Search results for: Object Identification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4065

Search results for: Object Identification

3735 Analog Railway Signal Object Controller Development

Authors: Ercan Kızılay, Mustafa Demi̇rel, Selçuk Coşkun

Abstract:

Railway signaling systems consist of vital products that regulate railway traffic and provide safe route arrangements and maneuvers of trains. SIL 4 signal lamps are produced by many manufacturers today. There is a need for systems that enable these signal lamps to be controlled by commands from the interlocking. These systems should act as fail-safe and give error indications to the interlocking system when an unexpected situation occurs for the safe operation of railway systems from the RAMS perspective. In the past, driving and proving the lamp in relay-based systems was typically done via signaling relays. Today, the proving of lamps is done by comparing the current values read over the return circuit, the lower and upper threshold values. The purpose is an analog electronic object controller with the possibility of easy integration with vital systems and the signal lamp itself. During the study, the EN50126 standard approach was considered, and the concept, definition, risk analysis, requirements, architecture, design, and prototyping were performed throughout this study. FMEA (Failure Modes and Effects Analysis) and FTA (Fault Tree) Analysis) have been used for safety analysis in accordance with EN 50129. Concerning these analyzes, the 1oo2D reactive fail-safe hardware design of a controller has been researched. Electromagnetic compatibility (EMC) effects on the functional safety of equipment, insulation coordination, and over-voltage protection were discussed during hardware design according to EN 50124 and EN 50122 standards. As vital equipment for railway signaling, railway signal object controllers should be developed according to EN 50126 and EN 50129 standards which identify the steps and requirements of the development in accordance with the SIL 4(Safety Integrity Level) target. In conclusion of this study, an analog railway signal object controller, which takes command from the interlocking system, is processed in driver cards. Driver cards arrange the voltage level according to desired visibility by means of semiconductors. Additionally, prover cards evaluate the current upper and lower thresholds. Evaluated values are processed via logic gates which are composed as 1oo2D by means of analog electronic technologies. This logic evaluates the voltage level of the lamp and mitigates the risks of undue dimming.

Keywords: object controller, railway electronic, analog electronic, safety, railway signal

Procedia PDF Downloads 100
3734 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman

Abstract:

This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: sound detection, impulsive signal, background noise, neural network

Procedia PDF Downloads 319
3733 A Supply Chain Traceability Improvement Using RFID

Authors: Yaser Miaji, Mohammad Sabbagh

Abstract:

Radio Frequency Identification (RFID) is a technology which shares a similar concept with bar code. With RFID, the electromagnetic or electrostatic coupling in the RF portion of the electromagnetic spectrum is used to transmit signals. Supply chain management is aimed to keep going long-term performance of individual companies and the overall supply chain by maximizing customer satisfaction with minimum costs. One of the major issues in the supply chain management is product loss or shrinkage. In order to overcome this problem, this system which uses Radio Frequency Identification (RFID) technology will be able to RFID track and identify where losses are occurring and enable effective traceability. RFID brings a new dimension to supply chain management by providing a more efficient way of being able to identify and track items at the various stages throughout the supply chain. This system has been developed and tested to prove that RFID technology can be used to improve traceability in supply chain at low cost. Due to its simplicity in interface program and database management system using Visual Basic and MS Excel or MS Access the system can be more affordable and implemented even by small and medium scale industries.

Keywords: supply chain, RFID, tractability, radio frequency identification

Procedia PDF Downloads 488
3732 Musical Education of Preschool Children: From the Average to the Gifted

Authors: Eudjen Cinc

Abstract:

The contemporary society, which is, whether we like it or not, oriented towards utilitarianism, pragmatics and professional flexibility, lives in a certain paradox. On the one hand, at least declaratively, the accent of modern society is on knowledge; knowledge is even considered to be a commodity, the popularity of education is increased as the only means of survival in the market-oriented world, while on the other hand modern society is moving towards simplification and decreasing the amount of information and areas which are considered necessary in the generally excepted concept of education. We cannot talk about the preschool teacher profession without mentioning work with gifted children. The preschool teacher knowing the characteristics of gifted children is of utmost importance because their early identification and professional guidance are of cardinal importance for the direction in which the children will develop. When we talk about musical ability, in the first phase, the role of preschool teachers in the identification and stimulation of gifted children naturally refers to monitoring children’s musical manifestation. The identification process and work with the gifted presupposes a good relationship with the family, synergy of these two important influences in the child’s education and upbringing.

