Search results for: the creative learning process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21237

Search results for: the creative learning process

17697 Optimization Technique for the Contractor’s Portfolio in the Bidding Process

Authors: Taha Anjamrooz, Sareh Rajabi, Salwa Bheiry

Abstract:

Selection between the available projects in bidding processes for the contractor is one of the essential areas to concentrate on. It is important for the contractor to choose the right projects within its portfolio during the tendering stage based on certain criteria. It should align the bidding process with its origination strategies and goals as a screening process to have the right portfolio pool to start with. Secondly, it should set the proper framework and use a suitable technique in order to optimize its selection process for concertation purpose and higher efforts during the tender stage with goals of success and winning. In this research paper, a two steps framework proposed to increase the efficiency of the contractor’s bidding process and the winning chance of getting the new projects awarded. In this framework, initially, all the projects pass through the first stage screening process, in which the portfolio basket will be evaluated and adjusted in accordance with the organization strategies to the reduced version of the portfolio pool, which is in line with organization activities. In the second stage, the contractor uses linear programming to optimize the portfolio pool based on available resources such as manpower, light equipment, heavy equipment, financial capability, return on investment, and success rate of winning the bid. Therefore, this optimization model will assist the contractor in utilizing its internal resource to its maximum and increase its winning chance for the new project considering past experience with clients, built-relation between two parties, and complexity in the exertion of the projects. The objective of this research will be to increase the contractor's winning chance in the bidding process based on the success rate and expected return on investment.

Keywords: bidding process, internal resources, optimization, contracting portfolio management

Procedia PDF Downloads 147
17696 Opinions of Pre-Service Teachers on Online Language Teaching: COVID-19 Pandemic Perspective

Authors: Neha J. Nandaniya

Abstract:

In the present research paper researcher put focuses on the opinions of pre-service teachers have been taken regarding online language teaching, which was held during the COVID-19 pandemic and is still going on. The researcher developed a three-point rating scale in Google Forms to find out the views of trainees on online language learning, in which 167 B. Ed. trainees having language content and method gave their responses. After scoring the responses obtained by the investigator, the chi-square value was calculated, and the findings were concluded. The major finding of the study is language learning is not as effective as offline teaching mode.

Keywords: online language teaching, ICT competency, B. Ed. trainees, COVID-19 pandemic

Procedia PDF Downloads 88
17695 Modelling the Impact of Installation of Heat Cost Allocators in District Heating Systems Using Machine Learning

Authors: Danica Maljkovic, Igor Balen, Bojana Dalbelo Basic

Abstract:

Following the regulation of EU Directive on Energy Efficiency, specifically Article 9, individual metering in district heating systems has to be introduced by the end of 2016. These directions have been implemented in member state’s legal framework, Croatia is one of these states. The directive allows installation of both heat metering devices and heat cost allocators. Mainly due to bad communication and PR, the general public false image was created that the heat cost allocators are devices that save energy. Although this notion is wrong, the aim of this work is to develop a model that would precisely express the influence of installation heat cost allocators on potential energy savings in each unit within multifamily buildings. At the same time, in recent years, a science of machine learning has gain larger application in various fields, as it is proven to give good results in cases where large amounts of data are to be processed with an aim to recognize a pattern and correlation of each of the relevant parameter as well as in the cases where the problem is too complex for a human intelligence to solve. A special method of machine learning, decision tree method, has proven an accuracy of over 92% in prediction general building consumption. In this paper, a machine learning algorithms will be used to isolate the sole impact of installation of heat cost allocators on a single building in multifamily houses connected to district heating systems. Special emphasises will be given regression analysis, logistic regression, support vector machines, decision trees and random forest method.

Keywords: district heating, heat cost allocator, energy efficiency, machine learning, decision tree model, regression analysis, logistic regression, support vector machines, decision trees and random forest method

Procedia PDF Downloads 261
17694 'Enjoying the Czech Traditions with All Sences!': Tourism Product Promotion

Authors: Tomas Seidl

Abstract:

'Enjoy the Czech traditions with all sences!' is the main communication headline of one of the major current marketing project representing the intangible cultural heritage of the Czech Republic to its visitors. The project CZ.1.06/4.1.00/12.08915 and CZ.1.06/4.1.00/12.08916 which is solved in the period 2013-2015 is co-financed form the EU financial sources from the Integrated Operational Programme. The primary goal of the project was to analyze the dislocation and potential of the intangible cultural heritage in the Czech Republic. Further goal was to prepare a useful regionalization. An as solution based on the outcomes the creative and media strategy was created and prepared. The processor – CzechTourism expect the following web and mobile application development and successful marketing campaign in 2015.

