Search results for: Cluster Redevelopment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 927

Search results for: Cluster Redevelopment

597 Multilevel Two-Phase Structuring in the Nitrogen Supersaturated AISI316 Stainless Steel

Authors: Tatsuhiko Aizawa, Yohei Suzuki, Tomomi Shiratori

Abstract:

The austenitic stainless steel type AISI316 has been widely utilized as structural members and mold die substrates. The low temperature plasma nitriding has been utilized to harden these AISI316 members, parts, and dies without loss of intrinsic corrosion resistance to AISI316 stainless steels. Formation of CrN precipitates by normal plasma nitriding processes resulted in severe deterioration of corrosion toughness. Most previous studies on this low temperature nitriding of AISI316 only described the lattice expansion of original AISI316 lattices by the occupation of nitrogen interstitial solutes into octahedral vacancy sites, the significant hardening by nitrogen solid solution, and the enhancement of corrosion toughness. In addition to those engineering items, this low temperature nitriding process was characterized by the nitrogen supersaturation and nitrogen diffusion processes. The nitrogen supersaturated zones expanded by the nitrogen solute occupation to octahedral vacancy sites, and the un-nitrided surroundings to these zones were plastically strained to compensate for the mismatch strains across these nitrided and nitrided zones. The microstructure of nitrided AISI316 was refined by this plastic straining. The nitrogen diffusion process was enhanced to transport nitrogen solute atoms through the refined zone boundaries. This synergetic collaboration among the nitrogen supersaturation, the lattice expansion, the plastic straining, and the grain refinement yielded a thick nitrogen supersaturated layer. This synergetic relation was also characterized by the multilevel two-phase structuring. In XRD (X-Ray Diffraction) analysis, the nitrided AISI316 layer had - and -phases with the peak shifts from original lattices. After EBSD (Electron Back Scattering Diffraction) analysis, -grains and -grains homogeneously distributed in the nitrided layer. The scanning transmission electron microscopy (STEM) revealed that g-phase zone is N-poor cluster and a-phase zone is N-rich cluster. This proves that nitrogen supersaturated AISI316 stainless steels have multi-level two-phase structure in a very fine granular system.

Keywords: AISI316 stainless steels, chemical affinity to nitrogen solutes, multi-level two-phase structuring, nitrogen supersaturation

Procedia PDF Downloads 100
596 Hydrochemical Contamination Profiling and Spatial-Temporal Mapping with the Support of Multivariate and Cluster Statistical Analysis

Authors: Sofia Barbosa, Mariana Pinto, José António Almeida, Edgar Carvalho, Catarina Diamantino

Abstract:

The aim of this work was to test a methodology able to generate spatial-temporal maps that can synthesize simultaneously the trends of distinct hydrochemical indicators in an old radium-uranium tailings dam deposit. Multidimensionality reduction derived from principal component analysis and subsequent data aggregation derived from clustering analysis allow to identify distinct hydrochemical behavioural profiles and to generate synthetic evolutionary hydrochemical maps.

Keywords: Contamination plume migration, K-means of PCA scores, groundwater and mine water monitoring, spatial-temporal hydrochemical trends

Procedia PDF Downloads 236
595 Comparison of Various Landfill Ground Improvement Techniques for Redevelopment of Closed Landfills to Cater Transport Infrastructure

Authors: Michael D. Vinod, Hadi Khabbaz

Abstract:

Construction of infrastructure above or adjacent to landfills is becoming more common to capitalize on the limited space available within urban areas. However, development above landfills is a challenging task due to large voids, the presence of organic matter, heterogeneous nature of waste and ambiguity surrounding landfill settlement prediction. Prior to construction of infrastructure above landfills, ground improvement techniques are being employed to improve the geotechnical properties of landfill material. Although the ground improvement techniques have little impact on long term biodegradation and creep related landfill settlement, they have shown some notable short term success with a variety of techniques, including methods for verifying the level of effectiveness of ground improvement techniques. This paper provides geotechnical and landfill engineers a guideline for selection of landfill ground improvement techniques and their suitability to project-specific sites. Ground improvement methods assessed and compared in this paper include concrete injected columns (CIC), dynamic compaction, rapid impact compaction (RIC), preloading, high energy impact compaction (HEIC), vibro compaction, vibro replacement, chemical stabilization and the inclusion of geosynthetics such as geocells. For each ground improvement technique a summary of the existing theory, benefits, limitations, suitable modern ground improvement monitoring methods, the applicability of ground improvement techniques for landfills and supporting case studies are provided. The authors highlight the importance of implementing cost-effective monitoring techniques to allow observation and necessary remediation of the subsidence effects associated with long term landfill settlement. These ground improvement techniques are primarily for the purpose of construction above closed landfills to cater for transport infrastructure loading.

Keywords: closed landfills, ground improvement, monitoring, settlement, transport infrastructure

Procedia PDF Downloads 226
594 The Effect of Bunch in the Branch on Vegetative Characteristics of Pistacia vera

Authors: Alireza Sohrabi, Hamid Mohammadi

Abstract:

The pistachio fruit is a strategic product in Iran. One of the problems caused the reduction of pistachio proceeds is related to biennial- bearing or alternative bearing. Biennial- bearing is very important and is happened because of the fallen female bloom buds in vintage year. This test was done according to random blocks of 6 orchards in the type of Ahmad Aghaie with 4 iterations. Vegetative properties of branch are investigated. The results are shown that if the bunch numbers are increased, the possibility of falling is increased in bloom buds. The least possibility of falling of bloom buds is specified in trimming of one bunch and has significant difference with other trimming.

