Search results for: erosion rate prediction
6899 Advancing Nanoporous Arrays: Developing a 3D NiS@Ni-Cu Electrode with Nanoporous Sphere Array through Electrodeposition for Enhanced Cycle Performance in Lithium-Ion Batteries
Authors: Esayas Berhanu Kefene
Abstract:
Transition metal sulfides (TMS) are recognized for their remarkable properties, which stem from their significant capacities and advantageous physicochemical traits, positioning them as promising candidates for anode materials in lithium-ion batteries (LIBs). Among these, nickel sulfide has attracted considerable interest due to its environmental sustainability, affordability, electrical conductivity, and theoretical capacity. Nonetheless, issues such as sluggish charge transport and electrode degradation resulting from volume changes necessitate further exploration to improve battery performance. This research presents a three-dimensional nanoporous NiS@Cu-Ni structure with a spherical array (3D NiS@CNSA) as a potential LIB anode material to mitigate these challenges. Utilizing a non-template constant current electrodeposition method for five minutes, a conductive network and stress-buffering architecture were established by affixing a Cu-Ni nanosphere array onto nickel foam substrates, followed by a 30-minute constant potential electrodeposition to apply NiS onto the current collector. The optimized 3D NiS@CNSA electrode demonstrated an initial reversible capacity of 2.07 mAh cm⁻² at a current density of 0.4 mA cm⁻², retaining 1.92 mAh cm⁻² after 200 cycles, which corresponds to a high capacity retention rate of 92.8%. Additionally, it displayed a rate capability of 1.98 mAh cm⁻² at 3.2 mA cm⁻². This study introduces distinctive design and rapid fabrication technique for electrodes with superior cyclic performance, contributing to advancements in lithium-ion battery technology.Keywords: galvanostatic and potentostatic electrodeposition methods, transition metal sulfides, lithium-ion battery, anode, nanoporous array structure
Procedia PDF Downloads 36898 Study on the Process of Detumbling Space Target by Laser
Authors: Zhang Pinliang, Chen Chuan, Song Guangming, Wu Qiang, Gong Zizheng, Li Ming
Abstract:
The active removal of space debris and asteroid defense are important issues in human space activities. Both of them need a detumbling process, for almost all space debris and asteroid are in a rotating state, and it`s hard and dangerous to capture or remove a target with a relatively high tumbling rate. So it`s necessary to find a method to reduce the angular rate first. The laser ablation method is an efficient way to tackle this detumbling problem, for it`s a contactless technique and can work at a safe distance. In existing research, a laser rotational control strategy based on the estimation of the instantaneous angular velocity of the target has been presented. But their calculation of control torque produced by a laser, which is very important in detumbling operation, is not accurate enough, for the method they used is only suitable for the plane or regularly shaped target, and they did not consider the influence of irregular shape and the size of the spot. In this paper, based on the triangulation reconstruction of the target surface, we propose a new method to calculate the impulse of the irregularly shaped target under both the covered irradiation and spot irradiation of the laser and verify its accuracy by theoretical formula calculation and impulse measurement experiment. Then we use it to study the process of detumbling cylinder and asteroid by laser. The result shows that the new method is universally practical and has high precision; it will take more than 13.9 hours to stop the rotation of Bennu with 1E+05kJ laser pulse energy; the speed of the detumbling process depends on the distance between the spot and the centroid of the target, which can be found an optimal value in every particular case.Keywords: detumbling, laser ablation drive, space target, space debris remove
Procedia PDF Downloads 886897 Assessment of Airtightness Through a Standardized Procedure in a Nearly-Zero Energy Demand House
Authors: Mar Cañada Soriano, Rafael Royo-Pastor, Carolina Aparicio-Fernández, Jose-Luis Vivancos
Abstract:
The lack of insulation, along with the existence of air leakages, constitute a meaningful impact on the energy performance of buildings. Both of them lead to increases in the energy demand through additional heating and/or cooling loads. Additionally, they cause thermal discomfort. In order to quantify these uncontrolled air currents, pressurization and depressurization tests can be performed. Among them, the Blower Door test is a standardized procedure to determine the airtightness of a space which characterizes the rate of air leakages through the envelope surface, calculating to this purpose an air flow rate indicator. In this sense, the low-energy buildings complying with the Passive House design criteria are required to achieve high levels of airtightness. Due to the invisible nature of air leakages, additional tools are often considered to identify where the infiltrations take place. Among them, the infrared thermography entails a valuable technique to this purpose since it enables their detection. The aim of this study is to assess the airtightness of a typical Mediterranean dwelling house located in the Valencian orchad (Spain) restored under the Passive House standard using to this purpose the blower-door test. Moreover, the building energy performance modelling tools TRNSYS (TRaNsient System Simulation program) and TRNFlow (TRaNsient Flow) have been used to determine its energy performance, and the infiltrations’ identification was carried out by means of infrared thermography. The low levels of infiltrations obtained suggest that this house may comply with the Passive House standard.Keywords: airtightness, blower door, trnflow, infrared thermography
Procedia PDF Downloads 1276896 On Hyperbolic Gompertz Growth Model (HGGM)
Authors: S. O. Oyamakin, A. U. Chukwu,
Abstract:
We proposed a Hyperbolic Gompertz Growth Model (HGGM), which was developed by introducing a stabilizing parameter called θ using hyperbolic sine function into the classical gompertz growth equation. The resulting integral solution obtained deterministically was reprogrammed into a statistical model and used in modeling the height and diameter of Pines (Pinus caribaea). Its ability in model prediction was compared with the classical gompertz growth model, an approach which mimicked the natural variability of height/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using goodness of fit tests and model selection criteria. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the compliance of the error term to normality assumptions while using testing the independence of the error term using the runs test. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic gompertz growth models better than the source model (classical gompertz growth model) while the results of R2, Adj. R2, MSE, and AIC confirmed the predictive power of the Hyperbolic Monomolecular growth models over its source model.Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, gompertz
Procedia PDF Downloads 4456895 A Study on the Effect of Cod to Sulphate Ratio on Performance of Lab Scale Upflow Anaerobic Sludge Blanket Reactor
Authors: Neeraj Sahu, Ahmad Saadiq
Abstract:
Anaerobic sulphate reduction has the potential for being effective and economically viable over conventional treatment methods for the treatment of sulphate-rich wastewater. However, a major challenge in anaerobic sulphate reduction is the diversion of a fraction of organic carbon towards methane production and some minor problem such as odour problems, corrosion, and increase of effluent chemical oxygen demand. A high-rate anaerobic technology has encouraged researchers to extend its application to the treatment of complex wastewaters with relatively low cost and energy consumption compared to physicochemical methods. Therefore, the aim of this study was to investigate the effects of COD/SO₄²⁻ ratio on the performance of lab scale UASB reactor. A lab-scale upflow anaerobic sludge blanket (UASB) reactor was operated for 170 days. In which first 60 days, for successful start-up with acclimation under methanogenesis and sulphidogenesis at COD/SO₄²⁻ of 18 and were operated at COD/SO₄²⁻ ratios of 12, 8, 4 and 1 to evaluate the effects of the presence of sulfate on the reactor performance. The reactor achieved maximum COD removal efficiency and biogas evolution at the end of acclimation (control). This phase lasted 53 days with 89.5% efficiency. The biogas was 0.6 L/d at (OLR) of 1.0 kg COD/m³d when it was treating synthetic wastewater with effective volume of reactor as 2.8 L. When COD/SO₄²⁻ ratio changed from 12 to 1, slight decrease in COD removal efficiencies (76.8–87.4%) was observed, biogas production decreased from 0.58 to 0.32 L/d, while the sulfate removal efficiency increased from 42.5% to 72.7%.Keywords: anaerobic, chemical oxygen demand, organic loading rate, sulphate, up-flow anaerobic sludge blanket reactor
Procedia PDF Downloads 2206894 Biodegradation of Direct Red 23 by Bacterial Consortium Isolated from Dye Contaminated Soil Using Sequential Air-lift Bioreactor
Authors: Lata Kumari Dhanesh Tiwary, Pradeep Kumar Mishra
Abstract:
The effluent coming from various industries such as textile, carpet, food, pharmaceutical and many other industries is big challenge due to its recalcitrant and xenobiotiocs in nature. Recently, biodegradation of dye wastewater through biological means was widely used due to eco-friendly and cost effective with the higher percentage of removal of dye from wastewater. The present study deals with the biodegradation and decolourization of Direct Red 23 dye using indigenously isolated bacterial consortium. The bacterial consortium was isolated from soil sample from dye contaminated site near a cluster of Carpet industries of Bhadohi, Uttar Pradesh, India. The bacterial strain formed consortia were identified and characterized by morphological, biochemical and 16S rRNA gene sequence analysis. The bacterial strain mainly Staphylococcus saprophyticus strain BHUSS X3 (KJ439576), Microbacterium sp. BHUMSp X4 (KJ740222) and Staphylococcus saprophyticus strain BHUSS X5 (KJ439576) were used as consortia for further studies of dye decolorization. Experimental investigations were made in a Sequencing Air- lift bioreactor using the synthetic solution of Direct Red 23 dye by optimizing various parameters for efficient degradation of dye. The effect of several operating parameters such as flow rate, pH, temperature, initial dye concentration and inoculums size on removal of dye was investigated. The efficiency of isolated bacterial consortia from dye contaminated area in Sequencing Air- lift Bioreactor with different concentration of dye between 100-1200 mg/l at different hydraulic rate (HRTs) 26h and 10h. The maximum percentage of dye decolourization 98% was achieved when operated at HRT of 26h. The percentage of decolourization of dye was confirmed by using UV-Vis spectrophotometer and HPLC.Keywords: carpet industry, bacterial consortia, sequencing air-lift bioreactor
Procedia PDF Downloads 3446893 First Principle Calculations of the Structural and Optoelectronic Properties of Cubic Perovskite CsSrF3
Authors: Meriem Harmel, Houari Khachai
Abstract:
We have investigated the structural, electronic and optical properties of a compound perovskite CsSrF3 using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for exchange-correlation potential calculation. The ground state properties such as lattice parameter, bulk modulus and its pressure derivative were calculated and the results are compared whit experimental and theoretical data. Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density, where the fundamental energy gap is direct under ambient conditions. The contribution of the different bands was analyzed from the total and partial density of states curves. The optical properties (namely: the real and the imaginary parts of the dielectric function ε(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 35.0 eV. This is the first quantitative theoretical prediction of the optical properties for the investigated compound and still awaits experimental confirmations.Keywords: DFT, fluoroperovskite, electronic structure, optical properties
Procedia PDF Downloads 4836892 Time Series Analysis the Case of China and USA Trade Examining during Covid-19 Trade Enormity of Abnormal Pricing with the Exchange rate
