm (NIR I) and 900 – 1150 nm (NIR II). Such kind of broad emission behaviour in single system carbon dots is being reported for the first time. Further excitation wavelength (λex) dependent emission characteristics reveal that the emission peak wavelength values are unaffected by the changing excitation wavelength in the visible region. Also, NIR I and NIR II emission is observed only for 300 and 310 nm excitation, hinting towards two photon and three photon emission [4]. Emission from 650- 1150 nm is not observed for λex > 310 nm. Additionally, as expected the absorption spectra also ranges from 250-600 nm, as compared to commonly observed blue or UV absorption in CDs. The exquisite ultra-wide range emitting nontoxic CDs can find application not only as broad band emitters but also in photothermal therapy for cancer cell theranostics.

Keywords: Broad Emission, absorption, Carbon dots, NIR Emission

Procedia PDF Downloads 13
15127 Investigation of Atomic Adsorption on the Surface of BC3 Nanotubes

Authors: S. V. Boroznin, I. V. Zaporotskova, N. P. Polikarpova

Abstract:

Studing of nanotubes sorption properties is very important for researching. These processes for carbon and boron nanotubes described in the high number of papers. But the sorption properties of boron containing nanotubes, susch as BC3-nanotubes haven’t been studied sufficiently yet. In this paper we present the results of theoretical research into the mechanism of atomic surface adsorption on the two types of boron-carbon nanotubes (BCNTs) within the framework of an ionic-built covalent-cyclic cluster model and an appropriately modified MNDO quantum chemical scheme and DFT method using B3LYP functional with 6-31G basis. These methods are well-known and the results, obtained using them, were in good agreement with the experiment. Also we studied three position of atom location above the nanotube surface. These facts suggest us to use them for our research and quantum-chemical calculations. We studied the mechanism of sorption of Cl, O and F atoms on the external surface of single-walled BC3 arm-chair nanotubes. We defined the optimal geometry of the sorption complexes and obtained the values of the sorption energies. Analysis of the band structure suggests that the band gap is insensitive to adsorption process. The electron density is located near atoms of the surface of the tube. Also we compared our results with others, which have been obtained earlier for pure carbon and boron nanotubes. The most stable adsorption complex has been between boron-carbon nanotube and oxygen atom. So, it suggests us to make a research of oxygen molecule adsorption on the BC3 nanotube surface. We modeled five variants of molecule orientation above the nanotube surface. The most stable sorption complex has been defined between the oxygen molecule and nanotube when the oxygen molecule is located above the nanotube surface perpendicular to the axis of the tube.

Keywords: Boron-carbon nanotubes, nanostructures, nanolayers, quantum-chemical calculations, nanoengineering

Procedia PDF Downloads 319
15126 Payment for Pain: Differences between Hypothetical and Real Preferences

Authors: J. Trarbach, S. Schosser, B. Vogt

Abstract:

Decision-makers tend to prefer the first alternative over subsequent alternatives which is called the primacy effect. To reliably measure this effect, we conducted an experiment with real consequences for preference statements. Therefore, we elicit preferences of subjects using a rating scale, i.e. hypothetical preferences, and willingness to pay, i.e. real preferences, for two sequences of pain. Within these sequences, both overall intensity and duration of pain are identical. Hence, a rational decision-maker should be indifferent, whereas the primacy effect predicts a stronger preference for the first sequence. What we see is a primacy effect only for hypothetical preferences. This effect vanishes for real preferences.

Keywords: decision making, primacy effect, real incentives, willingness to pay

Procedia PDF Downloads 298
15125 Electrocatalytic Properties of Ru-Pd Bimetal Quantum Dots/TiO₂ Nanotube Arrays Electrodes Composites with Double Schottky Junctions

Authors: Shiying Fan, Xinyong Li

Abstract:

The development of highly efficient multifunctional catalytic materials towards HER, ORR and Photo-fuel cell applications in terms of combined electrochemical and photo-electrochemical principles have currently confronted with dire challenges. In this study, novel palladium (Pd) and ruthenium (Ru) Bimetal Quantum Dots (BQDs) co-anchored on Titania nanotube (NTs) arrays electrodes have been successfully constructed by facial two-step electrochemical strategy. Double Schottky junctions with superior performance in electrocatalytic (EC) hydrogen generations and solar fuel cell energy conversions (PE) have been found. Various physicochemical techniques including UV-vis spectroscopy, TEM/EDX/HRTEM, SPV/TRV and electro-chemical strategy including EIS, C-V, I-V, and I-T, etc. were chronically utilized to systematically characterize the crystal-, electronic and micro-interfacial structures of the composites with double Schottky junction, respectively. The characterizations have implied that the marvelous enhancement of separation efficiency of electron-hole pairs generations is mainly caused by the Schottky-barriers within the nanocomposites, which would greatly facilitate the interfacial charge transfer for H₂ generations and solar fuel cell energy conversions. Moreover, the DFT calculations clearly indicated that the oriented growth of Ru and Pd bimetal atoms at the anatase (101) surface is mainly driven by the interaction between Ru/Pd and surface atoms, and the most active site for bimetal Ru and Pd adatoms on the perfect TiO₂ (101) surface is the 2cO-6cTi-3cO bridge sites and the 2cO-bridge sites with the highest adsorption energy of 9.17 eV. Furthermore, the electronic calculations show that in the nanocomposites, the number of impurity (i.e., co-anchored Ru-Pd BQDs) energy levels near Fermi surface increased and some were overlapped with original energy level, promoting electron energy transition and reduces the band gap. Therefore, this work shall provide a deeper insight for the molecular design of Bimetal Quantum Dots (BQDs) assembled onto Tatiana NTs composites with superior performance for electrocatalytic hydrogen productions and solar fuel cell energy conversions (PE) simultaneously.

Keywords: eletrocatalytic, Ru-Pd bimetallic quantum dots, titania nanotube arrays, double Schottky junctions, hydrogen production

Procedia PDF Downloads 144