Keywords: music education, gifted children, methodology, kindergarten

Procedia PDF Downloads 273
3731 A Non-Destructive TeraHertz System and Method for Capsule and Liquid Medicine Identification

Authors: Ke Lin, Steve Wu Qing Yang, Zhang Nan

Abstract:

The medicine and drugs has in the past been manufactured to the final products and then used laboratory analysis to verify their quality. However the industry needs crucially a monitoring technique for the final batch to batch quality check. The introduction of process analytical technology (PAT) provides an incentive to obtain real-time information about drugs on the production line, with the following optical techniques being considered: near-infrared (NIR) spectroscopy, Raman spectroscopy and imaging, mid-infrared spectroscopy with the use of chemometric techniques to quantify the final product. However, presents problems in that the spectra obtained will consist of many combination and overtone bands of the fundamental vibrations observed, making analysis difficult. In this work, we describe a non-destructive system and method for capsule and liquid medicine identification, more particularly, using terahertz time-domain spectroscopy and/or designed terahertz portable system for identifying different types of medicine in the package of capsule or in liquid medicine bottles. The target medicine can be detected directly, non-destructively and non-invasively.

Keywords: terahertz, non-destructive, non-invasive, chemical identification

Procedia PDF Downloads 131
3730 Artificial Neural Networks Face to Sudden Load Change for Shunt Active Power Filter

Authors: Dehini Rachid, Ferdi Brahim

Abstract:

The shunt active power filter (SAPF) is not destined only to improve the power factor, but also to compensate the unwanted harmonic currents produced by nonlinear loads. This paper presents a SAPF with identification and control method based on artificial neural network (ANN). To identify harmonics, many techniques are used, among them the conventional p-q theory and the relatively recent one the artificial neural network method. It is difficult to get satisfied identification and control characteristics by using a normal (ANN) due to the nonlinearity of the system (SAPF + fast nonlinear load variations). This work is an attempt to undertake a systematic study of the problem to equip the (SAPF) with the harmonics identification and DC link voltage control method based on (ANN). The latter has been applied to the (SAPF) with fast nonlinear load variations. The results of computer simulations and experiments are given, which can confirm the feasibility of the proposed active power filter.

Keywords: artificial neural networks (ANN), p-q theory, harmonics, total harmonic distortion

Procedia PDF Downloads 386
3729 Rapid Identification of Thermophilic Campylobacter Species from Retail Poultry Meat Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry

Authors: Graziella Ziino, Filippo Giarratana, Stefania Maria Marotta, Alessandro Giuffrida, Antonio Panebianco

Abstract:

In Europe, North America and Japan, campylobacteriosis is one of the leading food-borne bacterial illnesses, often related to the consumption of poultry meats and/or by-products. The aim of this study was the evaluation of Campylobacter contamination of poultry meats marketed in Sicily (Italy) using both traditional methods and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS). MALDI-TOF MS is considered a promising rapid (less than 1 hour) identification method for food borne pathogens bacteria. One hundred chicken and turkey meat preparations (no. 68 hamburgers, no. 21 raw sausages, no. 4 meatballs and no. 7 meat rolls) were taken from different butcher’s shops and large scale retailers and submitted to detection/enumeration of Campylobacter spp. according to EN ISO 10272-1:2006 and EN ISO 10272-2:2006. Campylobacter spp. was detected with general low counts in 44 samples (44%), of which 30 from large scale retailers and 14 from butcher’s shops. Chicken meats were significantly more contaminated than turkey meats. Among the preparations, Campylobacter spp. was found in 85.71% of meat rolls, 50% of meatballs, 44.12% of hamburgers and 28.57% of raw sausages. A total of 100 strains, 2-3 from each positive samples, were isolated for the identification by phenotypic, biomolecular and MALDI-TOF MS methods. C. jejuni was the predominant strains (63%), followed by C. coli (33%) and C. lari (4%). MALDI-TOF MS correctly identified 98% of the strains at the species level, only 1% of the tested strains were not identified. In the last 1%, a mixture of two different species was mixed in the same sample and MALDI-TOF MS correctly identified at least one of the strains. Considering the importance of rapid identification of pathogens in the food matrix, this method is highly recommended for the identification of suspected colonies of Campylobacteria.

Keywords: campylobacter spp., Food Microbiology, matrix-assisted laser desorption ionization-time of flight mass spectrometry, rapid microbial identification

Procedia PDF Downloads 292
3728 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images

Authors: Mehrnoosh Omati, Mahmod Reza Sahebi

Abstract:

The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.