Keywords: traditions, intangible cultural heritage, Czech Republic, CzechTourism, digital performance

Procedia PDF Downloads 373
17693 Sustainable Dyeing of Cotton and Polyester Blend Fabric without Reduction Clearing

Authors: Mohammad Tofayel Ahmed, Seung Kook An

Abstract:

In contemporary research world, focus is more set on sustainable products and innovative processes. The global textile industries are putting tremendous effort to achieve a balance between economic development and ecological protection concurrently. The conservation of water sources and environment have become immensely significant issue in textile dyeing production. Accordingly, an attempt has been taken in this study to develop a process to dye polyester blend cotton without reduction clearing process and any extra wash off chemical by simple modification aiming at cost reduction and sustainability. A widely used combination of 60/40 cotton/polyester (c/p) single jersey knitted fabric of 30’s, 180 g/m² was considered for study. Traditionally, pretreatment is done followed by polyester part dyeing, reduction clearing and cotton part dyeing for c/p blend dyeing. But in this study, polyester part is dyed right away followed by pretreatment process and cotton part dyeing by skipping the reduction clearing process diametrically. The dyed samples of both traditional and modified samples were scrutinized by various color fastness tests, dyeing parameters and by consumption of water, steam, power, process time and total batch cost. The modified process in this study showed no necessity of reduction clearing process for polyester blend cotton dyeing. The key issue contributing to avoid the reduction clearing after polyester part dyeing has been the multifunctional effect of NaOH and H₂O₂ while pretreatment of cotton after polyester part dyeing. The results also revealed that the modified process could reduce the consumption of water, steam, power, time and cost remarkably. The bulk trial of modified process demonstrated the well exploitability to dye polyester blend cotton substrate ensuring all fastness and dyeing properties regardless of dyes category, blend ratio, color, and shade percentage thus making the process sustainable, eco-friendly and economical. Furthermore, the proposed method could be applicable to any cellulosic blend with polyester.

Keywords: cotton, dyeing, economical, polyester

Procedia PDF Downloads 196
17692 English Reading Preferences among Primary Pupils

Authors: Jezza Mae T. Francisco, Marianet R. Delos Santos, Crisjame C. Toribio

Abstract:

This study aims to determine the reading preference for English enrichment and reading comprehension among primary students and the difference in the reading preference and comprehension for English enrichment among primary students. This study employed a Descriptive-Quantitative Correlational Research Design. This study yielded the following findings: (1) It reveals that primary students got fair on their reading comprehension, and (2) It shows that there is no significant relationship between the reading preference for English enrichment and reading comprehension of the students. It is safe to conclude that the students’ reading preference is growing evidently in various milieus. This can inform the English department curriculum planners to consider their students’ text preferences that interest them to maximize engagement within a dynamic interactive learning process.

Keywords: reading preferences, reading comprehension, primary student, English enrichment

Procedia PDF Downloads 116
17691 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis

Authors: Mehrnaz Mostafavi

Abstract:

The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.

Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans

Procedia PDF Downloads 108
17690 The Preparation and Training of Expert Studio Reviewers

Authors: Diane M. Bender

Abstract:

In design education, professional education is delivered in a studio, where students learn and understand their discipline. This learning methodology culminates in a final review, where students present their work before instructors and invited reviewers, known as jurors. These jurors are recognized experts who add a wide diversity of opinions in their feedback to students. This feedback can be provided in multiple formats, mainly a verbal critique of the work. To better understand how these expert reviewers prepare for a studio review, a survey was distributed to reviewers at a multi-disciplinary design school within the United States. Five design disciplines are involved in this case study: architecture, graphic design, industrial design, interior design, and landscape architecture. Respondents (n=122) provided information about if and how they received training on how to critique and participate in a final review. Common forms of training included mentorship, modeled behavior from other designers/past professors, workshops on critique from the instructing faculty prior to the crit session, and by being a practicing design professional. Respondents also gave feedback about how much the instructor provided course materials prior to the review in order to better prepare for student interaction. Finally, respondents indicated if they had interaction, and in what format, with students prior to the final review. Typical responses included participation in studio desk crits, a midterm jury member, meetings with students, and email or social media correspondence. While the focus of this study is the studio review, the findings are equally applicable to other disciplines. Suggestions will be provided on how to improve the preparation of guests in the learning process and how their interaction can positively influence student engagement.