Keywords: alternate bearing, pistachio, cluster, bud

Procedia PDF Downloads 440
593 The Relevance of Intellectual Capital: An Analysis of Spanish Universities

Authors: Yolanda Ramirez, Angel Tejada, Agustin Baidez

Abstract:

In recent years, the intellectual capital reporting in higher education institutions has been acquiring progressive importance worldwide. Intellectual capital approaches becomes critical at universities, mainly due to the fact that knowledge is the main output as well as input in these institutions. Universities produce knowledge, either through scientific and technical research (the results of investigation, publications, etc.) or through teaching (students trained and productive relationships with their stakeholders). The purpose of the present paper is to identify the intangible elements about which university stakeholders demand most information. The results of a study done at Spanish universities are used to see which groups of universities have stakeholders who are more proactive to the disclosure of intellectual capital.

Keywords: intellectual capital, universities, Spain, cluster analysis

Procedia PDF Downloads 510
592 Application of Fuzzy Clustering on Classification Agile Supply Chain Firms

Authors: Hamidreza Fallah Lajimi, Elham Karami, Alireza Arab, Fatemeh Alinasab

Abstract:

Being responsive is an increasingly important skill for firms in today’s global economy; thus firms must be agile. Naturally, it follows that an organization’s agility depends on its supply chain being agile. However, achieving supply chain agility is a function of other abilities within the organization. This paper analyses results from a survey of 71 Iran manufacturing companies in order to identify some of the factors for agile organizations in managing their supply chains. Then we classification this company in four cluster with fuzzy c-mean technique and with Four validations functional determine automatically the optimal number of clusters.

Keywords: agile supply chain, clustering, fuzzy clustering, business engineering

Procedia PDF Downloads 715
591 Analysis of Ozone Episodes in the Forest and Vegetation Areas with Using HYSPLIT Model: A Case Study of the North-West Side of Biga Peninsula, Turkey

Authors: Deniz Sari, Selahattin İncecik, Nesimi Ozkurt

Abstract:

Surface ozone, which named as one of the most critical pollutants in the 21th century, threats to human health, forest and vegetation. Specifically, in rural areas surface ozone cause significant influences on agricultural productions and trees. In this study, in order to understand to the surface ozone levels in rural areas we focus on the north-western side of Biga Peninsula which covers by the mountainous and forested area. Ozone concentrations were measured for the first time with passive sampling at 10 sites and two online monitoring stations in this rural area from 2013 and 2015. Using with the daytime hourly O3 measurements during light hours (08:00–20:00) exceeding the threshold of 40 ppb over the 3 months (May, June and July) for agricultural crops, and over the six months (April to September) for forest trees AOT40 (Accumulated hourly O3 concentrations Over a Threshold of 40 ppb) cumulative index was calculated. AOT40 is defined by EU Directive 2008/50/EC to evaluate whether ozone pollution is a risk for vegetation, and is calculated by using hourly ozone concentrations from monitoring systems. In the present study, we performed the trajectory analysis by The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to follow the long-range transport sources contributing to the high ozone levels in the region. The ozone episodes observed between 2013 and 2015 were analysed using the HYSPLIT model developed by the NOAA-ARL. In addition, the cluster analysis is used to identify homogeneous groups of air mass transport patterns can be conducted through air trajectory clustering by grouping similar trajectories in terms of air mass movement. Backward trajectories produced for 3 years by HYSPLIT model were assigned to different clusters according to their moving speed and direction using a k-means clustering algorithm. According to cluster analysis results, northerly flows to study area cause to high ozone levels in the region. The results present that the ozone values in the study area are above the critical levels for forest and vegetation based on EU Directive 2008/50/EC.

Keywords: AOT40, Biga Peninsula, HYSPLIT, surface ozone

Procedia PDF Downloads 255
590 K-Means Clustering-Based Infinite Feature Selection Method

Authors: Seyyedeh Faezeh Hassani Ziabari, Sadegh Eskandari, Maziar Salahi

Abstract:

Infinite Feature Selection (IFS) algorithm is an efficient feature selection algorithm that selects a subset of features of all sizes (including infinity). In this paper, we present an improved version of it, called clustering IFS (CIFS), by clustering the dataset in advance. To do so, first, we apply the K-means algorithm to cluster the dataset, then we apply IFS. In the CIFS method, the spatial and temporal complexities are reduced compared to the IFS method. Experimental results on 6 datasets show the superiority of CIFS compared to IFS in terms of accuracy, running time, and memory consumption.

Keywords: feature selection, infinite feature selection, clustering, graph

Procedia PDF Downloads 129
589 A Review of Security Attacks and Intrusion Detection Schemes in Wireless Sensor Networks: A Survey

Authors: Maleh Yassine, Ezzati Abdellah

Abstract:

Wireless Sensor Networks (WSNs) are currently used in different industrial and consumer applications, such as earth monitoring, health related applications, natural disaster prevention, and many other areas. Security is one of the major aspects of wireless sensor networks due to the resource limitations of sensor nodes. However, these networks are facing several threats that affect their functioning and their life. In this paper we present security attacks in wireless sensor networks, and we focus on a review and analysis of the recent Intrusion Detection schemes in WSNs.

Keywords: wireless sensor networks, security attack, denial of service, IDS, cluster-based model, signature based IDS, hybrid IDS

Procedia PDF Downloads 387
588 Use of Bamboo Piles in Ground Improvement Design: Case Study

Authors: Thayalan Nall, Andreas Putra

Abstract:

A major offshore reclamation work is currently underway in Southeast Asia for a container terminal. The total extent of the reclamation extent is 2600m x 800m and the seabed level is around -5mRL below mean sea level. Subsoil profile below seabed comprises soft marine clays of thickness varying from 8m to 15m. To contain the dredging spoil within the reclamation area, perimeter bunds have been constructed to +2.5mRL. They include breakwaters of trapezoidal geometry, made of boulder size rock along the northern, eastern and western perimeters, with a sand bund along the southern perimeter. Breakwaters were constructed on a composite bamboo pile and raft foundation system. Bamboo clusters 8m long, with 7 individual Bamboos bundled together as one, have been installed within the footprint of the breakwater below seabed in soft marine clay. To facilitate drainage two prefabricated vertical drains (PVD) have been attached to each cluster. Once the cluster piles were installed, a bamboo raft was placed as a load transfer platform. Rafts were made up of 5 layers of bamboo mattress, and in each layer bamboos were spaced at 200mm centres. The rafts wouldn’t sink under their own weight, and hence, they were sunk by loading quarry run rock onto them. Bamboo is a building material available in abundance in Indonesia and obtained at a relatively low cost. They are commonly used as semi-rigid inclusions to improve compressibility and stability of soft soils. Although bamboo is widely used in soft soil engineering design, no local design guides are available and the designs are carried out based on local experience. In June 2015, when the 1st load of sand was pumped by a dredging vessel next to the breakwater, a 150m long section of the breakwater underwent failure and displaced the breakwater between 1.2m to 4.0m. The cause of the failure was investigated to implement remedial measures to reduce the risk of further failures. Analyses using both limit equilibrium approach and finite element modelling revealed two plausible modes of breakwater failure. This paper outlines: 1) Developed Geology and the ground model, 2) The techniques used for the installation of bamboo piles, 3) Details of the analyses including modes and mechanism of failure and 4) Design changes incorporated to reduce the risk of failure.

Keywords: bamboo piles, ground improvement, reclamation, breakwater failure

Procedia PDF Downloads 419
587 Data Clustering Algorithm Based on Multi-Objective Periodic Bacterial Foraging Optimization with Two Learning Archives

Authors: Chen Guo, Heng Tang, Ben Niu

Abstract:

Clustering splits objects into different groups based on similarity, making the objects have higher similarity in the same group and lower similarity in different groups. Thus, clustering can be treated as an optimization problem to maximize the intra-cluster similarity or inter-cluster dissimilarity. In real-world applications, the datasets often have some complex characteristics: sparse, overlap, high dimensionality, etc. When facing these datasets, simultaneously optimizing two or more objectives can obtain better clustering results than optimizing one objective. However, except for the objectives weighting methods, traditional clustering approaches have difficulty in solving multi-objective data clustering problems. Due to this, evolutionary multi-objective optimization algorithms are investigated by researchers to optimize multiple clustering objectives. In this paper, the Data Clustering algorithm based on Multi-objective Periodic Bacterial Foraging Optimization with two Learning Archives (DC-MPBFOLA) is proposed. Specifically, first, to reduce the high computing complexity of the original BFO, periodic BFO is employed as the basic algorithmic framework. Then transfer the periodic BFO into a multi-objective type. Second, two learning strategies are proposed based on the two learning archives to guide the bacterial swarm to move in a better direction. On the one hand, the global best is selected from the global learning archive according to the convergence index and diversity index. On the other hand, the personal best is selected from the personal learning archive according to the sum of weighted objectives. According to the aforementioned learning strategies, a chemotaxis operation is designed. Third, an elite learning strategy is designed to provide fresh power to the objects in two learning archives. When the objects in these two archives do not change for two consecutive times, randomly initializing one dimension of objects can prevent the proposed algorithm from falling into local optima. Fourth, to validate the performance of the proposed algorithm, DC-MPBFOLA is compared with four state-of-art evolutionary multi-objective optimization algorithms and one classical clustering algorithm on evaluation indexes of datasets. To further verify the effectiveness and feasibility of designed strategies in DC-MPBFOLA, variants of DC-MPBFOLA are also proposed. Experimental results demonstrate that DC-MPBFOLA outperforms its competitors regarding all evaluation indexes and clustering partitions. These results also indicate that the designed strategies positively influence the performance improvement of the original BFO.

Keywords: data clustering, multi-objective optimization, bacterial foraging optimization, learning archives

Procedia PDF Downloads 141
586 Effectiveness of a Physical Activity Loyalty Scheme to Maintain Behaviour Change: A Cluster Randomised Controlled Trial

Authors: Aisling Gough, Ruth F. Hunter, Jianjun Tang, Sarah F. Brennan, Oliver Smith, Mark A. Tully, Chris Patterson, Alberto Longo, George Hutchinson, Lindsay Prior, David French, Jean Adams, Emma McIntosh, Frank Kee

Abstract:

Background: As a large proportion of the UK workforce is employed in sedentary occupations, worksite interventions have the potential to contribute significantly to the health of the population. The UK Government is currently encouraging the use of financial incentives to promote healthier lifestyles but there is a dearth of evidence regarding the effectiveness and sustainability of incentive schemes to promote physical activity in the workplace. Methods: A large cluster RCT is currently underway, incorporating nested behavioural economic field experiments and process evaluation, to evaluate the effectiveness of a Physical Activity Loyalty Scheme. Office-based employees were recruited from large public sector organisations in Lisburn and Belfast (Northern Ireland) and randomised to an Intervention or Control group. Participants in the Intervention Group were encouraged to take part in 150 minutes of physical activity per week through provision of financial incentives (retailer vouchers) to those who met physical activity targets throughout the course of the 6 month intervention. Minutes of physical activity were monitored when participants passed by sensors (holding a keyfob) placed along main walking routes, parks and public transport stops nearby their workplace. Participants in the Control Group will complete the same outcome assessments (waiting-list control). The primary outcome is steps per day measured via pedometers (7 days). Secondary outcomes include health and wellbeing (Short Form-8, EuroQol-5D-5L, Warwick Edinburgh Mental Well Being Scale), and work absenteeism and presenteeism. Data will be collected at baseline, 6, 12 and 18 months. Information on PAL card & website usage, voucher downloads and redemption of vouchers will also be collected as part of a comprehensive process evaluation. Results: In total, 853 participants have been recruited from 9 workplaces in Lisburn, 12 buildings within the Stormont Estate, Queen’s University Belfast and Belfast City Hospital. Participants have been randomised to intervention and control groups. Baseline and 6-month data for the Physical Activity Loyalty Scheme has been collected. Findings regarding the effectiveness of the intervention from the 6-month follow-up data will be presented. Discussion: This study will address the gap in knowledge regarding the effectiveness and cost-effectiveness of a workplace-based financial incentive scheme to promote a healthier lifestyle. As the UK workforce is increasingly sedentary, workplace-based physical activity interventions have significant potential in terms of encouraging employees to partake in physical activity during the working day which could lead to substantial improvements in physical activity levels overall. Implications: If a workplace based physical activity intervention such as this proves to be both effective and cost-effective, there is great potential to contribute significantly to the health and wellbeing of the workforce in the future. Workplace-based physical activity interventions have the potential to improve the physical and mental health of employees which may in turn lead to economic benefits for the employer, such as reduction in rates of absenteeism and increased productivity.