Keywords: coupled Markov random field (MRF), environment, object-based analysis, polarimetric SAR (PolSAR) images

Procedia PDF Downloads 218
3727 Methodologies for Deriving Semantic Technical Information Using an Unstructured Patent Text Data

Authors: Jaehyung An, Sungjoo Lee

Abstract:

Patent documents constitute an up-to-date and reliable source of knowledge for reflecting technological advance, so patent analysis has been widely used for identification of technological trends and formulation of technology strategies. But, identifying technological information from patent data entails some limitations such as, high cost, complexity, and inconsistency because it rely on the expert’ knowledge. To overcome these limitations, researchers have applied to a quantitative analysis based on the keyword technique. By using this method, you can include a technological implication, particularly patent documents, or extract a keyword that indicates the important contents. However, it only uses the simple-counting method by keyword frequency, so it cannot take into account the sematic relationship with the keywords and sematic information such as, how the technologies are used in their technology area and how the technologies affect the other technologies. To automatically analyze unstructured technological information in patents to extract the semantic information, it should be transformed into an abstracted form that includes the technological key concepts. Specific sentence structure ‘SAO’ (subject, action, object) is newly emerged by representing ‘key concepts’ and can be extracted by NLP (Natural language processor). An SAO structure can be organized in a problem-solution format if the action-object (AO) states that the problem and subject (S) form the solution. In this paper, we propose the new methodology that can extract the SAO structure through technical elements extracting rules. Although sentence structures in the patents text have a unique format, prior studies have depended on general NLP (Natural language processor) applied to the common documents such as newspaper, research paper, and twitter mentions, so it cannot take into account the specific sentence structure types of the patent documents. To overcome this limitation, we identified a unique form of the patent sentences and defined the SAO structures in the patents text data. There are four types of technical elements that consist of technology adoption purpose, application area, tool for technology, and technical components. These four types of sentence structures from patents have their own specific word structure by location or sequence of the part of speech at each sentence. Finally, we developed algorithms for extracting SAOs and this result offer insight for the technology innovation process by providing different perspectives of technology.

Keywords: NLP, patent analysis, SAO, semantic-analysis

Procedia PDF Downloads 262
3726 Early Identification and Early Intervention: Pre and Post Diagnostic Tests in Mathematics Courses

Authors: Kailash Ghimire, Manoj Thapa

Abstract:

This study focuses on early identification of deficiencies in pre-required areas of students who are enrolled in College Algebra and Calculus I classes. The students were given pre-diagnostic tests on the first day of the class before they are provided with the syllabus. The tests consist of prerequisite, uniform and advanced content outlined by the University System of Georgia (USG). The results show that 48% of students in College Algebra are lacking prerequisite skills while 52% of Calculus I students are lacking prerequisite skills but, interestingly these students are prior exposed to uniform content and advanced content. The study is still in progress and this paper contains the outcome from Fall 2017 and Spring 2018. In this paper, early intervention used in these classes: two days vs three days meeting a week and students’ self-assessment using exam wrappers and their effectiveness on students’ learning will also be discussed. A result of this study shows that there is an improvement on Drop, Fail and Withdraw (DFW) rates by 7%-10% compared to those in previous semesters.

Keywords: student at risk, diagnostic tests, identification, intervention, normalization gain, validity of tests

Procedia PDF Downloads 208
3725 Identification and Force Control of a Two Chambers Pneumatic Soft Actuator

Authors: Najib K. Dankadai, Ahmad 'Athif Mohd Faudzi, Khairuddin Osman, Muhammad Rusydi Muhammad Razif, IIi Najaa Aimi Mohd Nordin

Abstract:

Researches in soft actuators are now growing rapidly because of their adequacy to be applied in sectors like medical, agriculture, biological and welfare. This paper presents system identification (SI) and control of the force generated by a two chambers pneumatic soft actuator (PSA). A force mathematical model for the actuator was identified experimentally using data acquisition card and MATLAB SI toolbox. Two control techniques; a predictive functional control (PFC) and conventional proportional integral and derivative (PID) schemes are proposed and compared based on the identified model for the soft actuator flexible mechanism. Results of this study showed that both of the proposed controllers ensure accurate tracking when the closed loop system was tested with the step, sinusoidal and multi step reference input through MATLAB simulation although the PFC provides a better response than the PID.

Keywords: predictive functional control (PFC), proportional integral and derivative (PID), soft actuator, system identification

Procedia PDF Downloads 325
3724 Analysis of Facial Expressions with Amazon Rekognition

Authors: Kashika P. H.

Abstract:

The development of computer vision systems has been greatly aided by the efficient and precise detection of images and videos. Although the ability to recognize and comprehend images is a strength of the human brain, employing technology to tackle this issue is exceedingly challenging. In the past few years, the use of Deep Learning algorithms to treat object detection has dramatically expanded. One of the key issues in the realm of image recognition is the recognition and detection of certain notable people from randomly acquired photographs. Face recognition uses a way to identify, assess, and compare faces for a variety of purposes, including user identification, user counting, and classification. With the aid of an accessible deep learning-based API, this article intends to recognize various faces of people and their facial descriptors more accurately. The purpose of this study is to locate suitable individuals and deliver accurate information about them by using the Amazon Rekognition system to identify a specific human from a vast image dataset. We have chosen the Amazon Rekognition system, which allows for more accurate face analysis, face comparison, and face search, to tackle this difficulty.