Keywords: critique, design, education, evaluation, juror

Procedia PDF Downloads 84
17689 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources

Authors: Mustafa Alhamdi

Abstract:

Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.

Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification

Procedia PDF Downloads 154
17688 Emotional, Behavioural and Social Development: Modality of Hierarchy of Needs in Supporting Parents with Special Needs

Authors: Fadzilah Abdul Rahman

Abstract:

Emotional development is developed between the parents and their child. Behavioural development is also developed between the parents and their child. Social Development is how parents can help their special needs child to adapt to society and to face challenges. In promoting a lifelong learning mindset, enhancing skill sets and readiness to face challenges, parents would be able to counter balance these challenges during their care giving process and better manage their expectations through understanding the hierarchy of needs modality towards a positive attitude, and in turn, improve their quality of life and participation in society. This paper aims to demonstrate how the hierarchy of needs can be applied in various situations of caregiving for parents with a special needs child.

Keywords: hierarchy of needs, parents, special needs, care-giving

Procedia PDF Downloads 391
17687 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: land suitability, machine learning, random forest, sustainable agriculture

Procedia PDF Downloads 92
17686 Audit Is a Production Performance Tool

Authors: Lattari Samir

Abstract:

The performance of a production process is the result of proper operation where the management tools appear as the key to success through process management which consists of managing and implementing a quality policy, organizing and planning the manufacturing, and thus defining an efficient logic as the main areas covered by production management. To carry out this delicate mission, which requires reconciling often contradictory objectives, the auditor is called upon, who must be able to express an opinion on the effectiveness of the operation of the "production" function. To do this, the auditor must structure his mission in three phases, namely, the preparation phase to assimilate the particularities of this function, the implementation phase and the conclusion phase. The audit is a systematic and independent examination of all the stages of a manufacturing process intended to determine whether the pre-established arrangements for the combination of production factors are respected, whether their implementation is effective and whether they are relevant in relation to the goals.

Keywords: audit, performance of process, independent examination, management tools, audit of accounts

Procedia PDF Downloads 78
17685 End To End Process to Automate Batch Application

Authors: Nagmani Lnu

Abstract:

Often, Quality Engineering refers to testing the applications that either have a User Interface (UI) or an Application Programming Interface (API). We often find mature test practices, standards, and automation regarding UI or API testing. However, another kind is present in almost all types of industries that deal with data in bulk and often get handled through something called a Batch Application. This is primarily an offline application companies develop to process large data sets that often deal with multiple business rules. The challenge gets more prominent when we try to automate batch testing. This paper describes the approaches taken to test a Batch application from a Financial Industry to test the payment settlement process (a critical use case in all kinds of FinTech companies), resulting in 100% test automation in Test Creation and Test execution. One can follow this approach for any other batch use cases to achieve a higher efficiency in their testing process.

Keywords: batch testing, batch test automation, batch test strategy, payments testing, payments settlement testing

Procedia PDF Downloads 66
17684 A Deterministic Approach for Solving the Hull and White Interest Rate Model with Jump Process

Authors: Hong-Ming Chen

Abstract:

This work considers the resolution of the Hull and White interest rate model with the jump process. A deterministic process is adopted to model the random behavior of interest rate variation as deterministic perturbations, which is depending on the time t. The Brownian motion and jumps uncertainty are denoted as the integral functions piecewise constant function w(t) and point function θ(t). It shows that the interest rate function and the yield function of the Hull and White interest rate model with jump process can be obtained by solving a nonlinear semi-infinite programming problem. A relaxed cutting plane algorithm is then proposed for solving the resulting optimization problem. The method is calibrated for the U.S. treasury securities at 3-month data and is used to analyze several effects on interest rate prices, including interest rate variability, and the negative correlation between stock returns and interest rates. The numerical results illustrate that our approach essentially generates the yield functions with minimal fitting errors and small oscillation.

Keywords: optimization, interest rate model, jump process, deterministic

Procedia PDF Downloads 162
17683 Deepnic, A Method to Transform Each Variable into Image for Deep Learning

Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.

Abstract:

Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.