Keywords: behaviour change, cluster randomised controlled trial, loyalty scheme, physical activity

Procedia PDF Downloads 326
585 Chemical Variability in the Essential Oils from the Leaves and Buds of Syzygium Species

Authors: Rabia Waseem, Low Kah Hin, Najihah Mohamed Hashim

Abstract:

The variability in the chemical components of the Syzygium species essential oils has been evaluated. The leaves of Syzygium species have been collected from Perak, Malaysia. The essential oils extracted by using the conventional Hydro-distillation extraction procedure and analyzed by using Gas chromatography System attached with Mass Spectrometry (GCMS). Twenty-seven constituents were found in Syzygium species in which the major constituents include: α-Pinene (3.94%), α-Thujene (2.16%), α-Terpineol (2.95%), g-Elemene (2.89%) and D-Limonene (14.59%). The aim of this study was the comparison between the evaluated data and existing literature to fortify the major variability through statistical analysis.

Keywords: chemotaxonomy, cluster analysis, essential oil, medicinal plants, statistical analysis

Procedia PDF Downloads 314
584 An Intellectual Capital as a Driver for Branding

Authors: Shyam Shukla

Abstract:

A brand is the identity of a specific product, service or business. A brand can take many forms, including a name, sign, symbol, color, combination or slogan. The word brand began simply as a way to tell one person's identity from another by means of a hot iron stamp. A legally protected brand name is called a trademark. The word brand has continued to evolve to encompass identity - it affects the personality of a product, company or service. A concept brand is a brand that is associated with an abstract concept, like AIDS awareness or environmentalism, rather than a specific product, service, or business. A commodity brand is a brand associated with a commodity1. In this paper, it is tried to explore the significance of an intellectual capital for the branding of an Institution.

Keywords: brand, commodity, consumer, cultural values, intellectual capital, zonal cluster

Procedia PDF Downloads 467
583 Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings

Authors: Gaelle Candel, David Naccache

Abstract:

t-SNE is an embedding method that the data science community has widely used. It helps two main tasks: to display results by coloring items according to the item class or feature value; and for forensic, giving a first overview of the dataset distribution. Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric. The transformation from a high to low dimensional space is described but not learned. Two initializations of the algorithm would lead to two different embeddings. In a forensic approach, analysts would like to compare two or more datasets using their embedding. A naive approach would be to embed all datasets together. However, this process is costly as the complexity of t-SNE is quadratic and would be infeasible for too many datasets. Another approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding’ match. The embedding with the support process can be repeated more than once, with the newly obtained embedding. The successive embedding can be used to study the impact of one variable over the dataset distribution or monitor changes over time. This method has the same complexity as t-SNE per embedding, and memory requirements are only doubled. For a dataset of n elements sorted and split into k subsets, the total embedding complexity would be reduced from O(n²) to O(n²=k), and the memory requirement from n² to 2(n=k)², which enables computation on recent laptops. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution, and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets’ dynamics.

Keywords: concept drift, data visualization, dimension reduction, embedding, monitoring, reusability, t-SNE, unsupervised learning

Procedia PDF Downloads 144
582 Clustering-Based Computational Workload Minimization in Ontology Matching

Authors: Mansir Abubakar, Hazlina Hamdan, Norwati Mustapha, Teh Noranis Mohd Aris

Abstract:

In order to build a matching pattern for each class correspondences of ontology, it is required to specify a set of attribute correspondences across two corresponding classes by clustering. Clustering reduces the size of potential attribute correspondences considered in the matching activity, which will significantly reduce the computation workload; otherwise, all attributes of a class should be compared with all attributes of the corresponding class. Most existing ontology matching approaches lack scalable attributes discovery methods, such as cluster-based attribute searching. This problem makes ontology matching activity computationally expensive. It is therefore vital in ontology matching to design a scalable element or attribute correspondence discovery method that would reduce the size of potential elements correspondences during mapping thereby reduce the computational workload in a matching process as a whole. The objective of this work is 1) to design a clustering method for discovering similar attributes correspondences and relationships between ontologies, 2) to discover element correspondences by classifying elements of each class based on element’s value features using K-medoids clustering technique. Discovering attribute correspondence is highly required for comparing instances when matching two ontologies. During the matching process, any two instances across two different data sets should be compared to their attribute values, so that they can be regarded to be the same or not. Intuitively, any two instances that come from classes across which there is a class correspondence are likely to be identical to each other. Besides, any two instances that hold more similar attribute values are more likely to be matched than the ones with less similar attribute values. Most of the time, similar attribute values exist in the two instances across which there is an attribute correspondence. This work will present how to classify attributes of each class with K-medoids clustering, then, clustered groups to be mapped by their statistical value features. We will also show how to map attributes of a clustered group to attributes of the mapped clustered group, generating a set of potential attribute correspondences that would be applied to generate a matching pattern. The K-medoids clustering phase would largely reduce the number of attribute pairs that are not corresponding for comparing instances as only the coverage probability of attributes pairs that reaches 100% and attributes above the specified threshold can be considered as potential attributes for a matching. Using clustering will reduce the size of potential elements correspondences to be considered during mapping activity, which will in turn reduce the computational workload significantly. Otherwise, all element of the class in source ontology have to be compared with all elements of the corresponding classes in target ontology. K-medoids can ably cluster attributes of each class, so that a proportion of attribute pairs that are not corresponding would not be considered when constructing the matching pattern.