Keywords: Amazon rekognition, API, deep learning, computer vision, face detection, text detection

Procedia PDF Downloads 104
3723 Human Identification and Detection of Suspicious Incidents Based on Outfit Colors: Image Processing Approach in CCTV Videos

Authors: Thilini M. Yatanwala

Abstract:

CCTV (Closed-Circuit-Television) Surveillance System is being used in public places over decades and a large variety of data is being produced every moment. However, most of the CCTV data is stored in isolation without having integrity. As a result, identification of the behavior of suspicious people along with their location has become strenuous. This research was conducted to acquire more accurate and reliable timely information from the CCTV video records. The implemented system can identify human objects in public places based on outfit colors. Inter-process communication technologies were used to implement the CCTV camera network to track people in the premises. The research was conducted in three stages and in the first stage human objects were filtered from other movable objects available in public places. In the second stage people were uniquely identified based on their outfit colors and in the third stage an individual was continuously tracked in the CCTV network. A face detection algorithm was implemented using cascade classifier based on the training model to detect human objects. HAAR feature based two-dimensional convolution operator was introduced to identify features of the human face such as region of eyes, region of nose and bridge of the nose based on darkness and lightness of facial area. In the second stage outfit colors of human objects were analyzed by dividing the area into upper left, upper right, lower left, lower right of the body. Mean color, mod color and standard deviation of each area were extracted as crucial factors to uniquely identify human object using histogram based approach. Color based measurements were written in to XML files and separate directories were maintained to store XML files related to each camera according to time stamp. As the third stage of the approach, inter-process communication techniques were used to implement an acknowledgement based CCTV camera network to continuously track individuals in a network of cameras. Real time analysis of XML files generated in each camera can determine the path of individual to monitor full activity sequence. Higher efficiency was achieved by sending and receiving acknowledgments only among adjacent cameras. Suspicious incidents such as a person staying in a sensitive area for a longer period or a person disappeared from the camera coverage can be detected in this approach. The system was tested for 150 people with the accuracy level of 82%. However, this approach was unable to produce expected results in the presence of group of people wearing similar type of outfits. This approach can be applied to any existing camera network without changing the physical arrangement of CCTV cameras. The study of human identification and suspicious incident detection using outfit color analysis can achieve higher level of accuracy and the project will be continued by integrating motion and gait feature analysis techniques to derive more information from CCTV videos.

Keywords: CCTV surveillance, human detection and identification, image processing, inter-process communication, security, suspicious detection

Procedia PDF Downloads 182
3722 Leader Self-sacrifice in Sports Organizations

Authors: Stefano Ruggieri, Rubinia C. Bonfanti

Abstract:

Research on leadership in sports organizations has proved extremely fruitful in recent decades, favoring the growing and diffusion of figures such as mental coaches, trainers, etc. Recent scholarly attention on organizations has been directed towards the phenomenon of leader self-sacrifice, wherein leaders who display such behavior are perceived by their followers as more effective, charismatic, and legitimate compared to those who prioritize self-interest. This growing interest reflects the importance of leaders who prioritize the collective welfare over personal gain, as they inspire greater loyalty, trust, and dedication among their followers, ultimately fostering a more cohesive and high-performing team environment. However, there is limited literature on the mechanisms through which self-sacrifice influences both group dynamics (such as cohesion and team identification) and individual factors (such as self-competence). The aim of the study is to analyze the impact of the leader self-sacrifice on cohesion, team identification and self-competence. Team identification is a crucial determinant of individual identity, delineated by the extent to which a team member aligns with a specific organizational team rather than broader social collectives. This association motivates members to synchronize their actions with the collective interests of the group, thereby fostering cohesion among its constituents, and cultivating a shared sense of purpose and unity within the team. In the domain of team sports, particularly soccer and water polo, two studies involving 447 participants (men = 238, women = 209) between 22 and 35 years old (M = 26.36, SD = 5.51) were conducted. The first study employed a correlational methodology to investigate the predictive capacity of self-sacrifice on cohesion, team identification, self-efficacy, and self-competence. The second study utilized an experimental design to explore the relationship between team identification and self-sacrifice. Together, these studies provided comprehensive insights into the multifaceted nature of leader self-sacrifice and its profound implications for group cohesion and individual well-being within organizational settings. The findings underscored the pivotal role of leader self-sacrifice in not only fostering stronger bonds among team members but also in enhancing critical facets of group dynamics, ultimately contributing to the overall effectiveness and success of the team.