Keywords: tabular data, deep learning, perfect trees, NICS

Procedia PDF Downloads 95
17682 Community Arts-Based Learning for Interdisciplinary Pedagogy: Measuring Program Effectiveness Using Design Imperatives for 'a New American University'

Authors: Kevin R. Wilson, Roger Mantie

Abstract:

Community arts-based learning and participatory education are pedagogical techniques that serve to be advantageous for students, curriculum development, and local communities. Using an interpretive approach to examine the significance of this arts-informed research in relation to the eight ‘design imperatives’ proposed as the new model for measuring quality in scholarship for Arizona State University as ‘A New American University’, the purpose of this study was to investigate personal, social, and cultural benefits resulting from student engagement in interdisciplinary community-based projects. Students from a graduate level music education class at the ASU Tempe campus (n=7) teamed with students from an undergraduate level community development class at the ASU Downtown Phoenix campus (n=14) to plan, facilitate, and evaluate seven community-based projects in several locations around the Phoenix-metro area. Data was collected using photo evidence, student reports, and evaluative measures designed by the students. The effectiveness of each project was measured in terms of their ability to meet the eight design imperatives to: 1) leverage place; 2) transform society; 3) value entrepreneurship; 4) conduct use-inspired research; 5) enable student success; 6) fuse intellectual disciplines; 7) be socially embedded; and 8) engage globally. Results indicated that this community arts-based project sufficiently captured the essence of each of these eight imperatives. Implications for how the nature of this interdisciplinary initiative allowed for the eight imperatives to manifest are provided, and project success is expounded upon in relation to utility of each imperative. Discussion is also given for how this type of service learning project formatted within the ‘New American University’ model for measuring quality in academia can be a beneficial pedagogical tool in higher education.

Keywords: community arts-based learning, participatory education, pedagogy, service learning

Procedia PDF Downloads 404
17681 Developing an Edutainment Game for Children with ADHD Based on SAwD and VCIA Model

Authors: Bruno Gontijo Batista

Abstract:

This paper analyzes how the Socially Aware Design (SAwD) and the Value-oriented and Culturally Informed Approach (VCIA) design model can be used to develop an edutainment game for children with Attention Deficit Hyperactivity Disorder (ADHD). The SAwD approach seeks a design that considers new dimensions in human-computer interaction, such as culture, aesthetics, emotional and social aspects of the user's everyday experience. From this perspective, the game development was VCIA model-based, including the users in the design process through participatory methodologies, considering their behavioral patterns, culture, and values. This is because values, beliefs, and behavioral patterns influence how technology is understood and used and the way it impacts people's lives. This model can be applied at different stages of design, which goes from explaining the problem and organizing the requirements to the evaluation of the prototype and the final solution. Thus, this paper aims to understand how this model can be used in the development of an edutainment game for children with ADHD. In the area of education and learning, children with ADHD have difficulties both in behavior and in school performance, as they are easily distracted, which is reflected both in classes and on tests. Therefore, they must perform tasks that are exciting or interesting for them, once the pleasure center in the brain is activated, it reinforces the center of attention, leaving the child more relaxed and focused. In this context, serious games have been used as part of the treatment of ADHD in children aiming to improve focus and attention, stimulate concentration, as well as be a tool for improving learning in areas such as math and reading, combining education and entertainment (edutainment). Thereby, as a result of the research, it was developed, in a participatory way, applying the VCIA model, an edutainment game prototype, for a mobile platform, for children between 8 and 12 years old.

Keywords: ADHD, edutainment, SAwD, VCIA

Procedia PDF Downloads 199
17680 Biomimetic Paradigms in Architectural Conceptualization: Science, Technology, Engineering, Arts and Mathematics in Higher Education

Authors: Maryam Kalkatechi

Abstract:

The application of algorithms in architecture has been realized as geometric forms which are increasingly being used by architecture firms. The abstraction of ideas in a formulated algorithm is not possible. There is still a gap between design innovation and final built in prescribed formulas, even the most aesthetical realizations. This paper presents the application of erudite design process to conceptualize biomimetic paradigms in architecture. The process is customized to material and tectonics. The first part of the paper outlines the design process elements within four biomimetic pre-concepts. The pre-concepts are chosen from plants family. These include the pine leaf, the dandelion flower; the cactus flower and the sun flower. The choice of these are related to material qualities and natural pattern of the tectonics of these plants. It then focuses on four versions of tectonic comprehension of one of the biomimetic pre-concepts. The next part of the paper discusses the implementation of STEAM in higher education in architecture. This is shown by the relations within the design process and the manifestation of the thinking processes. The A in the SETAM, in this case, is only achieved by the design process, an engaging event as a performing arts, in which the conceptualization and development is realized in final built.