Keywords: attribute correspondence, clustering, computational workload, k-medoids clustering, ontology matching

Procedia PDF Downloads 250
581 Time of Week Intensity Estimation from Interval Censored Data with Application to Police Patrol Planning

Authors: Jiahao Tian, Michael D. Porter

Abstract:

Law enforcement agencies are tasked with crime prevention and crime reduction under limited resources. Having an accurate temporal estimate of the crime rate would be valuable to achieve such a goal. However, estimation is usually complicated by the interval-censored nature of crime data. We cast the problem of intensity estimation as a Poisson regression using an EM algorithm to estimate the parameters. Two special penalties are added that provide smoothness over the time of day and day of the week. This approach presented here provides accurate intensity estimates and can also uncover day-of-week clusters that share the same intensity patterns. Anticipating where and when crimes might occur is a key element to successful policing strategies. However, this task is complicated by the presence of interval-censored data. The censored data refers to the type of data that the event time is only known to lie within an interval instead of being observed exactly. This type of data is prevailing in the field of criminology because of the absence of victims for certain types of crime. Despite its importance, the research in temporal analysis of crime has lagged behind the spatial component. Inspired by the success of solving crime-related problems with a statistical approach, we propose a statistical model for the temporal intensity estimation of crime with censored data. The model is built on Poisson regression and has special penalty terms added to the likelihood. An EM algorithm was derived to obtain maximum likelihood estimates, and the resulting model shows superior performance to the competing model. Our research is in line with the smart policing initiative (SPI) proposed by the Bureau Justice of Assistance (BJA) as an effort to support law enforcement agencies in building evidence-based, data-driven law enforcement tactics. The goal is to identify strategic approaches that are effective in crime prevention and reduction. In our case, we allow agencies to deploy their resources for a relatively short period of time to achieve the maximum level of crime reduction. By analyzing a particular area within cities where data are available, our proposed approach could not only provide an accurate estimate of intensities for the time unit considered but a time-variation crime incidence pattern. Both will be helpful in the allocation of limited resources by either improving the existing patrol plan with the understanding of the discovery of the day of week cluster or supporting extra resources available.

Keywords: cluster detection, EM algorithm, interval censoring, intensity estimation

Procedia PDF Downloads 66
580 Adaptive Routing Protocol for Dynamic Wireless Sensor Networks

Authors: Fayez Mostafa Alhamoui, Adnan Hadi Mahdi Al- Helali

Abstract:

The main issue in designing a wireless sensor network (WSN) is the finding of a proper routing protocol that complies with the several requirements of high reliability, short latency, scalability, low power consumption, and many others. This paper proposes a novel routing algorithm that complies with these design requirements. The new routing protocol divides the WSN into several sub-networks and each sub-network is divided into several clusters. This division is designed to reduce the number of radio transmission and hence decreases the power consumption. The network division may be changed dynamically to adapt with the network changes and allows the realization of the design requirements.

Keywords: wireless sensor networks, routing protocols, AD HOC topology, cluster, sub-network, WSN design requirements

Procedia PDF Downloads 538
579 RAPD Analysis of Genetic Diversity of Castor Bean

Authors: M. Vivodík, Ž. Balážová, Z. Gálová

Abstract:

The aim of this work was to detect genetic variability among the set of 40 castor genotypes using 8 RAPD markers. Amplification of genomic DNA of 40 genotypes, using RAPD analysis, yielded in 66 fragments, with an average of 8.25 polymorphic fragments per primer. Number of amplified fragments ranged from 3 to 13, with the size of amplicons ranging from 100 to 1200 bp. Values of the polymorphic information content (PIC) value ranged from 0.556 to 0.895 with an average of 0.784 and diversity index (DI) value ranged from 0.621 to 0.896 with an average of 0.798. The dendrogram based on hierarchical cluster analysis using UPGMA algorithm was prepared and analyzed genotypes were grouped into two main clusters and only two genotypes could not be distinguished. Knowledge on the genetic diversity of castor can be used for future breeding programs for increased oil production for industrial uses.

Keywords: dendrogram, polymorphism, RAPD technique, Ricinus communis L.

Procedia PDF Downloads 472
578 Kohonen Self-Organizing Maps as a New Method for Determination of Salt Composition of Multi-Component Solutions

Authors: Sergey A. Burikov, Tatiana A. Dolenko, Kirill A. Gushchin, Sergey A. Dolenko

Abstract:

The paper presents the results of clusterization by Kohonen self-organizing maps (SOM) applied for analysis of array of Raman spectra of multi-component solutions of inorganic salts, for determination of types of salts present in the solution. It is demonstrated that use of SOM is a promising method for solution of clusterization and classification problems in spectroscopy of multi-component objects, as attributing a pattern to some cluster may be used for recognition of component composition of the object.