Keywords: cohesion, leadership, self-sacrifice, sports organizations, team-identification

Procedia PDF Downloads 44
3721 Density Measurement of Underexpanded Jet Using Stripe Patterned Background Oriented Schlieren Method

Authors: Shinsuke Udagawa, Masato Yamagishi, Masanori Ota

Abstract:

The Schlieren method, which has been conventionally used to visualize high-speed flows, has disadvantages such as the complexity of the experimental setup and the inability to quantitatively analyze the amount of refraction of light. The Background Oriented Schlieren (BOS) method proposed by Meier is one of the measurement methods that solves the problems, as mentioned above. The refraction of light is used for BOS method same as the Schlieren method. The BOS method is characterized using a digital camera to capture the images of the background behind the observation area. The images are later analyzed by a computer to quantitatively detect the amount of shift of the background image. The experimental setup for BOS does not require concave mirrors, pinholes, or color filters, which are necessary in the conventional Schlieren method, thus simplifying the experimental setup. However, the defocusing of the observation results is caused in case of using BOS method. Since the focus of camera on the background image leads to defocusing of the observed object. The defocusing of object becomes greater with increasing the distance between the background and the object. On the other hand, the higher sensitivity can be obtained. Therefore, it is necessary to adjust the distance between the background and the object to be appropriate for the experiment, considering the relation between the defocus and the sensitivity. The purpose of this study is to experimentally clarify the effect of defocus on density field reconstruction. In this study, the visualization experiment of underexpanded jet using BOS measurement system with ronchi ruling as the background that we constructed, have been performed. The reservoir pressure of the jet and the distance between camera and axis of jet is fixed, and the distance between background and axis of jet has been changed as the parameter. The images have been later analyzed by using personal computer to quantitatively detect the amount of shift of the background image from the comparison between the background pattern and the captured image of underexpanded jet. The quantitatively measured amount of shift have been reconstructed into a density flow field using the Abel transformation and the Gradstone-Dale equation. From the experimental results, it is found that the reconstructed density image becomes blurring, and noise becomes decreasing with increasing the distance between background and axis of underexpanded jet. Consequently, it is cralified that the sensitivity constant should be greater than 20, and the circle of confusion diameter should be less than 2.7mm at least in this experimental setup.

Keywords: BOS method, underexpanded jet, abel transformation, density field visualization

Procedia PDF Downloads 78
3720 Developing Computational Thinking in Early Childhood Education

Authors: Kalliopi Kanaki, Michael Kalogiannakis

Abstract:

Nowadays, in the digital era, the early acquisition of basic programming skills and knowledge is encouraged, as it facilitates students’ exposure to computational thinking and empowers their creativity, problem-solving skills, and cognitive development. More and more researchers and educators investigate the introduction of computational thinking in K-12 since it is expected to be a fundamental skill for everyone by the middle of the 21st century, just like reading, writing and arithmetic are at the moment. In this paper, a doctoral research in the process is presented, which investigates the infusion of computational thinking into science curriculum in early childhood education. The whole attempt aims to develop young children’s computational thinking by introducing them to the fundamental concepts of object-oriented programming in an enjoyable, yet educational framework. The backbone of the research is the digital environment PhysGramming (an abbreviation of Physical Science Programming), which provides children the opportunity to create their own digital games, turning them from passive consumers to active creators of technology. PhysGramming deploys an innovative hybrid schema of visual and text-based programming techniques, with emphasis on object-orientation. Through PhysGramming, young students are familiarized with basic object-oriented programming concepts, such as classes, objects, and attributes, while, at the same time, get a view of object-oriented programming syntax. Nevertheless, the most noteworthy feature of PhysGramming is that children create their own digital games within the context of physical science courses, in a way that provides familiarization with the basic principles of object-oriented programming and computational thinking, even though no specific reference is made to these principles. Attuned to the ethical guidelines of educational research, interventions were conducted in two classes of second grade. The interventions were designed with respect to the thematic units of the curriculum of physical science courses, as a part of the learning activities of the class. PhysGramming was integrated into the classroom, after short introductory sessions. During the interventions, 6-7 years old children worked in pairs on computers and created their own digital games (group games, matching games, and puzzles). The authors participated in these interventions as observers in order to achieve a realistic evaluation of the proposed educational framework concerning its applicability in the classroom and its educational and pedagogical perspectives. To better examine if the objectives of the research are met, the investigation was focused on six criteria; the educational value of PhysGramming, its engaging and enjoyable characteristics, its child-friendliness, its appropriateness for the purpose that is proposed, its ability to monitor the user’s progress and its individualizing features. In this paper, the functionality of PhysGramming and the philosophy of its integration in the classroom are both described in detail. Information about the implemented interventions and the results obtained is also provided. Finally, several limitations of the research conducted that deserve attention are denoted.