Keywords: biomimetic paradigm, erudite design process, tectonic, STEAM (Science, Technology, Engineering, Arts, Mathematic)

Procedia PDF Downloads 213
17679 The Learning Experience of Two Students with Visual Impairments in the EFL Courses: A Case Study

Authors: May Ling González-Ruiz, Ana Cristina Solís-Solís

Abstract:

Everyday more people can thrive towards the dream of pursuing a university diploma. This can be more attainable for some than for others who may face different types of limitations. Even though not all limitations come from within the individual but most of the times they come from without it may include the environment, the support of the person’s family, the school – its infrastructure, administrative procedures, and attitudes. This is a qualitative type of research that is developed through a case study. It is based on the experiences of two students who are visually impaired and who have attended a public university in Costa Rica. We enquire about the experiences of these two students in the English as a Foreign Language courses at the university scenario. An in-depth analysis of their lived experiences is presented. Their values, attitudes, and expectations serve as the guiding elements for this research. Findings are presented in light of the Social Justice Approach to inclusive education. Some of the most salient aspects found have to do with the attitudes the students used to face challenges; others point at those elements that may have hindered the learning experience of the persons observed and to those that encouraged them to continue their journey and successfully achieve a diploma.

Keywords: inclusion, case study, visually impaired student, learning experience, social justice approach

Procedia PDF Downloads 142
17678 Bleeding-Heart Altruists and Calculating Utilitarians: Applying Process Dissociation to Self-sacrificial Dilemmas

Authors: David Simpson, Kyle Nash

Abstract:

There is considerable evidence linking slow, deliberative reasoning (system 2) with utilitarian judgments in dilemmas involving the sacrificing of another person for the greater good (other-sacrificial dilemmas). Joshua Greene has argued, based on this kind of evidence, that system 2 drives utilitarian judgments. However, the evidence on whether system 2 is associated with utilitarian judgments in self-sacrificial dilemmas is more mixed. We employed process dissociation to measure a self-sacrificial utilitarian (SU) parameter and an other-sacrificial (OU) utilitarian parameter. It was initially predicted that contra Greene, the cognitive reflection test (CRT) would only be positively correlated with the OU parameter and not the SU parameter. However, Greene’s hypothesis was corroborated: the CRT positively correlated with both the OU parameter and the SU parameter. By contrast, the CRT did not correlate with the other two moral parameters we extracted (altruism and deontology).

Keywords: dual-process model, utilitarianism, altruism, reason, emotion, process dissociation

Procedia PDF Downloads 157
17677 Real-Time Classification of Marbles with Decision-Tree Method

Authors: K. S. Parlak, E. Turan

Abstract:

The separation of marbles according to the pattern quality is a process made according to expert decision. The classification phase is the most critical part in terms of economic value. In this study, a self-learning system is proposed which performs the classification of marbles quickly and with high success. This system performs ten feature extraction by taking ten marble images from the camera. The marbles are classified by decision tree method using the obtained properties. The user forms the training set by training the system at the marble classification stage. The system evolves itself in every marble image that is classified. The aim of the proposed system is to minimize the error caused by the person performing the classification and achieve it quickly.

Keywords: decision tree, feature extraction, k-means clustering, marble classification

Procedia PDF Downloads 384
17676 Optimizing the Scanning Time with Radiation Prediction Using a Machine Learning Technique

Authors: Saeed Eskandari, Seyed Rasoul Mehdikhani

Abstract:

Radiation sources have been used in many industries, such as gamma sources in medical imaging. These waves have destructive effects on humans and the environment. It is very important to detect and find the source of these waves because these sources cannot be seen by the eye. A portable robot has been designed and built with the purpose of revealing radiation sources that are able to scan the place from 5 to 20 meters away and shows the location of the sources according to the intensity of the waves on a two-dimensional digital image. The operation of the robot is done by measuring the pixels separately. By increasing the image measurement resolution, we will have a more accurate scan of the environment, and more points will be detected. But this causes a lot of time to be spent on scanning. In this paper, to overcome this challenge, we designed a method that can optimize this time. In this method, a small number of important points of the environment are measured. Hence the remaining pixels are predicted and estimated by regression algorithms in machine learning. The research method is based on comparing the actual values of all pixels. These steps have been repeated with several other radiation sources. The obtained results of the study show that the values estimated by the regression method are very close to the real values.