Authors: Md. Mahadi Hasan Sany, Mumenunnessa Keya, Sharun Khushbu, Sheikh Abujar
Abstract:
Since the beginning of China's economic reform, trade between the U.S. and China has grown rapidly, and has increased since China's accession to the World Trade Organization in 2001. The US imports more than it exports from China, reducing the trade war between China and the U.S. for the 2019 trade deficit, but in 2020, the opposite happens. In international and U.S. trade, Washington launched a full-scale trade war against China in March 2016, which occurred a catastrophic epidemic. The main goal of our study is to measure and predict trade relations between China and the U.S., before and after the arrival of the COVID epidemic. The ML model uses different data as input but has no time dimension that is present in the time series models and is only able to predict the future from previously observed data. The LSTM (a well-known Recurrent Neural Network) model is applied as the best time series model for trading forecasting. We have been able to create a sustainable forecasting system in trade between China and the US by closely monitoring a dataset published by the State Website NZ Tatauranga Aotearoa from January 1, 2015, to April 30, 2021. Throughout the survey, we provided a 180-day forecast that outlined what would happen to trade between China and the US during COVID-19. In addition, we have illustrated that the LSTM model provides outstanding outcome in time series data analysis rather than RFR and SVR (e.g., both ML models). The study looks at how the current Covid outbreak affects China-US trade. As a comparative study, RMSE transmission rate is calculated for LSTM, RFR and SVR. From our time series analysis, it can be said that the LSTM model has given very favorable thoughts in terms of China-US trade on the future export situation.Keywords: RFR, China-U.S. trade war, SVR, LSTM, deep learning, Covid-19, export value, forecasting, time series analysis
Procedia PDF Downloads 2026891 Study of the Non-isothermal Crystallization Kinetics of Polypropylene Homopolymer/Impact Copolymer Composites
Authors: Pixiang Wang, Shaoyang Liu, Yucheng Peng
Abstract:
Polypropylene (PP) is an essential material of numerous applications in different industrial sectors, including packaging, construction, and automotive. Because the application of homopolypropylene (HPP) is limited by its relatively low impact strength and high embrittlement temperature, various types of impact copolymer PP (ICPP) that incorporate elastomers/rubbers into HPP to increase impact strength have been successfully commercialized. Crystallization kinetics of an isotactic HPP, an ICPP, and their composites were studied in this work understand the composites’ behaviors better. The Avrami-Jeziorny model was used to describe the crystallization process. For most samples, the Avrami exponent, n, was greater than 3, indicating the crystal grew in three dimensions with spherical geometry. However, the n value could drop below 3 when the ICPP content was 80 wt.% or higher and the cooling rate was 7.5°C/min or lower, implying that the crystals could grow in two dimensions and some lamella structures could be formed under those conditions. The nucleation activity increased with the increase of the ICPP content, demonstrating that the rubber phase in the ICPP acted as a nucleation agent and facilitated the nucleation process. The decrease in crystallization rate after the ICPP content exceeded 60 wt.% might be caused by the excessive amount of crystal nuclei induced by the high ICPP content, which caused strong crystal-crystal interactions and limited the crystal growth space. The nucleation activity and the n value showed high correlations to the mechanical and thermal properties of the materials. The quantitative study of the kinetics of crystallization in this work could be a helpful reference for manufacturing ICPP and HPP/ICPP mixtures.Keywords: polypropylene, crystallization kinetics, Avrami-Jeziorny model, crystallization activation energy, Nucleation activity
Procedia PDF Downloads 916890 Cryptocurrency as a Payment Method in the Tourism Industry: A Comparison of Volatility, Correlation and Portfolio Performance
Authors: Shu-Han Hsu, Jiho Yoon, Chwen Sheu
Abstract:
With the rapidly growing of blockchain technology and cryptocurrency, various industries which include tourism has added in cryptocurrency as the payment method of their transaction. More and more tourism companies accept payments in digital currency for flights, hotel reservations, transportation, and more. For travellers and tourists, using cryptocurrency as a payment method has become a way to circumvent costs and prevent risks. Understanding volatility dynamics and interdependencies between standard currency and cryptocurrency is important for appropriate financial risk management to assist policy-makers and investors in marking more informed decisions. The purpose of this paper has been to understand and explain the risk spillover effects between six major cryptocurrencies and the top ten most traded standard currencies. Using data for the daily closing price of cryptocurrencies and currency exchange rates from 7 August 2015 to 10 December 2019, with 1,133 observations. The diagonal BEKK model was used to analyze the co-volatility spillover effects between cryptocurrency returns and exchange rate returns, which are measures of how the shocks to returns in different assets affect each other’s subsequent volatility. The empirical results show there are co-volatility spillover effects between the cryptocurrency returns and GBP/USD, CNY/USD and MXN/USD exchange rate returns. Therefore, currencies (British Pound, Chinese Yuan and Mexican Peso) and cryptocurrencies (Bitcoin, Ethereum, Ripple, Tether, Litecoin and Stellar) are suitable for constructing a financial portfolio from an optimal risk management perspective and also for dynamic hedging purposes.Keywords: blockchain, co-volatility effects, cryptocurrencies, diagonal BEKK model, exchange rates, risk spillovers
Procedia PDF Downloads 1486889 The Role of Brand Loyalty in Generating Positive Word of Mouth among Malaysian Hypermarket Customers
Authors: S. R. Nikhashemi, Laily Haj Paim, Ali Khatibi
Abstract:
Structural Equation Modeling (SEM) was used to test a hypothesized model explaining Malaysian hypermarket customers’ perceptions of brand trust (BT), customer perceived value (CPV) and perceived service quality (PSQ) on building their brand loyalty (CBL) and generating positive word-of-mouth communication (WOM). Self-administered questionnaires were used to collect data from 374 Malaysian hypermarket customers from Mydin, Tesco, Aeon Big and Giant in Kuala Lumpur, a metropolitan city of Malaysia. The data strongly supported the model exhibiting that BT, CPV and PSQ are prerequisite factors in building customer brand loyalty, while PSQ has the strongest effect on prediction of customer brand loyalty compared to other factors. Besides, the present study suggests the effect of the aforementioned factors via customer brand loyalty strongly contributes to generate positive word of mouth communication.Keywords: brand trust, perceived value, Perceived Service Quality, Brand loyalty, positive word of mouth communication
Procedia PDF Downloads 4856888 Optimization Technique for the Contractor’s Portfolio in the Bidding Process
Authors: Taha Anjamrooz, Sareh Rajabi, Salwa Bheiry
Abstract:
Selection between the available projects in bidding processes for the contractor is one of the essential areas to concentrate on. It is important for the contractor to choose the right projects within its portfolio during the tendering stage based on certain criteria. It should align the bidding process with its origination strategies and goals as a screening process to have the right portfolio pool to start with. Secondly, it should set the proper framework and use a suitable technique in order to optimize its selection process for concertation purpose and higher efforts during the tender stage with goals of success and winning. In this research paper, a two steps framework proposed to increase the efficiency of the contractor’s bidding process and the winning chance of getting the new projects awarded. In this framework, initially, all the projects pass through the first stage screening process, in which the portfolio basket will be evaluated and adjusted in accordance with the organization strategies to the reduced version of the portfolio pool, which is in line with organization activities. In the second stage, the contractor uses linear programming to optimize the portfolio pool based on available resources such as manpower, light equipment, heavy equipment, financial capability, return on investment, and success rate of winning the bid. Therefore, this optimization model will assist the contractor in utilizing its internal resource to its maximum and increase its winning chance for the new project considering past experience with clients, built-relation between two parties, and complexity in the exertion of the projects. The objective of this research will be to increase the contractor's winning chance in the bidding process based on the success rate and expected return on investment.Keywords: bidding process, internal resources, optimization, contracting portfolio management
Procedia PDF Downloads 1476887 Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults
Authors: L. Lindsay, S. A. Coleman, D. Kerr, B. J. Taylor, A. Moorhead
Abstract:
Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks.Keywords: classification, falls, health risk factors, machine learning, older adults
Procedia PDF Downloads 1536886 Bankruptcy Prediction Analysis on Mining Sector Companies in Indonesia
Authors: Devina Aprilia Gunawan, Tasya Aspiranti, Inugrah Ratia Pratiwi
Abstract:
This research aims to classify the mining sector companies based on Altman’s Z-score model, and providing an analysis based on the Altman’s Z-score model’s financial ratios to provide a picture about the financial condition in mining sector companies in Indonesia and their viability in the future, and to find out the partial and simultaneous impact of each of the financial ratio variables in the Altman’s Z-score model, namely (WC/TA), (RE/TA), (EBIT/TA), (MVE/TL), and (S/TA), toward the financial condition represented by the Z-score itself. Among 38 mining sector companies listed in Indonesia Stock Exchange (IDX), 28 companies are selected as research sample according to the purposive sampling criteria.The results of this research showed that during 3 years research period at 2010-2012, the amount of the companies that was predicted to be healthy in each year was less than half of the total sample companies and not even reach up to 50%. The multiple regression analysis result showed that all of the research hypotheses are accepted, which means that (WC/TA), (RE/TA), (EBIT/TA), (MVE/TL), and (S/TA), both partially and simultaneously had an impact towards company’s financial condition.Keywords: Altman’s Z-score model, financial condition, mining companies, Indonesia
Procedia PDF Downloads 5316885 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning
Authors: Xingyu Gao, Qiang Wu
Abstract:
Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.Keywords: patent influence, interpretable machine learning, predictive models, SHAP
Procedia PDF Downloads 536884 Feature-Based Summarizing and Ranking from Customer Reviews
Authors: Dim En Nyaung, Thin Lai Lai Thein
Abstract:
Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.Keywords: opinion mining, opinion summarization, sentiment analysis, text mining
Procedia PDF Downloads 3326883 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand
Authors: Neeta Kumari, Gopal Pathak
Abstract:
Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination
Procedia PDF Downloads 5556882 Impact of Civil Engineering and Economic Growth in the Sustainability of the Environment: Case of Albania
Authors: Rigers Dodaj
Abstract:
Nowadays, the environment is a critical goal for civil engineers, human activity, construction projects, economic growth, and whole national development. Regarding the development of Albania's economy, people's living standards are increasing, and the requirements for the living environment are also increasing. Under these circumstances, environmental protection and sustainability this is the critical issue. The rising industrialization, urbanization, and energy demand affect the environment by emission of carbon dioxide gas (CO2), a significant parameter known to impact air pollution directly. Consequently, many governments and international organizations conducted policies and regulations to address environmental degradation in the pursuit of economic development, for instance in Albania, the CO2 emission calculated in metric tons per capita has increased by 23% in the last 20 years. This paper analyzes the importance of civil engineering and economic growth in the sustainability of the environment focusing on CO2 emission. The analyzed data are time series 2001 - 2020 (with annual frequency), based on official publications of the World Bank. The statistical approach with vector error correction model and time series forecasting model are used to perform the parameter’s estimations and long-run equilibrium. The research in this paper adds a new perspective to the evaluation of a sustainable environment in the context of carbon emission reduction. Also, it provides reference and technical support for the government toward green and sustainable environmental policies. In the context of low-carbon development, effectively improving carbon emission efficiency is an inevitable requirement for achieving sustainable economic and environmental protection. Also, the study reveals that civil engineering development projects impact greatly the environment in the long run, especially in areas of flooding, noise pollution, water pollution, erosion, ecological disorder, natural hazards, etc. The potential for reducing industrial carbon emissions in recent years indicates that reduction is becoming more difficult, it needs another economic growth policy and more civil engineering development, by improving the level of industrialization and promoting technological innovation in industrial low-carbonization.Keywords: CO₂ emission, civil engineering, economic growth, environmental sustainability
Procedia PDF Downloads 916881 Geothermal Prospect Prediction at Mt. Ciremai Using Fault and Fracture Density Method
Authors: Rifqi Alfadhillah Sentosa, Hasbi Fikru Syabi, Stephen
Abstract:
West Java is a province in Indonesia which has a number of volcanoes. One of those volcanoes is Mt. Ciremai, located administratively at Kuningan and Majalengka District, and is known for its significant geothermal potential in Java Island. This research aims to assume geothermal prospects at Mt. Ciremai using Fault and Fracture Density (FFD) Method, which is correlated to the geochemistry of geothermal manifestations around the mountain. This FFD method is using SRTM data to draw lineaments, which are assumed associated with fractures and faults in the research area. These faults and fractures were assumed as the paths for reservoir fluids to reached surface as geothermal manifestations. The goal of this method is to analyze the density of those lineaments found in the research area. Based on this FFD Method, it is known that area with high density of lineaments located on Mt. Kromong at the northern side of Mt. Ciremai. This prospect area is proven by its higher geothermometer values compared to geothermometer values calculated at the south area of Mt. Ciremai.Keywords: geothermal prospect, fault and fracture density, Mt. Ciremai, surface manifestation
Procedia PDF Downloads 3726880 Synoptic Analysis of a Heavy Flood in the Province of Sistan-Va-Balouchestan: Iran January 2020
Authors: N. Pegahfar, P. Ghafarian
Abstract:
In this research, the synoptic weather conditions during the heavy flood of 10-12 January 2020 in the Sistan-va-Balouchestan Province of Iran will be analyzed. To this aim, reanalysis data from the National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR), NCEP Global Forecasting System (GFS) analysis data, measured data from a surface station together with satellite images from the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) have been used from 9 to 12 January 2020. Atmospheric parameters both at the lower troposphere and also at the upper part of that have been used, including absolute vorticity, wind velocity, temperature, geopotential height, relative humidity, and precipitation. Results indicated that both lower-level and upper-level currents were strong. In addition, the transport of a large amount of humidity from the Oman Sea and the Red Sea to the south and southeast of Iran (Sistan-va-Balouchestan Province) led to the vast and unexpected precipitation and then a heavy flood.Keywords: Sistan-va-Balouchestn Province, heavy flood, synoptic, analysis data
Procedia PDF Downloads 1046879 High Temperature Deformation Behavior of Al0.2CoCrFeNiMo0.5 High Entropy alloy
Authors: Yasam Palguna, Rajesh Korla
Abstract:
The efficiency of thermally operated systems can be improved by increasing the operating temperature, thereby decreasing the fuel consumption and carbon footprint. Hence, there is a continuous need for replacing the existing materials with new alloys with higher temperature working capabilities. During the last decade, multi principal element alloys, commonly known as high entropy alloys are getting more attention because of their superior high temperature strength along with good high temperature corrosion and oxidation resistance, The present work focused on the microstructure and high temperature tensile behavior of Al0.2CoCrFeNiMo0.5 high entropy alloy (HEA). Wrought Al0.2CoCrFeNiMo0.5 high entropy alloy, produced by vacuum induction melting followed by thermomechanical processing, is tested in the temperature range of 200 to 900oC. It is exhibiting very good resistance to softening with increasing temperature up to 700oC, and thereafter there is a rapid decrease in the strength, especially beyond 800oC, which may be due to simultaneous occurrence of recrystallization and precipitate coarsening. Further, it is exhibiting superplastic kind of behavior with a uniform elongation of ~ 275 % at 900 oC temperature and 1 x 10-3 s-1 strain rate, which may be due to the presence of fine stable equi-axed grains. Strain rate sensitivity of 0.3 was observed, suggesting that solute drag dislocation glide might be the active mechanism during superplastic kind of deformation. Post deformation microstructure suggesting that cavitation at the sigma phase-matrix interface is the failure mechanism during high temperature deformation. Finally, high temperature properties of the present alloy will be compared with the contemporary high temperature materials such as ferritic, austenitic steels, and superalloys.Keywords: high entropy alloy, high temperature deformation, super plasticity, post-deformation microstructures