Keywords: computational thinking, early childhood education, object-oriented programming, physical science courses

Procedia PDF Downloads 120
3719 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: active contour, Bayesian, echocardiographic image, feature vector

Procedia PDF Downloads 445
3718 Application of Principle Component Analysis for Classification of Random Doppler-Radar Targets during the Surveillance Operations

Authors: G. C. Tikkiwal, Mukesh Upadhyay

Abstract:

During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving army, moving convoys etc. The Radar operator selects one of the promising targets into Single Target Tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper we present a technique using mathematical and statistical methods like Fast Fourier Transformation (FFT) and Principal Component Analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.

Keywords: radar target, fft, principal component analysis, eigenvector, octave-notes, dsp

Procedia PDF Downloads 346
3717 Best Timing for Capturing Satellite Thermal Images, Asphalt, and Concrete Objects

Authors: Toufic Abd El-Latif Sadek

Abstract:

The asphalt object represents the asphalted areas like roads, and the concrete object represents the concrete areas like concrete buildings. The efficient extraction of asphalt and concrete objects from one satellite thermal image occurred at a specific time, by preventing the gaps in times which give the close and same brightness values between asphalt and concrete, and among other objects. So that to achieve efficient extraction and then better analysis. Seven sample objects were used un this study, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found that, the best timing for capturing satellite thermal images to extract the two objects asphalt and concrete from one satellite thermal image, saving time and money, occurred at a specific time in different months. A table is deduced shows the optimal timing for capturing satellite thermal images to extract effectively these two objects.

Keywords: asphalt, concrete, satellite thermal images, timing

Procedia PDF Downloads 322
3716 Application of a Synthetic DNA Reference Material for Optimisation of DNA Extraction and Purification for Molecular Identification of Medicinal Plants

Authors: Mina Kalantarzadeh, Claire Lockie-Williams, Caroline Howard

Abstract:

DNA barcoding is increasingly used for identification of medicinal plants worldwide. In the last decade, a large number of DNA barcodes have been generated, and their application in species identification explored. The success of DNA barcoding process relies on the accuracy of the results from polymerase chain reaction (PCR) amplification step which could be negatively affected due to a presence of inhibitors or degraded DNA in herbal samples. An established DNA reference material can be used to support molecular characterisation protocols and prove system suitability, for fast and accurate identification of plant species. The present study describes the use of a novel reference material, the trnH-psbA British Pharmacopoeia Nucleic Acid Reference Material (trnH-psbA BPNARM), which was produced to aid in the identification of Ocimum tenuiflorum L., a widely used herb. During DNA barcoding of O. tenuiflorum, PCR amplifications of isolated DNA produced inconsistent results, suggesting an issue with either the method or DNA quality of the tested samples. The trnH-psbA BPNARM was produced and tested to check for the issues caused during PCR amplification. It was added to the plant material as control DNA before extraction and was co-extracted and amplified by PCR. PCR analyses revealed that the amplification was not as successful as expected which suggested that the amplification is affected by presence of inhibitors co-extracted from plant materials. Various potential issues were assessed during DNA extraction and optimisations were made accordingly. A DNA barcoding protocol for O. tenuiflorum was published in the British Pharmacopoeia 2016, which included the reference sequence. The trnH-psbA BPNARM accelerated degradation test which investigates the stability of the reference material over time demonstrated that it has been stable when stored at 56 °C for a year. Using this protocol and trnH-psbA reference material provides a fast and accurate method for identification of O. tenuiflorum. The optimisations of the DNA extraction using the trnH-psbA BPNARM provided a signposting method which can assist in overcoming common problems encountered when using molecular methods with medicinal plants.

Keywords: degradation, DNA extraction, nucleic acid reference material, trnH-psbA

Procedia PDF Downloads 199
3715 Metaphors of Love and Passion in Lithuanian Comics

Authors: Saulutė Juzelėnienė, Skirmantė Šarkauskienė

Abstract:

In this paper, it is aimed to analyse the multimodal representations of the concepts of LOVE and PASSION in Lithuanian graphic novel “Gertrūda”, by Gerda Jord. The research is based on the earlier findings by Forceville (2005), Eerden (2009) as well as insights made by Shihara and Matsunaka (2009) and Kövecses (2000). The domains of target and source of LOVE and PASSION metaphors in comics are expressed by verbal and non-verbal cues. The analysis of non-verbal cues adopts the concepts of rune and indexes. A pictorial rune is a graphic representation of an object that does not exist in reality in comics, such as lines, dashes, text "balloons", and pictorial index – a graphically represented object of reality, a real symptom expressing a certain emotion, such as a wide smile, furrowed eyebrows, etc. Indexes are often hyperbolized in comics. The research revealed that most frequent source domains are CLOSINESS/UNITY, NATURAL/ PHYSICAL FORCE, VALUABLE OBJECT, PRESSURE. The target is the emotion of LOVE/PASSION which belongs to a more abstract domain of psychological experience. In this kind of metaphor, the picture can be interpreted as representing the emotion of happiness. Data are taken from Lithuanian comic books and Internet sites, where comics have been presented. The data and the analysis we are providing in this article aims to reveal that there are pictorial metaphors that manifest conceptual metaphors that are also expressed verbally and that methodological framework constructed for the analysis in the papers by Forceville at all is applicable to other emotions and culture specific pictorial manifestations.