Keywords: regression, machine learning, scan radiation, robot

Procedia PDF Downloads 85
17675 Attitudes of Secondary School Students towards Biology in Birnin Kebbi Metropolis, Kebbi State, Nigeria

Authors: I. A. Libata

Abstract:

The present study was carried out to determine the attitudes of Secondary School Students towards Biology in Birnin Kebbi metropolis. The population of the study is 2680 SS 2 Secondary School Students in Birnin Kebbi metropolis. Proportionate random sampling was used in selecting the samples. Oppinnionnaire was the only instrument used in the study. The instrument was subjected to test-retest reliability. The reliability index of the instrument was 0.69. Overall scores of the Students were analyzed and a mean score was determined, the mean score of students was 85. There were no significant differences between the attitudes of male and female students. The results also revealed that there was significant difference between the attitude of science and art students. The results also revealed that there was significant difference between the attitude of public and private school students. The study also reveals that majority of students in Birnin Kebbi Metropolis have positive attitudes towards biology. Based on the findings of this study, the researcher recommended that teachers should motivate students, which they can do through their teaching styles and by showing them the relevance of the learning topics to their everyday lives. Government and the school management should create the learning environment that helps motivate students not only to come to classes but also want to learn and enjoy learning Biology.

Keywords: attitudes, students, Birnin-Kebbi, metropolis

Procedia PDF Downloads 405
17674 Early Prediction of Disposable Addresses in Ethereum Blockchain

Authors: Ahmad Saleem

Abstract:

Ethereum is the second largest crypto currency in blockchain ecosystem. Along with standard transactions, it supports smart contracts and NFT’s. Current research trends are focused on analyzing the overall structure of the network its growth and behavior. Ethereum addresses are anonymous and can be created on fly. The nature of Ethereum network and addresses make it hard to predict their behavior. The activity period of an ethereum address is not much analyzed. Using machine learning we can make early prediction about the disposability of the address. In this paper we analyzed the lifetime of the addresses. We also identified and predicted the disposable addresses using machine learning models and compared the results.

Keywords: blockchain, Ethereum, cryptocurrency, prediction

Procedia PDF Downloads 101
17673 Barriers and Opportunities in Apprenticeship Training: How to Complete a Vocational Upper Secondary Qualification with Intermediate Finnish Language Skills

Authors: Inkeri Jaaskelainen

Abstract:

The aim of this study is to shed light on what is it like to study in apprenticeship training using intermediate (or even lower level) Finnish. The aim is to find out and describe these students' experiences and feelings while acquiring a profession in Finnish as it is important to understand how immigrant background adult learners learn and how their needs could be better taken into account. Many students choose apprenticeships and start vocational training while their language skills in Finnish are still very weak. At work, students should be able to simultaneously learn Finnish and do vocational studies in a noisy, demanding, and stressful environment. Learning and understanding new things is very challenging under these circumstances, and sometimes students get exhausted and experience a lot of stress - which makes learning even more difficult. Students are different from each other, and so are their ways to learn. Both duties at work and school assignments require reasonably good general language skills, and, especially at work, language skills are also a safety issue. The empirical target of this study is a group of students with an immigrant background who studied in various fields with intensive L2 support in 2016–2018 and who by now have completed a vocational upper secondary qualification. The interview material for this narrative study was collected from those who completed apprenticeship training in 2019–2020. The data collection methods used are a structured thematic interview, a questionnaire, and observational data. Interviewees with an immigrant background have an inconsistent cultural and educational background - some have completed an academic degree in their country of origin while others have learned to read and write only in Finland. The analysis of the material utilizes thematic analysis, which is used to examine learning and related experiences. Learning a language at work is very different from traditional classroom teaching. With evolving language skills, at an intermediate level at best, rushing and stressing makes it even more difficult to understand and increases the fear of failure. Constant noise, rapidly changing situations, and uncertainty undermine the learning and well-being of apprentices. According to preliminary results, apprenticeship training is well suited to the needs of an adult immigrant student. In apprenticeship training, students need a lot of support for learning and understanding a new communication and working culture. Stress can result in, e.g., fatigue, frustration, and difficulties in remembering and understanding. Apprenticeship training can be seen as a good path to working life. However, L2 support is a very important part of apprenticeship training, and it indeed helps students to believe that one day they will graduate and even get employed in their new country.