Procedia PDF Downloads 1696878 On the Influence of Sleep Habits for Predicting Preterm Births: A Machine Learning Approach
Authors: C. Fernandez-Plaza, I. Abad, E. Diaz, I. Diaz
Abstract:
Births occurring before the 37th week of gestation are considered preterm births. A threat of preterm is defined as the beginning of regular uterine contractions, dilation and cervical effacement between 23 and 36 gestation weeks. To author's best knowledge, the factors that determine the beginning of the birth are not completely defined yet. In particular, the incidence of sleep habits on preterm births is weekly studied. The aim of this study is to develop a model to predict the factors affecting premature delivery on pregnancy, based on the above potential risk factors, including those derived from sleep habits and light exposure at night (introduced as 12 variables obtained by a telephone survey using two questionnaires previously used by other authors). Thus, three groups of variables were included in the study (maternal, fetal and sleep habits). The study was approved by Research Ethics Committee of the Principado of Asturias (Spain). An observational, retrospective and descriptive study was performed with 481 births between January 1, 2015 and May 10, 2016 in the University Central Hospital of Asturias (Spain). A statistical analysis using SPSS was carried out to compare qualitative and quantitative variables between preterm and term delivery. Chi-square test qualitative variable and t-test for quantitative variables were applied. Statistically significant differences (p < 0.05) between preterm vs. term births were found for primiparity, multi-parity, kind of conception, place of residence or premature rupture of membranes and interruption during nights. In addition to the statistical analysis, machine learning methods to look for a prediction model were tested. In particular, tree based models were applied as the trade-off between performance and interpretability is especially suitable for this study. C5.0, recursive partitioning, random forest and tree bag models were analysed using caret R-package. Cross validation with 10-folds and parameter tuning to optimize the methods were applied. In addition, different noise reduction methods were applied to the initial data using NoiseFiltersR package. The best performance was obtained by C5.0 method with Accuracy 0.91, Sensitivity 0.93, Specificity 0.89 and Precision 0.91. Some well known preterm birth factors were identified: Cervix Dilation, maternal BMI, Premature rupture of membranes or nuchal translucency analysis in the first trimester. The model also identifies other new factors related to sleep habits such as light through window, bedtime on working days, usage of electronic devices before sleeping from Mondays to Fridays or change of sleeping habits reflected in the number of hours, in the depth of sleep or in the lighting of the room. IF dilation < = 2.95 AND usage of electronic devices before sleeping from Mondays to Friday = YES and change of sleeping habits = YES, then preterm is one of the predicting rules obtained by C5.0. In this work a model for predicting preterm births is developed. It is based on machine learning together with noise reduction techniques. The method maximizing the performance is the one selected. This model shows the influence of variables related to sleep habits in preterm prediction.Keywords: machine learning, noise reduction, preterm birth, sleep habit
Procedia PDF Downloads 1536877 An Analysis of the Impact of Government Budget Deficits on Economic Performance. A Zimbabwean Perspective
Authors: Tafadzwa Shumba, Rose C. Nyatondo, Regret Sunge
Abstract:
This research analyses the impact of budget deficits on the economic performance of Zimbabwe. The study employs the autoregressive distributed lag (ARDL) confines testing method to co-integration and long-run estimation using time series data from 1980-2018. The Augmented Dick Fuller (ADF) and the Granger approach were used to testing for stationarity and causality among the factors. Co-integration test results affirm a long term association between GDP development rate and descriptive factors. Causality test results show a unidirectional connection between budget shortfall to GDP development and bi-directional causality amid debt and budget deficit. This study also found unidirectional causality from debt to GDP growth rate. ARDL estimates indicate a significantly positive long term and significantly negative short term impact of budget shortfall on GDP. This suggests that budget deficits have a short-run growth retarding effect and a long-run growth-inducing effect. The long-run results follow the Keynesian theory that posits that fiscal deficits result in an increase in GDP growth. Short-run outcomes follow the neoclassical theory. In light of these findings, the government is recommended to minimize financing of recurrent expenditure using a budget deficit. To achieve sustainable growth and development, the government needs to spend an absorbable budget deficit focusing on capital projects such as the development of human capital and infrastructure.Keywords: ARDL, budget deficit, economic performance, long run
Procedia PDF Downloads 1066876 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data
Authors: Chico Horacio Jose Sambo
Abstract:
Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.Keywords: neural network, permeability, multilayer perceptron, well log
Procedia PDF Downloads 4086875 Biology and Life Fertility of the Cabbage Aphid, Brevicoryne brassicae (L) on Cauliflower Cultivars
Authors: Mandeep Kaur, K. C. Sharma, P. L. Sharma, R. S. Chandel
Abstract:
Cauliflower is an important vegetable crop grown throughout the world and is attacked by a large number of insect pests at various stages of the crop growth. Amongst them, the cabbage aphid, Brevicoryne brassicae (Linnaeus) (Hemiptera: Aphididae) is an important insect pest. Continued feeding by both nymphs and adults of this aphid causes yellowing, wilting and stunting of plants. Amongst various management practices, the use of resistant cultivars is important and can be an effective method of reducing the population of this aphid. So it is imperative to know the complete record on various biological parameters and life table on specific cultivars. The biology and life fertility of the cabbage aphid were studied on five cauliflower cultivars viz. Megha, Shweta, K-1, PSB-1 and PSBK-25 under controlled temperature conditions of 20 ± 2°C, 70 ± 5% relative humidity and 16:8 h (Light: Dark) photoperiods. For studying biology; apterous viviparous adults were picked up from the laboratory culture of all five cauliflower cultivars after rearing them at least for two generations and placed individually on the desired plants of cauliflower cultivars grown in pots with ten replicates of each. Daily record on the duration of nymphal period, adult longevity, mortality in each stage and the total number of progeny produced per female was made. This biological data were further used to construct life fertility table on each cultivar. Statistical analysis showed that there was a significant difference ( P < 0.05) between the different growth stages and the mean number of laid nymphs. The maximum and minimum growth periods were observed on Shweta and Megha (at par with K-1) cultivars, respectively. The maximum number of nymphs were laid on Shweta cultivar (26.40 nymphs per female) and minimum on Megha (at par with K-1) cultivar (15.20 nymphs per female). The true intrinsic rate of increase (rm) was found to be maximum on Shweta (0.233 nymphs/female/day) followed by PSB K-25 (0.207 nymphs/female/day), PSB-1 (0.203 nymphs/female/day), Megha (0.166 nymphs/female/day) and K-1 (0.153 nymphs/female/day). The finite rate of natural increase (λ) was also found to be in the order: K-1 < Megha < PSB-1 < PSBK-25 < Shweta whereas the doubling time (DT) was in the order of K-1 >Megha> PSB-1 >PSBk-25> Shweta. The aphids reared on the K-1 cultivar had the lowest values of rm & λ and the highest value of DT whereas on Shweta cultivar the values of rm & λ were the highest and the lowest value of DT. So on the basis of these studies, K-1 cultivar was found to be the least suitable and the Shweta cultivar was the most suitable for the cabbage aphid population growth. Although the cauliflower cultivars used in different parts of the world may be different yet the results of the present studies indicated that the application of cultivars affecting multiplication rate and reproductive parameters could be a good solution for the management of the cabbage aphid.Keywords: biology, cauliflower, cultivars, fertility
Procedia PDF Downloads 1916874 Spatial Distribution and Time Series Analysis of COVID-19 Pandemic in Italy: A Geospatial Perspective
Authors: Muhammad Farhan Ul Moazzam, Tamkeen Urooj Paracha, Ghani Rahman, Byung Gul Lee, Nasir Farid, Adnan Arshad
Abstract:
The novel coronavirus pandemic disease (COVID-19) affected the whole globe, though there is a lack of clinical studies and its epidemiological features. But as per the observation, it has been seen that most of the COVID-19 infected patients show mild to moderate symptoms, and they get better without any medical assistance due to a better immune system to generate antibodies against the novel coronavirus. In this study, the active cases, serious cases, recovered cases, deaths and total confirmed cases had been analyzed using the geospatial inverse distance weightage technique (IDW) within the time span of 2nd March to 3rd June 2020. As of 3rd June, the total number of COVID-19 cases in Italy were 231,238, total deaths 33,310, serious cases 350, recovered cases 158,951, and active cases were 39,177, which has been reported by the Ministry of Health, Italy. March 2nd-June 3rd, 2020 a sum of 231,238 cases has been reported in Italy out of which 38.68% cases reported in the Lombardia region with a death rate of 18%, which is high from its national mortality rate followed by Emilia-Romagna (14.89% deaths), Piemonte (12.68% deaths), and Vento (10% deaths). As per the total cases in the region, the highest number of recoveries has been observed in Umbria (92.52%), followed by Basilicata (87%), Valle d'Aosta (86.85%), and Trento (84.54%). The COVID-19 evolution in Italy has been particularly found in the major urban area, i.e., Rome, Milan, Naples, Bologna, and Florence. Geospatial technology played a vital role in this pandemic by tracking infected patient, active cases, and recovered cases. Geospatial techniques are very important in terms of monitoring and planning to control the pandemic spread in the country.Keywords: COVID-19, public health, geospatial analysis, IDW, Italy
Procedia PDF Downloads 1586873 Exploring Tweet Geolocation: Leveraging Large Language Models for Post-Hoc Explanations
Authors: Sarra Hasni, Sami Faiz
Abstract:
In recent years, location prediction on social networks has gained significant attention, with short and unstructured texts like tweets posing additional challenges. Advanced geolocation models have been proposed, increasing the need to explain their predictions. In this paper, we provide explanations for a geolocation black-box model using LIME and SHAP, two state-of-the-art XAI (eXplainable Artificial Intelligence) methods. We extend our evaluations to Large Language Models (LLMs) as post hoc explainers for tweet geolocation. Our preliminary results show that LLMs outperform LIME and SHAP by generating more accurate explanations. Additionally, we demonstrate that prompts with examples and meta-prompts containing phonetic spelling rules improve the interpretability of these models, even with informal input data. This approach highlights the potential of advanced prompt engineering techniques to enhance the effectiveness of black-box models in geolocation tasks on social networks.Keywords: large language model, post hoc explainer, prompt engineering, local explanation, tweet geolocation
Procedia PDF Downloads 326872 Computed Tomography Guided Bone Biopsies: Experience at an Australian Metropolitan Hospital
Authors: K. Hinde, R. Bookun, P. Tran
Abstract:
Percutaneous CT guided biopsies provide a fast, minimally invasive, cost effective and safe method for obtaining tissue for histopathology and culture. Standards for diagnostic yield vary depending on whether the tissue is being obtained for histopathology or culture. We present a retrospective audit from Western Health in Melbourne Australia over a 12-month period which aimed to determine the diagnostic yield, technical success and complication rate for CT guided bone biopsies and identify factors affecting these results. The digital imaging storage program (Synapse Picture Archiving and Communication System – Fujifilm Australia) was analysed with key word searches from October 2015 to October 2016. Nineteen CT guided bone biopsies were performed during this time. The most common referring unit was oncology, work up imaging included CT, MRI, bone scan and PET scan. The complication rate was 0%, overall diagnostic yield was 74% with a technical success of 95%. When performing biopsies for histologic analysis diagnostic yield was 85% and when performing biopsies for bacterial culture diagnostic yield was 60%. There was no significant relationship identified between size of lesion, distance of lesion to skin, lesion appearance on CT, the number of samples taken or gauge of needle to diagnostic yield or technical success. CT guided bone biopsy at Western Health meets the standard reported at other major clinical centres for technical success and safety. It is a useful investigation in identification of primary malignancy in distal bone metastases.Keywords: bone biopsy, computed tomography, core biopsy, histopathology
Procedia PDF Downloads 2016871 Environmental Fatigue Analysis for Control Rod Drive Mechanisms Seal House
Authors: Xuejiao Shao, Jianguo Chen, Xiaolong Fu
Abstract:
In this paper, the elastoplastic strain correction factor computed by software of ANSYS was modified, and the fatigue usage factor in air was also corrected considering in water under reactor operating condition. The fatigue of key parts on control rod drive mechanisms was analyzed considering the influence of environmental fatigue caused by the coolant in the react pressure vessel. The elastoplastic strain correction factor was modified by analyzing thermal and mechanical loads separately referring the rules of RCC-M 2002. The new elastoplastic strain correction factor Ke(mix) is computed to replace the original Ke computed by the software of ANSYS when evaluating the fatigue produced by thermal and mechanical loads together. Based on the Ke(mix) and the usage cycle and fatigue design curves, the new range of primary plus secondary stresses was evaluated to obtain the final fatigue usage factor. The results show that the precision of fatigue usage factor can be elevated by using modified Ke when the amplify of the primary and secondary stress is large to some extent. One approach has been proposed for incorporating the environmental effects considering the effects of reactor coolant environments on fatigue life in terms of an environmental correction factor Fen, which is the ratio of fatigue life in air at room. To incorporate environmental effects into the RCCM Code fatigue evaluations, the fatigue usage factor based on the current Code design curves is multiplied by the correction factor. The contribution of environmental effects to results is discussed. Fatigue life decreases logarithmically with decreasing strain rate below 10%/s, which is insensitive to strain rate when temperatures below 100°C.Keywords: environmental fatigue, usage factor, elastoplastic strain correction factor, environmental correction
Procedia PDF Downloads 3286870 Efficacy and Safety of COVID-19 Vaccination in Patients with Multiple Sclerosis: Looking Forward to Post-COVID-19
Authors: Achiron Anat, Mathilda Mandel, Mayust Sue, Achiron Reuven, Gurevich Michael
Abstract:
Introduction: As coronavirus disease 2019 (COVID-19) vaccination is currently spreading around the world, it is of importance to assess the ability of multiple sclerosis (MS) patients to mount an appropriate immune response to the vaccine in the context of disease-modifying treatments (DMT’s). Objectives: Evaluate immunity generated following COVID-19 vaccination in MS patients, and assess factors contributing to protective humoral and cellular immune responses in MS patients vaccinated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) virus infection. Methods: Review our recent data related to (1) the safety of PfizerBNT162b2 COVID-19 mRNA vaccine in adult MS patients; (2) the humoral post-vaccination SARS-CoV2 IgG response in MS vaccinees using anti-spike protein-based serology; and (3) the cellular immune response of memory B-cells specific for SARS-CoV-2 receptor-binding domain (RBD) and memory T-cells secreting IFN-g and/or IL-2 in response to SARS-CoV2 peptides using ELISpot/Fluorospot assays in MS patients either untreated or under treatment with fingolimod, cladribine, or ocrelizumab; (4) covariate parameters related to mounting protective immune responses. Results: COVID-19 vaccine proved safe in MS patients, and the adverse event profile was mainly characterised by pain at the injection site, fatigue, and headache. Not any increased risk of relapse activity was noted and the rate of patients with acute relapse was comparable to the relapse rate in non-vaccinated patients during the corresponding follow-up period. A mild increase in the rate of adverse events was noted in younger MS patients, among patients with lower disability, and in patients treated with DMTs. Following COVID-19 vaccination protective humoral immune response was significantly decreased in fingolimod- and ocrelizumab- treated MS patients. SARS-CoV2 specific B-cell and T-cell cellular responses were respectively decreased. Untreated MS patients and patients treated with cladribine demonstrated protective humoral and cellular immune responses, similar to healthy vaccinated subjects. Conclusions: COVID-19 BNT162b2 vaccine proved as safe for MS patients. No increased risk of relapse activity was noted post-vaccination. Although COVID-19 vaccination is new, accumulated data demonstrate differences in immune responses under various DMT’s. This knowledge can help to construct appropriate COVID-19 vaccine guidelines to ensure proper immune responses for MS patients.Keywords: covid-19, vaccination, multiple sclerosis, IgG
Procedia PDF Downloads 144