Keywords: multimodal metaphor, conceptual metaphor, comics, graphic novel, concept of love/passion

Procedia PDF Downloads 67
3714 DEEPMOTILE: Motility Analysis of Human Spermatozoa Using Deep Learning in Sri Lankan Population

Authors: Chamika Chiran Perera, Dananjaya Perera, Chirath Dasanayake, Banuka Athuraliya

Abstract:

Male infertility is a major problem in the world, and it is a neglected and sensitive health issue in Sri Lanka. It can be determined by analyzing human semen samples. Sperm motility is one of many factors that can evaluate male’s fertility potential. In Sri Lanka, this analysis is performed manually. Manual methods are time consuming and depend on the person, but they are reliable and it can depend on the expert. Machine learning and deep learning technologies are currently being investigated to automate the spermatozoa motility analysis, and these methods are unreliable. These automatic methods tend to produce false positive results and false detection. Current automatic methods support different techniques, and some of them are very expensive. Due to the geographical variance in spermatozoa characteristics, current automatic methods are not reliable for motility analysis in Sri Lanka. The suggested system, DeepMotile, is to explore a method to analyze motility of human spermatozoa automatically and present it to the andrology laboratories to overcome current issues. DeepMotile is a novel deep learning method for analyzing spermatozoa motility parameters in the Sri Lankan population. To implement the current approach, Sri Lanka patient data were collected anonymously as a dataset, and glass slides were used as a low-cost technique to analyze semen samples. Current problem was identified as microscopic object detection and tackling the problem. YOLOv5 was customized and used as the object detector, and it achieved 94 % mAP (mean average precision), 86% Precision, and 90% Recall with the gathered dataset. StrongSORT was used as the object tracker, and it was validated with andrology experts due to the unavailability of annotated ground truth data. Furthermore, this research has identified many potential ways for further investigation, and andrology experts can use this system to analyze motility parameters with realistic accuracy.

Keywords: computer vision, deep learning, convolutional neural networks, multi-target tracking, microscopic object detection and tracking, male infertility detection, motility analysis of human spermatozoa

Procedia PDF Downloads 106
3713 Detection of Pharmaceutical Personal Protective Equipment in Video Stream

Authors: Michael Leontiev, Danil Zhilikov, Dmitry Lobanov, Lenar Klimov, Vyacheslav Chertan, Daniel Bobrov, Vladislav Maslov, Vasilii Vologdin, Ksenia Balabaeva

Abstract:

Pharmaceutical manufacturing is a complex process, where each stage requires a high level of safety and sterility. Personal Protective Equipment (PPE) is used for this purpose. Despite all the measures of control, the human factor (improper PPE wearing) causes numerous losses to human health and material property. This research proposes a solid computer vision system for ensuring safety in pharmaceutical laboratories. For this, we have tested a wide range of state-of-the-art object detection methods. Composing previously obtained results in this sphere with our own approach to this problem, we have reached a high accuracy ([email protected]) ranging from 0.77 up to 0.98 in detecting all the elements of a common set of PPE used in pharmaceutical laboratories. Our system is a step towards safe medicine production.

Keywords: sterility and safety in pharmaceutical development, personal protective equipment, computer vision, object detection, monitoring in pharmaceutical development, PPE

Procedia PDF Downloads 87
3712 Enhanced Acquisition Time of a Quantum Holography Scheme within a Nonlinear Interferometer

Authors: Sergio Tovar-Pérez, Sebastian Töpfer, Markus Gräfe

Abstract:

The work proposes a technique that decreases the detection acquisition time of quantum holography schemes down to one-third; this allows the possibility to image moving objects. Since its invention, quantum holography with undetected photon schemes has gained interest in the scientific community. This is mainly due to its ability to tailor the detected wavelengths according to the needs of the scheme implementation. Yet this wavelength flexibility grants the scheme a wide range of possible applications; an important matter was yet to be addressed. Since the scheme uses digital phase-shifting techniques to retrieve the information of the object out of the interference pattern, it is necessary to acquire a set of at least four images of the interference pattern along with well-defined phase steps to recover the full object information. Hence, the imaging method requires larger acquisition times to produce well-resolved images. As a consequence, the measurement of moving objects remains out of the reach of the imaging scheme. This work presents the use and implementation of a spatial light modulator along with a digital holographic technique called quasi-parallel phase-shifting. This technique uses the spatial light modulator to build a structured phase image consisting of a chessboard pattern containing the different phase steps for digitally calculating the object information. Depending on the reduction in the number of needed frames, the acquisition time reduces by a significant factor. This technique opens the door to the implementation of the scheme for moving objects. In particular, the application of this scheme in imaging alive specimens comes one step closer.