Keywords: apprenticeship training, vocational basic degree, Finnish learning, wee-being

Procedia PDF Downloads 135
17672 Linking Adaptation to Climate Change and Sustainable Development: The Case of ClimAdaPT.Local in Portugal

Authors: A. F. Alves, L. Schmidt, J. Ferrao

Abstract:

Portugal is one of the more vulnerable European countries to the impacts of climate change. These include: temperature increase; coastal sea level rise; desertification and drought in the countryside; and frequent and intense extreme weather events. Hence, adaptation strategies to climate change are of great importance. This is what was addressed by ClimAdaPT.Local. This policy-oriented project had the main goal of developing 26 Municipal Adaptation Strategies for Climate Change, through the identification of local specific present and future vulnerabilities, the training of municipal officials, and the engagement of local communities. It is intended to be replicated throughout the whole territory and to stimulate the creation of a national network of local adaptation in Portugal. Supported by methodologies and tools specifically developed for this project, our paper is based on the surveys, training and stakeholder engagement workshops implemented at municipal level. In an 'adaptation-as-learning' process, these tools functioned as a social-learning platform and an exercise in knowledge and policy co-production. The results allowed us to explore the nature of local vulnerabilities and the exposure of gaps in the context of reappraisal of both future climate change adaptation opportunities and possible dysfunctionalities in the governance arrangements of municipal Portugal. Development issues are highlighted when we address the sectors and social groups that are both more sensitive and more vulnerable to the impacts of climate change. We argue that a pluralistic dialogue and a common framing can be established between them, with great potential for transformational adaptation. Observed climate change, present-day climate variability and future expectations of change are great societal challenges which should be understood in the context of the sustainable development agenda.

Keywords: adaptation, ClimAdaPT.Local, climate change, Portugal, sustainable development

Procedia PDF Downloads 201
17671 Promoting Stem Education and a Cosmic Perspective by Using 21st Century Science of Learning

Authors: Rohan Roberts

Abstract:

The purpose of this project was to collaborate with a group of high-functioning, more-able students (aged 15-18) to promote STEM Education and a love for science by bringing a cosmic perspective into the classroom and high school environment. This was done using 21st century science of learning, a focus on the latest research on Neuroeducation, and modern pedagogical methods based on Howard Gardner's theory of Multiple Intelligences, Bill Lucas’ theory of New Smarts, and Sir Ken Robinson’s recommendations on encouraging creativity. The result was an increased sense of passion, excitement, and wonder about science in general, and about the marvels of space and the universe in particular. In addition to numerous unique and innovative science-based initiatives, clubs, workshops, and science trips, this project also saw a marked rise in student-teacher collaboration in science learning and in student engagement with the general public through the press, social media, and community-based initiatives. This paper also outlines the practical impact that bringing a cosmic perspective into the classroom has had on the lives, interests, and future career prospects of the students involved in this endeavour.

Keywords: cosmic perspective, gifted and talented, neuro-education, STEM education

Procedia PDF Downloads 340
17670 Spatial Point Process Analysis of Dengue Fever in Tainan, Taiwan

Authors: Ya-Mei Chang

Abstract:

This research is intended to apply spatio-temporal point process methods to the dengue fever data in Tainan. The spatio-temporal intensity function of the dataset is assumed to be separable. The kernel estimation is a widely used approach to estimate intensity functions. The intensity function is very helpful to study the relation of the spatio-temporal point process and some covariates. The covariate effects might be nonlinear. An nonparametric smoothing estimator is used to detect the nonlinearity of the covariate effects. A fitted parametric model could describe the influence of the covariates to the dengue fever. The correlation between the data points is detected by the K-function. The result of this research could provide useful information to help the government or the stakeholders making decisions.

Keywords: dengue fever, spatial point process, kernel estimation, covariate effect

Procedia PDF Downloads 355
17669 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients

Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi

Abstract:

Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.

Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection

Procedia PDF Downloads 149
17668 The Role of Synthetic Data in Aerial Object Detection

Authors: Ava Dodd, Jonathan Adams

Abstract:

The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.

Keywords: computer vision, machine learning, synthetic data, YOLOv4

Procedia PDF Downloads 229