Keywords: Kohonen self-organizing maps, clusterization, multi-component solutions, Raman spectroscopy

Procedia PDF Downloads 443
577 Auditory Perception of Frequency-Modulated Sweeps and Reading Difficulties in Chinese

Authors: Hsiao-Lan Wang, Chun-Han Chiang, I-Chen Chen

Abstract:

In Chinese Mandarin, lexical tones play an important role to provide contrasts in word meaning. They are pitch patterns and can be quantified as the fundamental frequency (F0), expressed in Hertz (Hz). In this study, we aim to investigate the influence of frequency discrimination on Chinese children’s performance of reading abilities. Fifty participants from 3rd to 4th grades, including 24 children with reading difficulties and 26 age-matched children, were examined. A serial of cognitive, language, reading and psychoacoustic tests were administrated. Magnetoencephalography (MEG) was also employed to study children’s auditory sensitivity. In the present study, auditory frequency was measured through slide-up pitch, slide-down pitch and frequency-modulated tone. The results showed that children with Chinese reading difficulties were significantly poor at phonological awareness and auditory discrimination for the identification of frequency-modulated tone. Chinese children’s character reading performance was significantly related to lexical tone awareness and auditory perception of frequency-modulated tone. In our MEG measure, we compared the mismatch negativity (MMNm), from 100 to 200 ms, in two groups. There were no significant differences between groups during the perceptual discrimination of standard sounds, fast-up and fast-down frequencies. However, the data revealed significant cluster differences between groups in the slow-up and slow-down frequencies discrimination. In the slow-up stimulus, the cluster demonstrated an upward field map at 106-151 ms (p < .001) with a strong peak time at 127ms. The source analyses of two dipole model and localization resolution model (CLARA) from 100 to 200 ms both indicated a strong source from the left temporal area with 45.845% residual variance. Similar results were found in the slow-down stimulus with a larger upward current at 110-142 ms (p < 0.05) and a peak time at 117 ms in the left temporal area (47.857% residual variance). In short, we found a significant group difference in the MMNm while children processed frequency-modulated tones with slow temporal changes. The findings may imply that perception of sound frequency signals with slower temporal modulations was related to reading and language development in Chinese. Our study may also support the recent hypothesis of underlying non-verbal auditory temporal deficits accounting for the difficulties in literacy development seen developmental dyslexia.

Keywords: Chinese Mandarin, frequency modulation sweeps, magnetoencephalography, mismatch negativity, reading difficulties

Procedia PDF Downloads 576
576 Investigation of Projected Organic Waste Impact on a Tropical Wetland in Singapore

Authors: Swee Yang Low, Dong Eon Kim, Canh Tien Trinh Nguyen, Yixiong Cai, Shie-Yui Liong

Abstract:

Nee Soon swamp forest is one of the last vestiges of tropical wetland in Singapore. Understanding the hydrological regime of the swamp forest and implications for water quality is critical to guide stakeholders in implementing effective measures to preserve the wetland against anthropogenic impacts. In particular, although current field measurement data do not indicate a concern with organic pollution, reviewing the ways in which the wetland responds to elevated organic waste influx (and the corresponding impact on dissolved oxygen, DO) can help identify potential hotspots, and the impact on the outflow from the catchment which drains into downstream controlled watercourses. An integrated water quality model is therefore developed in this study to investigate spatial and temporal concentrations of DO levels and organic pollution (as quantified by biochemical oxygen demand, BOD) within the catchment’s river network under hypothetical, projected scenarios of spiked upstream inflow. The model was developed using MIKE HYDRO for modelling the study domain, as well as the MIKE ECO Lab numerical laboratory for characterising water quality processes. Model parameters are calibrated against time series of observed discharges at three measurement stations along the river network. Over a simulation period of April 2014 to December 2015, the calibrated model predicted that a continuous spiked inflow of 400 mg/l BOD will elevate downstream concentrations at the catchment outlet to an average of 12 mg/l, from an assumed nominal baseline BOD of 1 mg/l. Levels of DO were decreased from an initial 5 mg/l to 0.4 mg/l. Though a scenario of spiked organic influx at the swamp forest’s undeveloped upstream sub-catchments is currently unlikely to occur, the outcomes nevertheless will be beneficial for future planning studies in understanding how the water quality of the catchment will be impacted should urban redevelopment works be considered around the swamp forest.

Keywords: hydrology, modeling, water quality, wetland

Procedia PDF Downloads 141
575 The Relationship between School Belonging, Self-Efficacy and Academic Achievement in Tabriz High School Students

Authors: F. Pari, E. Fathiazar, T. Hashemi, M. Pari

Abstract:

The present study aimed to examine the role of self-efficacy and school belonging in the academic achievement of Tabriz high school students in grade 11. Therefore, using a random cluster method, 377 subjects were selected from the whole students of Tabriz high schools. They filled in the School Belonging Questionnaire (SBQ) and General Self-Efficacy Scale. Data were analyzed using correlational as well as multiple regression methods. Findings demonstrate self-efficacy and school belonging have significant roles in the prediction of academic achievement. On the other hand, the results suggest that considering the gender variable there is no significant difference between self-efficacy and school belonging. On the whole, cognitive approaches could be effective in the explanation of academic achievement.

Keywords: school belonging, self-efficacy, academic achievement, high school

Procedia PDF Downloads 300
574 Theoretical Study of Gas Adsorption in Zirconium Clusters

Authors: Rasha Al-Saedi, Anthony Meijer

Abstract:

The progress of new porous materials has increased rapidly over the past decade for use in applications such as catalysis, gas storage and removal of environmentally unfriendly species due to their high surface area and high thermal stability. In this work, a theoretical study of the zirconium-based metal organic framework (MOFs) were examined in order to determine their potential for gas adsorption of various guest molecules: CO2, N2, CH4 and H2. The zirconium cluster consists of an inner Zr6O4(OH)4 core in which the triangular faces of the Zr6- octahedron are alternatively capped by O and OH groups which bound to nine formate groups and three benzoate groups linkers. General formula is [Zr(μ-O)4(μ-OH)4(HCOO)9((phyO2C)3X))] where X= CH2OH, CH2NH2, CH2CONH2, n(NH2); (n = 1-3). Three types of adsorption sites on the Zr metal center have been studied, named according to capped chemical groups as the ‘−O site’; the H of (μ-OH) site removed and added to (μ-O) site, ‘–OH site’; (μ-OH) site removed, the ‘void site’ where H2O molecule removed; (μ-OH) from one site and H from other (μ-OH) site, in addition to no defect versions. A series of investigations have been performed aiming to address this important issue. First, density functional theory DFT-B3LYP method with 6-311G(d,p) basis set was employed using Gaussian 09 package in order to evaluate the gas adsorption performance of missing-linker defects in zirconium cluster. Next, study the gas adsorption behaviour on different functionalised zirconium clusters. Those functional groups as mentioned above include: amines, alcohol, amide, in comparison with non-substitution clusters. Then, dispersion-corrected density functional theory (DFT-D) calculations were performed to further understand the enhanced gas binding on zirconium clusters. Finally, study the water effect on CO2 and N2 adsorption. The small functionalized Zr clusters were found to result in good CO2 adsorption over N2, CH4, and H2 due to the quadrupole moment of CO2 while N2, CH4 and H2 weakly polar or non-polar. The adsorption efficiency was determined using the dispersion method where the adsorption binding improved as most of the interactions, for example, van der Waals interactions are missing with the conventional DFT method. The calculated gas binding strengths on the no defect site are higher than those on the −O site, −OH site and the void site, this difference is especially notable for CO2. It has been stated that the enhanced affinity of CO2 of no defect versions is most likely due to the electrostatic interactions between the negatively charged O of CO2 and the positively charged H of (μ-OH) metal site. The uptake of the gas molecule does not enhance in presence of water as the latter binds to Zr clusters more strongly than gas species which attributed to the competition on adsorption sites.

Keywords: density functional theory, gas adsorption, metal- organic frameworks, molecular simulation, porous materials, theoretical chemistry

Procedia PDF Downloads 185
573 Frequent Item Set Mining for Big Data Using MapReduce Framework

Authors: Tamanna Jethava, Rahul Joshi

Abstract:

Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.

Keywords: frequent item set mining, big data, Hadoop, MapReduce

Procedia PDF Downloads 439
572 Corporate Social Responsibility Participation on Organizational Citizenship Behavior in Different Job Characteristic Profiles

Authors: Min Woo Lee, Kyoung Seok Kim

Abstract:

We made an effort to resolve a research question, which is about the relationship between employees’ corporate social responsibility (CSR) participation and their organizational citizenship behavior (OCB), and an effect of profiles of job characteristics. To test the question, we divided sample into two groups that have the profiles of each job characteristic. One group had high level on the five dimensions of job characteristic (D group), whereas another group had low level on the dimensions (R group). As a result, regression analyses showed that the relationship between CSR participation and OCB is positive in the D group, but the relationship is not significant in the R group. The results raise a question to the argument of recent studies showing that there is positive relationship between the CSR and the OCB. Implications and limitations are demonstrated in the conclusion.

Keywords: CSR, OCB, job characteristics, cluster analysis

Procedia PDF Downloads 326
571 Using Urban Conversion to Green Public Space as a Tool to Generate Urban Change: Case of Seoul

Authors: Rachida Benabbou, Sang Hun Park, Hee Chung Lee

Abstract:

The world’s population is increasing with unprecedented speed, leading to fast growing urbanization pace. Cities since the Industrial revolution had evolved to fit the growing demand on infrastructure, roads, transportation, and housing. Through this evolution, cities had grown into grey, polluted, and vehicle-oriented urban areas with a significant lack of green spaces. Consequently, we ended up with low quality of life for citizens. Therefore, many cities, nowadays, are revising the way we think urbanism and try to grow into more livable and citizen-friendly, by creating change from the inside out. Thus, cities are trying to bring back nature in its crowded grey centers and regenerate many urban areas as green public spaces not only as a way to give new breath to the city, but also as a way to create change either in the environmental, social and economic levels. The city of Seoul is one of the fast growing global cities. Its population is over 12 million and it is expected to continue to grow to a point where the quality of life may seriously deteriorate. As most green areas in Seoul are located in the suburbs in form of mountains, the city’s urban areas suffer from lack of accessible green spaces in a walking distance. Understanding the gravity and consequences of this issue, Seoul city is undergoing major changes. Many of its projects are oriented to be green public spaces where citizens can enjoy the public life in healthy outdoors. The aim of this paper is to explore the results of urban conversions into green public spaces. Starting with different locations, nature, size, and scale, these conversions can lead to significant change in the surrounding areas, thus can be used as an efficient tool of regeneration for urban areas. Through a comparative analysis of three different types of urban conversions projects in the city of Seoul, we try to show the positive urban influence of the outcomes, in order to encourage cities to use green spaces as a strategic tool for urban regeneration and redevelopment.

Keywords: urban conversion, green public space, change, urban regeneration

Procedia PDF Downloads 307
570 Applying Concept Mapping to Explore Temperature Abuse Factors in the Processes of Cold Chain Logistics Centers

Authors: Marco F. Benaglia, Mei H. Chen, Kune M. Tsai, Chia H. Hung

Abstract:

As societal and family structures, consumer dietary habits, and awareness about food safety and quality continue to evolve in most developed countries, the demand for refrigerated and frozen foods has been growing, and the issues related to their preservation have gained increasing attention. A well-established cold chain logistics system is essential to avoid any temperature abuse; therefore, assessing potential disruptions in the operational processes of cold chain logistics centers becomes pivotal. This study preliminarily employs HACCP to find disruption factors in cold chain logistics centers that may cause temperature abuse. Then, concept mapping is applied: selected experts engage in brainstorming sessions to identify any further factors. The panel consists of ten experts, including four from logistics and home delivery, two from retail distribution, one from the food industry, two from low-temperature logistics centers, and one from the freight industry. Disruptions include equipment-related aspects, human factors, management aspects, and process-related considerations. The areas of observation encompass freezer rooms, refrigerated storage areas, loading docks, sorting areas, and vehicle parking zones. The experts also categorize the disruption factors based on perceived similarities and build a similarity matrix. Each factor is evaluated for its impact, frequency, and investment importance. Next, multiple scale analysis, cluster analysis, and other methods are used to analyze these factors. Simultaneously, key disruption factors are identified based on their impact and frequency, and, subsequently, the factors that companies prioritize and are willing to invest in are determined by assessing investors’ risk aversion behavior. Finally, Cumulative Prospect Theory (CPT) is applied to verify the risk patterns. 66 disruption factors are found and categorized into six clusters: (1) "Inappropriate Use and Maintenance of Hardware and Software Facilities", (2) "Inadequate Management and Operational Negligence", (3) "Product Characteristics Affecting Quality and Inappropriate Packaging", (4) "Poor Control of Operation Timing and Missing Distribution Processing", (5) "Inadequate Planning for Peak Periods and Poor Process Planning", and (6) "Insufficient Cold Chain Awareness and Inadequate Training of Personnel". This study also identifies five critical factors in the operational processes of cold chain logistics centers: "Lack of Personnel’s Awareness Regarding Cold Chain Quality", "Personnel Not Following Standard Operating Procedures", "Personnel’s Operational Negligence", "Management’s Inadequacy", and "Lack of Personnel’s Knowledge About Cold Chain". The findings show that cold chain operators prioritize prevention and improvement efforts in the "Inappropriate Use and Maintenance of Hardware and Software Facilities" cluster, particularly focusing on the factors of "Temperature Setting Errors" and "Management’s Inadequacy". However, through the application of CPT theory, this study reveals that companies are not usually willing to invest in the improvement of factors related to the "Inappropriate Use and Maintenance of Hardware and Software Facilities" cluster due to its low occurrence likelihood, but they acknowledge the severity of the consequences if it does occur. Hence, the main implication is that the key disruption factors in cold chain logistics centers’ processes are associated with personnel issues; therefore, comprehensive training, periodic audits, and the establishment of reasonable incentives and penalties for both new employees and managers may significantly reduce disruption issues.

Keywords: concept mapping, cold chain, HACCP, cumulative prospect theory

Procedia PDF Downloads 70
569 Fuzzy Rules Based Improved BEENISH Protocol for Wireless Sensor Networks

Authors: Rishabh Sharma

Abstract:

The main design parameter of WSN (wireless sensor network) is the energy consumption. To compensate this parameter, hierarchical clustering is a technique that assists in extending duration of the networks life by efficiently consuming the energy. This paper focuses on dealing with the WSNs and the FIS (fuzzy interface system) which are deployed to enhance the BEENISH protocol. The node energy, mobility, pause time and density are considered for the selection of CH (cluster head). The simulation outcomes exhibited that the projected system outperforms the traditional system with regard to the energy utilization and number of packets transmitted to sink.

Keywords: wireless sensor network, sink, sensor node, routing protocol, fuzzy rule, fuzzy inference system

Procedia PDF Downloads 107
568 Prevalence of Emotional Problems among Adolescent Students of Corporation Schools in Chennai

Authors: Vithya Veeramani, Karunanidhi Subbaiah

Abstract:

Emotional problems were found to be the predominant cause of suicide and second leading cause of death among adolescents in India. Emotional problems seem to be the underlying cause for various other severe psycho-social problems experienced in adolescence and also in later years of life. The Corporation schools in Chennai city are named as Chennai High School or Chennai Higher Secondary School run by the Corporation of Chennai. These schools fulfill the educational needs of students who hail from lower socio-economic status living in slums of the Chennai city. Adolescent students of Chennai schools tend to lack basic needs like food, clothes, shelter, etc. Some of the other significant problems faced by them are broken family, lack of parental support, frequent quarrel between parents, alcoholic parents, drug abuse and substance abuse among parents and neighbors, extended family, illiterate parents, deprivation of love and care, and lack of sense of belongingness. This prevailing condition may affect them emotionally and could lead to maladaptive behaviour, aggressiveness, poor interpersonal relationship with others, school refusal behaviour, school drop-out, suicide, etc. Therefore, it is very important to investigate the emotional problems faced by the adolescent students studying in Chennai schools, Chennai. A cross-sectional survey design was used to find the prevalence of emotional problems among adolescent students. Cluster sampling technique was used to select the schools for the present study considering the school as a cluster. In total, there are 15 zones, under the control of Chennai Corporation, of which only 7 zones have Corporation Schools in Chennai city, comprising of 32 Chennai Higher Secondary Schools and 38 Chennai High Schools. Out of these 70 schools, 29 schools comprising of 17 high schools and 12 higher secondary schools were selected randomly using lottery method. A sample of 2594 adolescent students from 9th standard and 11th standard was chosen for the study. Percentage analysis was done to find out the prevalence rate of emotional problems among adolescents students studying in Chennai Schools. Results of the study revealed that, out of 2594 students surveyed, 21.04% adolescent students were found to have academic problems (n = 546), 15.99% adolescent students had social problems (n = 415), behaviour problems was found to be prevalent among 12.87% adolescent students (n = 334), depression was prevalent among 15.88% adolescent students (n = 412) and anxiety was prevalent among 14.42% adolescent students (n = 374). Prevalence of emotional problems among male and female revealed that academic problems were more prevalent compared to other problems. Behaviour problems were least prevalent among boys and anxiety was least prevalent among girls than other problems. The overall prevalence rate of emotional problems was found to be on an increasing trend among adolescent students of low socio-economic status in Chennai city. The findings indicated the need for intervention to prevent and rehabilitate these adolescent students.

Keywords: adolescents, corporation schools, emotional problems, prevalence

Procedia PDF Downloads 222