Keywords: quasi-parallel phase shifting, quantum imaging, quantum holography, quantum metrology

Procedia PDF Downloads 114
3711 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: texture classification, texture descriptor, SIFT, SURF, ORB

Procedia PDF Downloads 369
3710 Low-Cost Parking Lot Mapping and Localization for Home Zone Parking Pilot

Authors: Hongbo Zhang, Xinlu Tang, Jiangwei Li, Chi Yan

Abstract:

Home zone parking pilot (HPP) is a fast-growing segment in low-speed autonomous driving applications. It requires the car automatically cruise around a parking lot and park itself in a range of up to 100 meters inside a recurrent home/office parking lot, which requires precise parking lot mapping and localization solution. Although Lidar is ideal for SLAM, the car OEMs favor a low-cost fish-eye camera based visual SLAM approach. Recent approaches have employed segmentation models to extract semantic features and improve mapping accuracy, but these AI models are memory unfriendly and computationally expensive, making deploying on embedded ADAS systems difficult. To address this issue, we proposed a new method that utilizes object detection models to extract robust and accurate parking lot features. The proposed method could reduce computational costs while maintaining high accuracy. Once combined with vehicles’ wheel-pulse information, the system could construct maps and locate the vehicle in real-time. This article will discuss in detail (1) the fish-eye based Around View Monitoring (AVM) with transparent chassis images as the inputs, (2) an Object Detection (OD) based feature point extraction algorithm to generate point cloud, (3) a low computational parking lot mapping algorithm and (4) the real-time localization algorithm. At last, we will demonstrate the experiment results with an embedded ADAS system installed on a real car in the underground parking lot.

Keywords: ADAS, home zone parking pilot, object detection, visual SLAM

Procedia PDF Downloads 67
3709 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: active contour, bayesian, echocardiographic image, feature vector

Procedia PDF Downloads 420
3708 Age–Related Changes of the Sella Turcica Morphometry in Adults Older Than 20-25 Years

Authors: Yu. I. Pigolkin, M. A. Garcia Corro

Abstract:

Age determination of unknown dead bodies in forensic personal identification is a complicated process which involves the application of numerous methods and techniques. Skeletal remains are less exposed to influences of environmental factors. In order to enhance the accuracy of forensic age estimation additional properties of bones correlating with age are required to be revealed. Material and Methods: Dimensional examination of the sella turcica was carried out on cadavers with the cranium opened by a circular vibrating saw. The sample consisted of a total of 90 Russian subjects, ranging in age from two months and 87 years. Results: The tendency of dimensional variations throughout life was detected. There were no observed gender differences in the morphometry of the sella turcica. The shared use of the sella turcica depth and length values revealed the possibility to categorize an examined sample in a certain age period. Conclusions: Based on the results of existing methods of age determination, the morphometry of the sella turcica can be an additional characteristic, amplifying the received values, and accordingly, increasing the accuracy of forensic biological age diagnosis.

Keywords: age–related changes in bone structures, forensic personal identification, sella turcica morphometry, body identification

Procedia PDF Downloads 275
3707 Influence of Radio Frequency Identification Technology at Cost of Supply Chain as a Driver for the Generation of Competitive Advantage

Authors: Mona Baniahmadi, Saied Haghanifar

Abstract:

Radio Frequency Identification (RFID) is regarded as a promising technology for the optimization of supply chain processes since it improves manufacturing and retail operations from forecasting demand for planning, managing inventory, and distribution. This study precisely aims at learning to know the RFID technology and at explaining how it can concretely be used for supply chain management and how it can help improving it in the case of Hejrat Company which is located in Iran and works on the distribution of medical drugs and cosmetics. This study uses some statistical analysis to calculate the expected benefits of an integrated RFID system on supply chain obtained through competitive advantages increases with decreasing cost factor. The study investigates how the cost of storage process, labor cost, the cost of missing goods, inventory management optimization, on-time delivery, order cost, lost sales and supply process optimization affect the performance of the integrated RFID supply chain regarding cost factors and provides a competitive advantage.

Keywords: cost, competitive advantage, radio frequency identification, supply chain

Procedia PDF Downloads 276
3706 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines

Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso

Abstract:

The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.

Keywords: feature extraction, machine learning, OBIA, remote sensing

Procedia PDF Downloads 362